
DEIM Forum 2010 B5-5

An Encryption Scheme to Prevent Statistical Attacks in the DAS Model

Hasan KADHEM†, Toshiyuki AMAGASA†,††, and Hiroyuki KITAGAWA†,††

† Graduate School of Systems and Information Engineering
†† Center for Computational Sciences

University of Tsukuba
Tennodai 1–1–1 Tsukuba Ibaraki 305-8573

E-mail: †hsalleh@kde.cst.tsukuba.ac.jp, ††{amagasa,kitagawa}@cs.tsukuba.acjp

Abstract Encryption can provide strong security for sensitive data against inside and outside attacks. This is

especially true in the ”Database as Service” model, where confidentiality and privacy are important issues for the

client. However, existing encryption approaches are vulnerable to a statistical attack because each value is encrypted

to another fixed value. We present a novel database encryption scheme called MV-OPES, which allows privacy-pre-

serving queries over encrypted databases with an improved security level. Our idea is to encrypt a value to different

multiple values to prevent statistical attacks. At the same time, MV-OPES preserves the order of the integer values

to allow comparison operations to be directly applied on encrypted data. We also present techniques to execute as

many relational operators as possible over an encrypted database to minimize the processing of decrypted data. Our

scheme can easily be integrated with current database and it is robust against statistical attack and the estimation

of true values.
Key words Encryption, order-preserving, database as service, statistical attack

1. Introduction

Encryption can provide strong security for sensitive data

against inside and outside attacks. The primary interest

in database encryption results from the recently proposed

“database as service” (DAS) architecture [1]. In DAS or

database outsourcing, a database owner outsources its man-

agement to a “database service provider”, which provides

online access mechanisms for querying and managing the

hosted database. At the same time, the service provider

incurs most of the server management and query execution

load.

Clients would like to take advantage of the provider’s

robust storage, but in many cases they cannot trust the

provider. Specifically, the provider should be prevented from

observing any of the outsourced database contents. En-

cryption is a common technique used to protect the con-

fidentiality and privacy of stored data in the DAS model.

However, the traditional attribute level encryption approach

for a database encrypts each value to another fixed value:

X1 = X2 =⇒ Ek(X1) = Ek(X2)

This approach is vulnerable to statistical attacks. A statis-

tical attack against an encrypted database seeks to use some

apparently anonymous statistical measures to infer individ-

ual data. Using such an approach, an attacker, especially

an inside attacker, can infer some data by joining tables and

using additional statistical information. This problem arises

clearly in joining lookup tables with other tables. The lookup

tables usually consist of a small and fixed values scale or do-

main such as gender (male or female), marital status (single,

married, separated,...), and city, .etc.

Example 1: Consider the plaintext database shown in Fig-

ure 1(a) with the traditional encrypted database in Figure

1(b). In the encrypted employee table, the third column con-

tains two distinct values (67653, 564564), which are clearly

gender data. When an attacker knows that there are more

male employees than female employees, then the attacker

can infer the encrypted values for numbers 1 and 2. Also,

it is possible to infer information by joining a project table

with the (emp proj) table. Knowing that only one employee

works on project “projectAS”, the attacker can recognize

the encrypted value for that project from table (emp proj).

Also, the attacker can get the encrypted (emp id) for the

employee who works on that project. Using the same tech-

nique, the attacker can infer much more information from

the encrypted database, and then try to determine the key

used in the encryption process.

A straightforward solution to solve the problem of statis-

e_id salary gender

111 100 1

222 200 1

333 350 1

444 200 1

555 200 2 e_id p_id

111 31

222 33

333 33

444 34

222 34 p_id p_name

31 projectAS

33 projectCZ

34 projectBX

35 projectMM emp proj emp_proj

e_idE salaryE genderE

35634 4576456 67653

87685 586576 67653

32422 6756765 67653

64777 586576 67653

77547 586576 564564 e_idE p_idE

35634 21133

87685 65874

32422 65874

64777 78554

87685 78554 p_idE p_nameE

21133 projectASE

65874 projectCZE

78554 projectBXE

96241 projectMME projE emp_projE empE

a) Plaintext Database.

b) Encrypted Database using the traditional approach.

e_idE salaryE genderE

Ek(111)v1 Ek(100)v1 Ek(1)v1

Ek(222)v1Ek(200)v1 Ek(1)v2

Ek(333)v1Ek(350)v1 Ek(1)v3

Ek(444)v1Ek(200)v2 Ek(1)v4

Ek(555)v1Ek(200)v3 Ek(2)v1

e_idE p_idE

Ek(111)v2 Ek(31)v2

Ek(222)v2Ek(33)v2

Ek(333)v2Ek(33)v3

Ek(444)v2Ek(34)v2

Ek(222)v3Ek(34)v3

p_idE p_nameE

Ek(31)v1projectASE

Ek(33)v1projectCZE

Ek(34)v1projectBXE

Ek(35)v1projectMME

projE emp_projE empE

c) Encrypted Database using the new scheme (MV-OPES).

Fig. 1 Database encryption using two approaches.

tical attack is to use different encryption keys for different

fields. However, using different keys leads to serious perfor-

mance degradation, because we need to decrypt all data to

execute queries, such as join. Another naive solution is to

add to the database a randomly generated data value for

each plaintext value and then both values are encrypted to-

gether. This approach is used by [2] to encrypt XML doc-

uments. Also, it is used with the Cipher-Block Chaining

(CBC) [3] as initial vector IV. This approach leads to storage

cost. In addition, it is cause serious performance degradation

because the plaintext and the additional value associated to

the plaintext should be decrypted together before executing

any query.

This paper presents a new database encryption scheme

called MV-OPES (Multivalued - Order Preserving Encryp-

tion Scheme), which allows one integer to be encrypted to

many values using the same encryption key while preserv-

ing the order of the integer values. Figure 1(c) describes the

new encryption technique applied on the employee plaintext

database shown in Figure 1(a). The equal plaintext values

in Figure 1(a) are encrypted to different ciphertext values

in Figure 1(c) as opposed to the ciphertext values in Fig-

ure 1(b). For instance, the emp id (222) is encrypted to

EK(222)v1 in the emp table and EK(222)v2 , EK(222)v3 in

the emp proj table, with high probability that (EK(222)v1 |=
EK(222)v2 |= EK(222)v3). Also, the encrypted values for

the emp id (111) are always less than the encrypted values

for the emp id (222). In this scheme, attackers cannot infer

individual information from the encrypted database even if

they have statistical knowledge about the plaintext database.

Unlike the bucketing approach [4], [5], which generates a su-

perset of answers with false positive tuples in all queries, our

scheme does so only on some condition types; the results con-

tain false positive tuples. MV-OPES can easily be integrated

with current database systems as it is designed to work with

existing indexing structures such as B-trees. MV-OPES is

efficient in insertions and updates. A new value can be in-

serted in a column, or a value in a column can be modified

without requiring changes to the encryption of other values.

1. 1 Organization of the Paper

The rest of paper is organized as follows. We first dis-

cuss related work in Section 2. Section 3 introduces our new

database encryption schema. Section 4 describes the condi-

tion translations. Section 5 discusses implementation of the

relational operators such as selection, join, and sort over en-

crypted relations. Section 6 reports the experimental results.

We conclude with a summary and directions for future work

in Section 7.

2. Related Work

Many database encryption techniques have been proposed,

but most are not intended for the one-to-many encryption al-

gorithm.

Order preserving encryption schema (OPES): The

idea of OPES is to take as input a user-provided target distri-

bution and transform the plaintext values in such a way that

the transformation preserves the order while the transformed

values follow the target distribution [6]. Under OPES, it is

ideal from the viewpoint of query performance, because com-

parisons can operate directly on ciphertext, thereby saving

the cost of expensive decryptions. From a security point of

view, OPES is vulnerable to a tight estimation and statis-

tical attacks if an adversary has knowledge of the distribu-

tion. Also, OPES is vulnerable to chosen plaintext attacks

if the adversary can choose any number of unencrypted val-

ues to his liking and encrypt them into their corresponding

encrypted values. In OPES, most probably two columns of

two tables do not have the same distribution. That means

they are not directly comparable. When this is true, the join

query involves expensive decryptions and/or encryptions, be-

cause one side must be converted to the other.

Order preserving encryption with splitting and

scaling (OPESS): The authors in [2] proposed a new en-

cryption scheme based on the OPES to index the encrypted

values in the outsourced XML databases. The idea in OPESS

is to map the same plaintext values to different ciphertext

values to protect the data against frequency-based or sta-

tistical attacks. OPESS consists of two stages splitting and

scaling. In splitting, each plaintext value is encrypted into

one or more ciphertext values by using different keys. The

number of keys used to encrypt a plaintext value is based on

the number of occurrence for the plaintext. Scaling is done

after splitting. By using scaling, number of occurrences of

encrypted values is multiplied by a scale factor. One of the

limitations of OPESS is that security achieved by scaling

encrypted data causes an increase in data size. Also, this

approach is not efficient in insertions and updates because

the encryption method is mainly based on the number of oc-

currences. OPESS proposed mainly for XML database but it

is not applicable for relational database. The reason behind

that is the different in executing queries on the relational

and the XML databases such as the join operation between

different encrypted values.

Structure preserving database encryption scheme:

The authors in [7] proposed a new encryption scheme that

breaks the correlation between ciphertext and plaintext val-

ues by encrypting each database value with its unique cell

coordinates. In this scheme, one plaintext value can be

encrypted to different values according to their position in

the database. There are two immediate advantages to this

scheme. First, it eliminates substitution attacks attempting

to switch encrypted values. Second, pattern matching at-

tacks attempting to gather statistics based on the encrypted

values will fail. However, this scheme can be used only on

a trusted server, where a DBA can manage the new index

structure in the encrypted database. The join operation is

covered by this approach. We think that the only way it

can be used to join tables in this scheme is to decrypt tables

first, and then perform the join over the decrypted database,

which adds overhead. Moreover, if a database reorganization

process changes cell coordinates, all affected cells need to be

re-encrypted with their new coordinates.

Other relevant work: Another variation to se-

cure databases that has recently been studied is that

of “distributed architecture” [8]～[10] for enabling privacy-

preserving outsourced storage of data. However, distributing

the database content to many servers is not the concern of

this body of work. We focus on securing the central database

content stored in a trusted, un-trusted, or semi-trusted [11]

server. The encryption scheme proposed in this paper (MV-

OPES) is a novel technique to encrypt an integer value to

many different values, and in the sense of performing queries

over an encrypted database based on inequality.

3. Proposed Multivalued Order Preserv-
ing Encryption Scheme

Encrypting plaintext values in a column having values in

the range [Dmin, Dmax], the boundaries for all integers in

the domain (BDmin , ..., BDmax , BDmax+1) are generated us-

ing an increasing/decreasing function (order preservation).

The generated boundaries identify the intervals. For in-

stance, interval Ii is identified by [Bi, Bi+1). We then gen-

erate the encrypted values for integer i as random values

from the interval Ii (Multivaluedness). Details regarding the

random distribution used to choose the encrypted values are

discussed in Section 3.2.

3. 1 Generate Bucket Boundaries

Bucket boundaries are generated using two functions: ini-

tial and increasing/decreasing. Details of these two functions

are discussed next.

3. 1. 1 Initial Function

We are given a domain [Dmin, Dmax], with (Dmax−Dmin+

1) integers: {Dmin, Dmin+1, ..., Dmax}. Initially, we choose

the starting (initial) point from the domain. We then com-

pute the boundary for the initial point using the following

function:

Binitial = EncK(initial)

where Enc is the function used to encrypt the (initial)

value using key K. Any block cipher algorithm such as

DES [12], TDES, Blowfish [13], AES [14], RSA [15], etc., or

a hashing function can be used to encrypt the value. We as-

sume that the boundaries are stored in memory or secondary

storage, so the initial point can be any point in the domain.

For instance, the initial point could be Dmin; then only the

increasing function is used to generate the remaining bound-

aries.

3. 1. 2 Increasing/Decreasing Function

To preserve the order of the integers, we use two func-

tions to generate boundaries. First, boundaries for values

greater than the initial point are generated by an increasing

function. Second, a decreasing function is used to generate

boundaries for values less than the initial point. The goal

for the increasing/decreasing function is to create encrypted

interval scales for all integers in the domain with different

sizes. Differences in intervals size are ensured by predefined

percentage and a sequence of random numbers.

Given the initial point (initial), the interval size IS, and

the difference percentage on the encrypted interval size DP ,

the boundaries are derived by the following function:

Bi=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Bi+1−(EncK(IS)+(EncK(IS)∗DP)∗Ri),

Dmin<=i<initial

Bi−1+(EncK(IS)+(EncK(IS)∗DP)∗Ri),

initial<i<=Dmax+1

where Ri is a sequence of random numbers in the range

[−1, 1]. There are many pseudorandom number generators

with useful security properties.

The DP used in the formula to control the differences be-

tween intervals size that will be in the range [−EncK(IS) ∗
DP, EncK(IS) ∗ DP].

3. 2 Encryption Functions

Here we discuss how to encrypt a plaintext relation R. For

 BDmin BDmin+1 BDMax+1

BDmin BDmin+1 BDMax+1

P

F

MaxDiff

Fig. 2 Calculating the MaxDiff in MV-OPES.

each tuple t = (A1, A2, ..., An) in R, the encrypted relation

RE stores a tuple:

(E(A1), E(A2), ..., E(An))

where E is the function used to encrypt an attribute value

of the tuple in the relation. The encryption function E(i) is

performed by choosing a random number in the interval Ii,

which is identified by [Bi, Bi+1). The random distribution

used to choose the encrypted values depends on whether at-

tribute values are unique (primary key) or redundant (foreign

key). The integers in the primary key table are connected

to the values in the foreign key table using range distance,

which leads to false positive results. We call this range dis-

tance MaxDiff, which is the greatest distance (among all

intervals in the domain) between value P in the primary key

table and value F in the foreign key tables. MaxDiff is used

to execute multiple relational operators over an encrypted

database, such as join.

When inserting a new record in the foreign key table,

MaxDiff should be updated by comparing the current MaxD-

iff with the distance between the primary key and the new

foreign key in the same interval. Figure 2 shows how to calcu-

late MaxDiff; it also shows how to choose a random number

for both primary key P and foreign key F . The random func-

tion used to encrypt integers in the primary key table (ran-

dom primary) and a foreign key table (random foreign)

are different. Choosing random distribution for both func-

tions is based on the following perspectives:

• Security perspective: Hide the interval boundaries

in the primary key table because there is only one integer

that represents each interval. This goal is achieved by max-

imizing the distance between primary key values that rep-

resent two sequential intervals. Based on that premise, the

primary key should be as close as possible to the middle of

the interval. This matches the normal distribution. Many

records in the foreign key table represent the same interval.

So to hide the interval boundaries we need to distribute the

values over the whole interval so the attacker cannot differen-

tiate between intervals. This condition matches the uniform

distribution.

• Performance perspective (reduce the false pos-

itives): Reduce the overlap between intervals when connect-

ing (joining) the primary key table with the foreign key table.

This goal is achieved by minimizing the distance between the

primary key and the foreign keys in the same interval (reduc-

ing MaxDiff). This is achieved by using normal distribution

to choose a random number in both the primary key and for-

eign key tables. However, we already decided that uniform

distribution is the best distribution to hide interval bound-

aries in the foreign key table, not normal distribution.

We can improve the security and performance also by set left

and right margins in each interval. The primary encrypted

value is then chosen to be between those margins. The mar-

gin sizes affect security and the percentage of false positives.

We will investigate the optimal margin size in future work.

In this paper, for simplicity, we assume equi-width parti-

tioning. The interval is divided into three equal parts (left

margin, middle part, right margin). The primary key is then

chosen based on normal distribution within the middle part

only. In this case, the distance between two primary keys

that represent two sequential intervals will be (right margin

of the first interval + the left margin of the second interval).

3. 3 Decryption Functions

Given the operator E, which encrypts a plaintext value

to many ciphertext values, we define its inverse operator

D, which decrypts the ciphertext value to its corresponding

plaintext value. Simply, the decryption function D in MV-

OPES searches for the interval where the encrypted value is

located. Specifically, to decrypt an encrypted value C, the

decryption function searches for the closer boundary Bp that

is greater than C, then returns the plaintext value, which is

the left boundary p − 1.

Given the boundaries (BDmin , ..., BDmax+1), which are

stored either in memory with a small domain, or using a

secondary storage-based indexing structure such as B+ tree

for a large domain. The decryption function can be a se-

quential search or binary search. The sequential search is

used when decrypting ciphertext values in a sorted column;

the binary search is used to decrypt ciphertext values in an

unsorted column.

4. Condition Translations

This section explains how to translate a query condition

C over a plaintext database in operations (such as selec-

tion and join) to corresponding conditions over encrypted

database CE . We consider query conditions characterized

by the following grammar rules:

• Condition � Attribute θ Value

• Condition � Attribute θ Attribute

• Condition � (Condition ∨ Condition) | (Condition ∧
Condition) | (⇁ Condition)

where θ is a binary operation in the set {=, <, <=, >, >=}.
The conditions are divided into two groups according to

the type of result, that is, whether or not the result contains

false positives. The first group consists of conditions that

Table 1 Translation of (Attribute θ Value) conditions.

C cE

A = v AE BETWEEN Bv and (Bv+1 − 1)

A < v AE < Bv

A <= v AE < Bv+1

A > v AE >= Bv+1

A >= v AE >= Bv

Table 2 Translation of (Attribute θ Attribute) conditions.

C cE

P = F F E BETWEEN (P E − MaxDiff)

(P E + MaxDiff)

P < F (P E + MinMarg) < F E

P <= F (P E + MaxDiff) <= F E

P > F (P E − MinMarg) > F E

P >= F (P E − MaxDiff) >= F E

contain a binary operation between attribute and value (At-

tribute θ Value). The result based on those conditions con-

tains neither false positives nor missed answer tuples. The

second group consists of conditions that contain a binary op-

eration between two attributes (Attribute θ Attribute) such

as equi-join. The result based on those conditions contains

false positive tuples.

Each condition based on MV-OPES is translated as ar-

range query. This is necessary because of (Multivaluedness)

that applied in encryption scheme. Table 1 shows how each

condition in the form (AttributeθV alue) is translated into

corresponding condition over encrypted database.

There are two constraints in performing conditions in the

form (AttributeθAttribute). First, the two attributes should

have the same domain. Second, the condition is performed

between two primary keys or between a primary key and the

related foreign key. Given a condition (P θ F), such that P

and F have same domain, P is the primary key and F is a

foreign or primary key. The translation for this condition is

shown in Table 2, where (MinMarg) is the minimum margin

among all intervals in the domain.

(Condition1 ∨ Condition2), (Condition1 ∧ Condi-

tion2), (⇁ Condition): Two composite conditions are

translated directly over the encrypted domain by translat-

ing each condition individually. The translation is given as

follows: C1 ∨ C2 � C1E ∨ C2E , C1 ∧ C2 � C1E ∧ C2E

However, when C is in the form of (Attribute θ Attribute),

this condition (⇁ C) cannot be translated directly because

of the false positive result. This paper does not discuss this

translation. Neither are conditions that involve more than

one attribute and operator discussed.

5. Implementing Relational Operators
over Encrypted Relations

This section describes the process of implementing rela-

Table 3 Implementation of the operators over encrypted

databases.

Operator op opE

Selection (σ) σC(R) D(σE
CE (RE))

Join (◃▹) R ◃▹
C

T σC

“

D(RE ◃▹E

CE T E)
”

Sorting (τ) τL(R) τL

“

D(τE
LE (RE))

”

Projection (π) πL(R) D(πE
LE (RE))

Grouping and

Aggregation (γ)

γL(R) γL

“

D(τE
LGE (RE))

”

Duplicate Elim-

ination (δ)

δ(R) δ
“

D(τE
LE (RE))

”

Union (∪) R ∪ T D(RE ∪E T E) (based on bag)

δ
“

D(τE
L (RE ∪E T E))

”

(set)

Difference (−) R − T D(τE
LRE (RE))−D(τE

LT E (T E))

tional operators (such as selection, projection, and sorting)

in the proposed scheme. The relational operators are im-

plemented, as much as possible, to be executed over the en-

crypted database. However, when a condition of the form

(Attribute θ Attribute) is attached to the operator, the re-

turned answers might contain false positives. These answers

are then filtered in client-side after decryption to generate

the exact result. Beyond that, some operators cannot be

performed fully on the encrypted relations. When that hap-

pens, a post process operation is performed on the result

after decryption. We attempt to minimize the amount of

work done in post process operations. Table 3 shows the

implementation of the operators over encrypted databases.

The E on the operators emphasizes the fact that the opera-

tor is to be executed over the encrypted database. The LE

refers to the encrypted attributes.

Query Splitting: We split the computation of a query

Q across the server and the client. The client will use the

implementation of the relational operators to send part of

the query Qs to the server to be executed on the encrypted

database. The second part, which is client query part Qc,

is performed on the decrypted data. Query splitting is as

follows:

op (R)
| {z }

Q

= opc D
| {z }

Qc

(opE (RE)
| {z }

Qs

)

where opc refers to operations performed on the client side,

and opE is operations performed on encrypted relations RE

on the server side.

6. Experiments

We have conducted many experiments to examine the va-

lidity and effectiveness of the architecture proposed in this

paper. However, because of space limitations, we will dis-

cuss just two sets of experiments. The experiments were

conducted by implementing MV-OPES on MS SQL Server

2008. The algorithms were implemented in VB.NET as a

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Primary Key (Plaintext)

Foreign key (plaintext)

Primary Key (MV-OPES)

Foreign key (MV-OPES)

Primary Key (AES)

Foreign key (AES) Ti
m

e
pe

r
tu

pl
e

(m
s)

Domain
10 102 103 104 105

Fig. 3 Time per tuple (in ms) required to insert tuples.

client side application. The experiments were run using ver-

sion 3.0 of the Microsoft.Net framework and on a Microsoft

XP workstation with a 2.6 GHz Intel Core 2 processor and 3

GB of memory. The results sketched in this section are the

average for at least 10 executions.

The first set of evaluations studied the encryption perfor-

mance in our scheme using different domains and various

difference percentages (DP). Also, we compare the perfor-

mance of our scheme with a database encrypted using AES.

Two tables were used to perform this evaluation. The first

table is the primary key table, which contains all integers

in the domain. The second table is the foreign key table,

which holds 100, 000 records picked randomly from a uni-

form distribution between Dmin and Dmax. Figure 3 shows

the times for encryption and inserting values in the primary

key and foreign key tables for different domains. The re-

sults show that AES takes the longest time to insert tuple in

both tables since the encryption time is much more than in

MV-OPES. The small difference in time shown in the figure

between plaintext and our scheme is the cost of encryption.

The figure shows that this overhead is negligible.

In the equijoin operation, we studied the percentage of

false positives returned by performing a join operation over

encrypted relations. Also, we studied the overhead on both

the server and client sides. The percentage of false positives

shown in Figure 4(a) increases with the domain size and DP .

That results due to the increase in the overlap between inter-

vals in the encrypted scale when performing a join operation

based on MaxDiff . From Figure 4(b), we can easily see

that the time required to perform a join operation on the

server side in our scheme increases according to the size of

domain and takes approximately the same shape as the join

operation on the plaintext database. While the cost of join

operation using AES is much more than our scheme. This is

especially when using large domains (> 103) since the index

is essentially unusable for many operations (including join)

which turn into full table scans [16].

Figure 4(c) shows the client side performance to decrypt

and filter the result returned by performing a join operation

on the server side. The figure shows that our scheme has only

small overhead on the client side. We also observe that the

time slightly increases as the domain and DP increase, be-

cause of increased false positives. On the other hand, we can

see the performance degradation when using AES compared

DP=0.05

DP=0.15

DP=0.25

DP=0.35

DP=0.45

DP=0.55

Plaintext

AES

0.001

0.021

0.041

0.061

0

50

100

0.0001

0.0101

0.0201

0.0301

F
al

se
 p

os
iti

ve
 %

Domain
10 102 103 104 105

(a) False positive percentage.

Domain

Ti
m

e
(m

s)
 p

er
 tu

pl
e

(b) Query execution time in server side.

10 102 103 104 105

(c) Decryption and filtering cost in client side.

Ti
m

e
(m

s)
 p

er
 tu

pl
e

10 102 103 104 105
Domain

Fig. 4 Equijoin cost.

with our scheme.

7. Conclusion and Future Work

Encryption can be used to provide confidentiality and pri-

vacy for sensitive databases, which are important issues, es-

pecially in the DAS model. Unfortunately, traditional at-

tribute level encryption is vulnerable to statistical attacks

because each value is encrypted to another fixed value. We

propose a novel encryption scheme (MV-OPES) that is ro-

bust against statistical attack and estimation of the true

value because it allows one integer to be encrypted to many

different values using the same encryption key. It also pre-

serves the order of the integer values to allow any comparison

operation to be directly applied to the encrypted data. We

have developed techniques so that most processes in execut-

ing SQL queries can be done on encrypted databases. In

some cases, a small amount of work to filter false positives

or perform relational operations is needed on the decrypted

data. In the future, we will focus on security analysis of our

scheme and some improvement issues. We also plan to study

the encryption of non-integer data such as strings.

Acknowledgments

This study has been partially supported by Grant-in-

Aid for Young Scientists (B) (#21700093) and Grant-in-

Aid for Scientific Research on Priority Areas from MEXT

(#21013004).

References

[1] H. Hacigumus, S. Mehrotra, and B. Iyer, “Providing

database as a service,” Data Engineering, International

Conference on, vol.0, p.0029, 2002.

[2] H. Wang and L.V.S. Lakshmanan, “Efficient secure query

evaluation over encrypted xml databases,” VLDB ’06: Pro-

ceedings of the 32nd international conference on Very large

data bases, pp.127–138, VLDB Endowment, 2006.

[3] M.C.H.W.S.J.L.T.W.L. Ehrsam, William F., “Message ver-

ification and transmission error detection by block chain-

ing,”, February 1978.

[4] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving

index for range queries,” VLDB ’04: Proceedings of the

Thirtieth international conference on Very large data bases,

pp.720–731, VLDB Endowment, 2004.

[5] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Execut-

ing sql over encrypted data in the database-service-provider

model,” SIGMOD ’02: Proceedings of the 2002 ACM SIG-

MOD international conference on Management of data, New

York, NY, USA, pp.216–227, ACM, 2002.

[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order pre-

serving encryption for numeric data,” SIGMOD ’04: Pro-

ceedings of the 2004 ACM SIGMOD international confer-

ence on Management of data, New York, NY, USA, pp.563–

574, ACM, 2004.

[7] Y. Elovici, R. Waisenberg, E. Shmueli, and E. Gudes, “A

structure preserving database encryption scheme.,” Secure

Data Management, ed. W. Jonker and M. Petkovic, Lecture

Notes in Computer Science, vol.3178, pp.28–40, Springer,

2004.

[8] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,

K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and

Y.X. 0002, “Two can keep a secret: A distributed architec-

ture for secure database services,” CIDR, pp.186–199, 2005.

[9] F. Emekci, D. Agrawal, A.E. Abbadi, and A. Gulbeden,

“Privacy preserving query processing using third parties,”

ICDE ’06: Proceedings of the 22nd International Confer-

ence on Data Engineering, Washington, DC, USA, p.27,

IEEE Computer Society, 2006.

[10] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwally,

“Database management as a service: Challenges and op-

portunities,” ICDE ’09: Proceedings of the 2009 IEEE In-

ternational Conference on Data Engineering, Washington,

DC, USA, pp.1709–1716, IEEE Computer Society, 2009.

[11] H. Kadhem, T. Amagasa, and H. Kitagawa, “A novel frame-

work for database security based on mixed cryptography,”

International Conference on Internet and Web Applications

and Services, vol.0, pp.163–170, 2009.

[12] DES, “Data encryption standard,” Federal Information Pro-

cessing Standards Publication, vol.FIPS PUB 46, 1977.

[13] B. Schneier, “Description of a new variable-length key,

64-bit block cipher (blowfish),” Fast Software Encryption,

Cambridge Security Workshop, London, UK, pp.191–204,

Springer-Verlag, 1994.

[14] AES, “Advanced encryption standard,” National Institute

of Science and Technology, vol.FIPS 197, 2001.

[15] R.L. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public-key cryptosystems,”

Commun. ACM, vol.21, no.2, pp.120–126, 1978.

[16] S. Hsueh, “Database encryption in SQL server 2008 en-

terprise edition,” Microsoft White Papers, vol.SQL Server

2008, February 2008.

