
DEIM Forum 2010 C8-2

Task Parallelism for TwigStack Algorithm on a Multi-core System

Imam MACHDI†, Toshiyuki AMAGASA††, and Hiroyuki KITAGAWA††

† Graduate School of Systems and Information Engineering
†† Center for Computational Sciences

University of Tsukuba
Tennodai 1–1–1 Tsukuba Ibaraki 305-8573

E-mail: †machdi@kde.cs.tsukuba.ac.jp, ††{amagasa,kitagawa}@cs.tsukuba.acjp

Abstract The advancement of multi-core processor technology has changed the course of computing and enabled

us to maximize the computing performance. In this study, we present an approach of task parallelism for the

TwigStack algorithm on a multi-core system to find all occurrences of an XML query twig pattern in a large XML

database. The TwigStack agorithm comprises two tasks. The first task is to perform query pattern matching against

XML data and to generate partial solutions. Meanwhile, the second task is to merge the partial solutions generated

by the first task for final solutions. To achieve query performance improvement, the task parallelism employs the

pipeline parallelism technique for the two tasks. The experimental results show that the query performance is

significantly improved especially for queries having relatively more complex structures and/or higher selectivities.

Key words XML query processing, parallel TwigStack algorithm, task parallelism

1. Introduction

The family of holistic twig joins has appeared as the major

important algorithms for processing XML query patterns due

to its efficiency and performance advantage. The TwigStack

algorithm [3], the initial holistic twig join algorithm, has fea-

tures of performing simultaneous scan over streams of XML

nodes to match their structural relationships holistically, re-

ducing a number of unnecessary intermediate results, and

skipping XML nodes that will not contribute to final an-

swers. These features have been inherited intensively by

many other algorithms such as Twig2Stack [4], TwigList [14],

TwigMix [6], etc.

Recently, multi-core processors have advanced rapidly to

alter the course of sequential to parallel computing. They

are able to alleviate the overwhelming computation and in-

crease the performance in data-intensive processing systems

[2], [5], [7], [13]. Not only allocating partitioned data on dif-

ferent CPU-cores is important to create data parallelism, but

allocating tasks for task parallelism may also significantly

increase parallelism that eventually attains higher perfor-

mance.

In this paper, we particularly study task parallelism for

the TwigStack algorithm on a multi-core system. It is aimed

at executing a single long-running query for intra-query par-

allelism. The TwigStack algorithm is decomposed into two

major tasks, which are associated with the first phase and

the second phase of the algorithm. The tasks are paral-

lelized by adopting the pipeline parallelism technique. The

first task performs query pattern matching on its own parti-

tioned XML data and generates partial solutions as the out-

puts. It, then, transfers its outputs periodically to the second

task for merging the partial solutions for final solutions such

that parallelism is created by overlapping the computation

of the second task with of the first task. To achieve optimal

parallelism we estimate the size of partial solutions (solu-

tion granularity) for each transfer based on the parallel time

analysis.

Our main contributions are outlined as follows: (i) We

propose task parallelism for TwigStack algorithm using a

pipelining technique. (ii) We devise time analysis of per-

forming the task parallelism and estimate the solution gran-

ularity for each transfer from the first task to the second

task. (iii) We perform some experiments to demonstrate the

performance of our proposed technique.

The rest of this paper is organized as follows. Section 2

briefly reviews the related work about parallelization of XML

query execution. Section 3 gives some preliminary notions re-

lated to TwigStack algorithm. Section 4 describes the XML

data partitioning method. The proposed parallel algorithm

is explained in Section 5. Section 6 reports experimental

results. Finally, we conclude our work in Section 7.

2. Related Work

We briefly review some works of parallel XML query pro-

cessing that have been extensively studied on multi-core sys-

tems.

Liu et al. [8] proposed a parallel structural join algorithm

on a multi-core system. They addressed a partitioning tech-

nique by creating buckets of XML element lists and allocat-

ing them onto CPU-cores for workload balance. Each struc-

tural join (parent-child or ancestor-descendant relationship)

was evaluated in parallel. As the nature of structural join

algorithm gives large intermediate results, the parallel struc-

tural join also yields similar characteristics. In relation with

structural join algorithm, Mathis et al. [12] proposed a set

of locking-aware operators for twig pattern query evaluation

to ensure data consistency. The operators were provided for

flexible concurrent access on paths of structural relationships

to achieve better performance.

Lu and Gannon [9] presented parallel XML processing by

work stealing on multi-core processors. It provided a gen-

eral framework of efficiently coordinating multi-core compu-

tation, but it was not designed for a specific parallel XML

processing technique. The framework had a dynamic load

balancing mechanism where a process computed XML pro-

cessing tasks and might steal tasks off queues of other pro-

cesses. To reduce the contention of accessing tasks, tasks

in queues were ordered. A process that owned queues com-

puted the task at the top of the queues whereas stealing was

done at the bottom.

Bordawekar et al. [2] and Waldvogel et al. [15] proposed

XML sub-tree partitioning for parallel XPath query pro-

cessing. They had a common basic idea that sub-trees at

a certain level were partitioned and distributed onto differ-

ent CPU-cores, while upper nodes were shared among CPU-

cores. However, the work of Waldvogel et al. [15] had several

different strategies to perform sub-tree partitioning in order

to cope with different characteristics of XML tree structures

such as level split to partition sub-trees at a certain level

for homogeneous structure of XML data, fanout split to par-

tition sub-trees on their roots for sub-trees that are larger

than a specified threshold, and semantic split to partition

sub-trees on their roots for the root nodes having the same

name as their siblings.

Our previous work [10] proposed a parallel TwigStack al-

gorithm based on data parallelism on a multi-core system.

The proposed scheme performed XML data partitioning on-

the-fly into two levels. The first level of partitioning created

buckets of XML streams and aimed at achieving workload

balance and avoiding data dependency among buckets. Each

bucket was allocated on a CPU-core in the system. The sec-

ond level created finer partitions in each bucket such that

the size of finer partitions was fit in Level-2 cache capacity

for the purpose of providing finer parallelism. The entire

TwigStack algorithm was executed for each finer partition

on a CPU-core in parallel with other CPU-cores.

It can be noticed clearly that none of the works aims at

parallel TwigStack algorithm based on task parallelism. In

this work, we extend our previous work of data parallelism

to task parallelism for the parallel TwigStack algorithm.

(a) (b)

clubclubname membernamelname fnamesoccer
kita nishi

(1, 1:55, 1)
(1, 2:4, 2)(1, 3, 3) (1, 6:13, 3)

(1, 8, 5)(1, 7:9, 4) (1, 11, 5)
(1, 5:14, 2) membernamelname fnameminami nishi

membernamefnamekita(1, 10:12, 4)
(1, 25:34, 2)(1, 26:33, 3)

(1, 28, 5)(1, 27:29, 4) (1, 31, 5)(1, 30:32, 4)
(1, 35:44, 2)(1, 36:43, 3)

(1, 41, 5)(1, 40:42, 4)
clubnamelname fname

図 1 (a) XML tree representation, (b) a query twig pattern.

3. Preliminaries

In this section, we present briefly some concepts related to

the TwigStack algorithm proposed by Bruno et al. [3].

3. 1 XML Data and Query Twig Pattern

An XML document can be modeled as a rooted ordered

tree that consists of a set of XML nodes including a root,

elements, attributes and strings, and a set of edges between

two nodes describing a parent-child relationship. The posi-

tion of every XML node is labeled as 3-tuple (DocId, LeftPos

: RightPos, Level). As mentioned in the works of [16], [1], [3],

this 3-tuple labeling is used as means of describing structural

relationship between two XML nodes either a parent-child

relationship or an ancestor-descendant relationship. Figure

1 (a) shows XML data represented as a tree model.

A twig query pattern can be modeled as a small rooted

tree consisting of query nodes including a root, elements and

strings and a set of edges between two query nodes. An

edge describes either a parent-child relationship (/) or an

ancestor-descendant relationship (//). The term a query is

simply to represent a query twig pattern in this paper. An

example of a query twig pattern is illustrated in Figure 1 (b).

An XML database stores XML nodes of XML documents

where each XML node is represented in 3-tuple. The XML

database is capable of retrieving a stream of XML nodes by

executing a function ϕ(t) where t is a given query node name;

a stream is a sequence of XML nodes having the same node

type and ordered by (DocId, LPos). For processing a query,

associated with each query node there is a stream of XML

nodes retrieved from the XML database using the function

ϕ(t).

3. 2 TwigStack Algorithm

The TwigStack algorithm solves the problem: ”given a

query twig pattern, in an XML database find all occurrences

of tree nodes satisfying the specification the query twig pat-

tern”. The algorithm basically comprises two phases. The

first phase is to perform query pattern matching and to gen-

erate root-to-leaf path solutions (partial solutions). The sec-

ond phase is to merge the partial solutions to give the final

answers.

In the first phase, it firstly computes solution extensions

that certainly give solutions to individual partial solutions

by traversing all input streams simultaneously and match-

ing XML nodes in the streams holistically with the speci-

fied query pattern. XML nodes in the solution extensions

are stored in their respective stacks that encode root-to-leaf

paths for generating the partial solutions. The computa-

tional complexity is O((n + 2β) · |S|) where n is the number

of query nodes, β is a query selectivity for estimating the size

of partial solutions, and |S| is the size of XML node streams.

In the second phase, the partial solutions are simply

merged according to their common root nodes for the final

answers that satisfy the query twig pattern. The compu-

tational complexity is O((β + γ) · |S|) where γ is a query

selectivity for estimating the size of final solutions.

4. XML Data Partitioning

XML data partitioning is fundamental for creating par-

allelism. We adopt the stream-based partitioning for XML

(SPX) devised in our previous work [11]. The objective of

SPX is to partition streams of XML nodes so that each parti-

tion contains complete solution nodes and has no dependency

on other partitions. Also, the SPX is suitable for on-the-fly

execution since it characterizes itself as fast and straightfor-

ward computation.

4. 1 Basic Notion

Before explaining how to partition streams, we define a

range containment property used as the basis of comput-

ing partitions. The range containment property for a range

applies to two streams (sub-streams). A range of a stream

(sub-stream) is indicated by the first XML node mostL and

the last XML node mostR in the stream (sub-stream). We

define the range containment property of an ancestor stream

(sub-stream) Sa and a descendant stream (sub-stream) Sd if

Sa.mostL < Sd.mostL and Sd.mostR < Sa.mostR.

A partition is defined as a set of sub-streams associated

with query nodes where any of two sub-streams satisfies the

range containment property according to the structural re-

lationships of their associated query nodes.

Given XML node streams associated with query nodes,

initially the largest stream is subdivided into sub-streams

club1

Partition 2

clubname member1name1lname1 fname1
member2name2lname2soccer

kita1 nishi1 kita2

member3name3lname3 fname3minami1 nishi2

member4name4fname4kita3

member5name5lname5 fname5higashi1Partition 1

club1

Partition 2

clubname member1name1lname1 fname1
member2name2lname2soccer

kita1 nishi1 kita2

member3name3lname3 fname3minami1 nishi2

member4name4fname4kita3

member5name5lname5 fname5higashi1Partition 1

fn1 fn3 fn4 fn5ln1 ln2 ln3 ln5n1 n2 n3 n4 n5 c1 c1clubnamelname fname Downward propagationUpward propagation
fn1 fn3 fn4 fn5fn1 fn3 fn4 fn5ln1 ln2 ln3 ln5ln1 ln2 ln3 ln5n1 n2 n3 n4 n5n1 n2 n3 n4 n5 c1 c1c1 c1clubnamelname fname

clubnamelname fname Downward propagationUpward propagationDownward propagationUpward propagation
(a)

(b)
図 2 (a) Overview of partition, (b) Partition propagation.

(a)

(b)

Stream to be partitionedBase stream
L R An XML node

mostL mostR
trimmed

Partition 1
Resulted Partition 1

Partition 2
Resulted Partition 2 trimmedan overlap node

Stream to be partitioned
Base streamL R An XML nodemostL mostRtrimmed Resulted Partition 1

Partition 1
Resulted Partition 2

Partition 2
trimmed

(a)

(b)

Stream to be partitionedBase stream
L R An XML node

mostL mostR
trimmed

Partition 1
Resulted Partition 1

Partition 2
Resulted Partition 2 trimmedan overlap node

Stream to be partitioned
Base streamL R An XML nodemostL mostRtrimmed Resulted Partition 1

Partition 1
Resulted Partition 2

Partition 2
trimmed

図 3 (a) Upward propagation, (b) Downward propagation.

according to a specified range. For each sub-stream of the

largest stream, the algorithm subdivides other streams into

their sub-streams through propagation to satisfy the range

containment property between two sub-streams. Starting

from the initial sub-streams, the propagation goes upward to

subdivide its ancestor streams until reaching the root stream;

it is called upward propagation. Subsequently, the root

stream starts downward propagation to subdivide the rest

of the descendant streams. Figure 2 (a) shows an overview

of two partitions and Figure 2 (b) illustrates the direction of

partition propagation.

4. 2 Partition Propagation

Partition propagation comprises the upward propagation

and the downward propagation. The upward propagation

partitions an ancestor (a parent) stream to satisfy the range

containment property according to the given descendant

(child) sub-streams as the base stream. As the result of up-

ward propagation, XML nodes belonged to two partitions are

duplicated to preserve data independence among partitions.

Also, some XML nodes that will not contribute to solutions

are trimmed and excluded from partitions. Illustration of

the upward propagation is shown in Figure 3 (a).

The downward propagation performs partitioning in simi-

lar way, but in the opposite direction of the upward propa-

XMLDatabase fn1 fn2ln1 ln2n1 n2 fn3 fn4ln3 ln5n3 n4 n5fn5
fn1 fn2ln1 ln2n1 n2

fn3 fn4ln3 ln5n3 n4 n5fn5

Task1Process0

Task1

Bucket

Bucket1

Streamsnln fnQuery
fn1ln1n1 fn2ln2n2

fn3ln3n3 fn5ln5n5
Bucket0

Finer Partitions

FP1FP0

FP1FP0
Holistic Twig Join

Process1

Task2Process2XMLDatabase fn1 fn2ln1 ln2n1 n2 fn3 fn4ln3 ln5n3 n4 n5fn5fn1 fn2ln1 ln2n1 n2 fn3 fn4ln3 ln5n3 n4 n5fn5
fn1 fn2ln1 ln2n1 n2

fn3 fn4ln3 ln5n3 n4 n5fn5

Task1Process0

Task1

Bucket

Bucket1

Streamsnln fnQuery
fn1ln1n1 fn2ln2n2

fn3ln3n3 fn5ln5n5
Bucket0

Finer Partitions

FP1FP0

FP1FP0
Holistic Twig Join

Process1

Task2Process2

図 4 Overview of task parallelism.

gation. It partitions a descendant (a child) stream to satisfy

the range containment property according to the given ances-

tor (parent) sub-streams as the base stream. As illustrated

in Figure 3 (b), some XML nodes are also excluded from

partitions because they will certainly not contribute to final

solutions.

5. Parallel TwigStack Algorithm

In this section, we will describe our proposed parallel

TwigStack algorithm based on a task parallelism technique.

The algorithm of task parallelism is outlined in Algorithm 1.

5. 1 Parallel Algorithm Overview

As illustrated in Figure 4, given a query streams of XML

data are retrieved from an XML database and partitioned

into buckets on-the-fly by the stream-based partitioning for

XML as explained in the previous section. The number of

buckets created is associated with the number of CPU-cores

available in the system. The objective of creating buckets is

to balance workloads among CPU-cores and to avoid data

dependency that certainly annihilates memory access races.

Within each bucket, partitioning is further performed to gen-

erate finer partitions for creating finer parallelism and reduc-

ing memory access contention.

There are two different tasks to perform task parallelism

in the system. Task one is associated with the first phase of

the TwigStack algorithm, while task two is associated with

the second phase of the algorithm. The number of processes

for task one is dependent on the number of buckets created.

Task parallelism is conducted by transferring the partial out-

puts of task one periodically to task two. While task one is

performing the first phase of the TwigStack algorithm, task

two consumes the partial outputs and merges them for final

solutions.

5. 2 Task Parallelism

Task parallelism is constructed from two tasks by adopting

a pipeline parallelism technique as described in the previous

sub-section. The main objective is to hide the computation

of task two by overlapping with the computation of task one.

It is important to balance workloads among tasks. The

1 2 pfn1 fn2ln1 ln2n1 n2fn1 fn2ln1 ln2n1 n2

fn3 fn4ln3 ln5n3 n4 n5fn5fn3 fn4ln3 ln5n3 n4 n5fn5

Process0(Task1)
Process1(Task1)

Bucket0

p = the number of finer partitions
1

3
2 3 4 5 s-1 s

1 2 p3
Process2(Task2)

s = the number of transferstransfersBucket1
図 5 Execution path of the TwigStack algorithm based on task

parallelism.

workload is measured according to the computational com-

plexity of task one and task two, which are already specified

in Section 3. 2. Given a number of tasks one, a certain num-

ber of tasks two is determined by the ratio of the computa-

tional complexity of task one to of task two.

In the pipeline parallelism, higher parallelism can be

achieved by controlling the size of transferred outputs (solu-

tion granularity) from task one to task two. The parallelism

occurs when task two consumes and merges the partial out-

puts simultaneously with some tasks one performing query

pattern matching and generating partial solutions.

Algorithm 1 Task Parallelism

1: nprocs ← Number CPUCores ()

2: proc pool ← CreateProcess (nprocs)

3: proc1 pool ← DecomposeTask1 (proc pool) /*tasks one */

4: proc2 pool ← DecomposeTask2 (proc pool) /*tasks two*/

5: g ← SolutionGranularity (proc1 pool, proc2 pool, β, streams)

6: num parts ← NumberFinerPartitions (q stats, streams)

7: for i = 0 to number(proc1 pool) - 1 do

8: bucketi ← CreateBucket (q, streams)

9: end for

10: for all proci ∈ proc pool in parallel do

11: /* processes of task one */

12: if proci ∈ proc1 pool then

13: for p = 0 to num parts - 1 do

14: partitioni,p ← CreateFinerPartition (q, bucketi)

15: rtl solsi ← rtl solsi

∪
Task1 (q, partitioni,p)

16: if |rtl solsi| >= g then

17: Synch, Put rtl solsi in buffer

18: end if

19: end for

20: end if

21: /* processes of task two */

22: if proci ∈ proc2 pool then

23: while ¬ Empty(buffer) AND ¬ End do

24: Synch, Get rtl sols in buffer

25: finalsols ← finalsols
∪

Task2 (rtl sols)

26: end while

27: end if

28: end for

5. 3 Time Analysis

As shown in Figure 5, the execution path of the parallel

TwigStack algorithm based on task parallelism consists of

sequential and parallel parts as follows:

• Time for generating buckets in sequential (Tbucket),

• Time for performing task one in parallel (Ttask1/P),

• Time for performing the remaining task two in sequen-

tial (Ttask2/s),

• Overhead time for transferring partial solutions from

tasks one to task two in sequential (s ·P · ts), where P is the

number of processes of task one, s is the number of transfers,

and ts is the unit time of the transfer overhead.

We can see that the computation of task two is almost com-

pletely hidden because most of its computation is performed

in parallel with the computation of tasks one.

The execution time can be expressed as follows:

Ttaskpar = Tbucket +
Ttask1

P
+

Ttask2

s
+ s · P · ts (1)

Higher performance of the parallel TwigStack algorithm

can be achieved if the parallel portions of computing task

one and task two are higher than the sequential portions. A

more complex structure of a query will lead to higher paral-

lelism on task one, while a higher query selectivity will lead

to higher parallelism on task two.

5. 4 Estimation of Solution Granularity

Based on the time analysis in Eq. 1, the optimal execution

time of a query is dependent on the number of transfer s from

task one to task two. If the transfer occurs more frequently

(larger s value), the performance is degraded due to higher

transfer overheads; the term (s ·P · ts) tends to increase. On

the other hand, if the transfer occurs less frequently (smaller

s value), it reduces the benefits of pipeline parallelism; the

term of (Ttask2/s) tends to increase.

To estimate the optimal value of s, the Eq. 1 taken as

a function of s is optimized for its first derivative equal to

zero with respect to s parameter, while other parameters are

fixed. As the result of optimizing the function, the value s is

obtained from Eq. 2.

s =

√
Ttask2

P · ts
(2)

Solution granularity g is the size of root-to-leaf path so-

lutions for each transfer. Whenever a process of task one

generating root-to-leaf path solutions reaches the solution

size equal to or larger than the specified solution granular-

ity, it transfers the solutions to the process of task two (line

16–18). Assume that XML nodes in the root-to-leaf path so-

lutions are distributed uniformly. The solution granularity g

can be directly computed from the estimated size of the en-

tire root-to-leaf path solutions over the number of transfers

s and expressed as follows:

g =
β|S|

s
(3)

where β is the query selectivity to estimate the total size of

root-to-leaf path solutions and |S| is the total stream size

(line 5).

6. Experimental Evaluation

We conducted extensive experiments to evaluate the per-

formance of our proposed parallel TwigStack algorithm. This

section starts with a description of XML data set and our ex-

perimental platform, the estimation of solution granularity,

and the parallel performance on multi-cores.

6. 1 Experimental Setup

The experiment used a synthetic XML data set generated

by XMark generator with the sizes of 1 GB, 2 GB, 3 GB, and

4 GB. We also specified five queries with different structural

complexity and selectivity as shown in Table 1.

The platform we used has four-core processors of AMD

Opteron-280 and 16 GB memory under Solaris-10 operating

system. We used PostgreSQL 8.2 as the XML database to

store XML nodes. We tested our implementation using C++

with pthread and MPI.

表 1 Query structure and selectivity.

QID Query β γ

Q1 //item//text 0.97 0.83

Q2 //item[/description//text]/mailbox//date 0.48 0.35

Q3 //category[/name]/desc//text 0.04 0.03

Q4 //open auction//annotation[/author] 0.89 0.59

[/description]/happiness

Q5 //person[/name][/address[/city][/province] 0.30 0.19

/country]/profile

表 2 Solution granularity for different number of CPU-cores.

QID Stream Size Solution Granularity

2 Cores 3 Cores 4 Cores

Q1 1,139,840 815 999 1,153

Q2 2,549,040 788 965 1,115

Q3 1,785,930 193 236 273

Q4 1,092,460 674 826 954

Q5 1,172,830 393 482 556

6. 2 Estimation of Solution Granularity

Estimating the solution granularity requires some param-

eters as specified in Eq. 2 and 3. The estimation results

for 1 GB XML data are shown in Table 2. As the number

of CPU-cores increases, the solution granularity gets larger

size or, in other words, the transfer of root-to-leaf path solu-

tions gets less frequent. In this case, the system reduces the

transfer overheads to make balance with the computational

表 3 Sequential execution time.

QID Time (secs) QID Time (secs)

Q1 5.18 Q2 11.42

Q3 4.39 Q4 6.12

Q5 4.21

workloads among processes. On the other hand, if fewer

number of CPU-cores is involved in the parallel query pro-

cessing, the system sets the solution granularity to smaller

size and transfers the root-to-leaf solutions more frequently.

6. 3 Parallel Performance

In this experiment, we measured the performance of task

parallelism against the performance of our previous data par-

allelism in terms of speedup, efficiency and scalability. In the

data parallelism technique, each process handles the compu-

tation of task one and task two against its assigned bucket

of XML node streams. Before measuring the parallel perfor-

mance, the sequential execution time of all queries is mea-

sured. Note that in this measurement streams of XML nodes

are not partitioned at all. Table 3 shows the sequential exe-

cution time for 1 GB XML data.

Speedup performance measures the increasing perfor-

mance on increasing number of CPU-cores for 1GB XML

data. Results of the speedup measurements are illustrated

in Figure 6. For all queries, as the number of CPU-cores

increases, the speedup curves escalate. For task parallelism,

at four CPU-cores queries Q2 and Q5 achieve 3.9 as the

highest speedup, while query Q3 achieves 2.9 as the lowest

speedup. In comparison with data parallelism, all speedup

curves of task parallelism attain higher performance; thus,

the task parallelism technique is able to improve the parallel

performance of the data parallelism technique. In more de-

tails, higher speedup improvement is achieved by query Q4

and Q5, while the lowest speedup improvement is achieved

by query Q3. Since the task parallelism technique is aimed

at improving the performance of task two, which is directly

related to the query selectivity, the behavior of query Q3 hav-

ing the smallest query selectivity shows naturally the small-

est speedup performance and improvement. Meanwhile, the

behaviors of other queries show better speedup performance

and improvement.

We measured the parallel efficiency to indicate the CPU-

core utilization, which is computed as the ratio of the gained

speedup to the number of CPU-cores utilized. Figure 7 shows

the efficiency measurements. In overall, the efficiency of

task parallelism is higher than of data parallelism because of

higher speedup attainment by the task parallelism. As the

number of CPU-cores increases, the efficiency tends to de-

cline. Query Q3 incurs the lowest improvement of efficiency,

while others have higher efficiency improvement. If we look

1.9 2.5
1.0

2.5 3.2
1.0 2.1 1.0 1.8 2.5 3.1

1.0 2.02.8 3.4 3.9
2.3 2.9 3.4 2.4

3.93.62.82.71.91.81.0
3.2 3.7

2.12.32.6 3.2 2.5 3.6

01
23
4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Q1 Q2 Q3 Q4 Q5#CPU-Cores

Speedup

Data Parallelism Task Parallelism
図 6 Speedup performance of data parallelism and task paral-

lelism.

0.9 0.8 1.0 0.8 0.8 1.0
0.7

1.0 0.9 0.8 0.8 1.0 1.00.9 1.1 1.0 0.8
1.1 1.2 1.00.81.0 0.9 0.9 0.7 0.9 0.9

1.21.3
0.8

1.3 1.2 1.0 0.90.70.60.8
1.01.2
1.4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Q1 Q2 Q3 Q4 Q5#CPU-Cores

Efficiency

Data Parallelism Task Parallelism
図 7 Efficiency of data parallelism and task parallelism.

0.63 0.680.72
1.000.820.93 0.77 0.71

1.00 1.00 0.900.82 0.971.00
0.65

1.00 0.89 0.92
0.57

0.94 0.800.94 1.01 0.79 1.09 0.981.20 1.211.25
0.75

1.33 1.15 1.03 0.820.590.40.6
0.81.0
1.21.4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Q1 Q2 Q3 Q4 Q5#CPU-Cores

Scalabil
ity

Data Parallelism Task Parallelism
図 8 Scalability of data parallelism and task parallelism.

at more details, some measurements of task parallelism ex-

ceed 100% efficiency for two reasons. Firstly, our partition-

ing method features the reduction of a number of unneces-

sary XML nodes that certainly do not contribute to final

solutions. Meanwhile, as for the speedup measurement, the

sequential execution does not take the partitioning method

into account. Secondly, the proposed task parallelism is able

to hide almost completely the computation of task two.

To measure the effectiveness of our proposed task paral-

lelism technique to utilize a number of CPU-cores with vary-

ing sizes of XML data, we measured the scalability perfor-

mance. We used a scaling function f(x) = x, where x is the

number of CPU-cores involved and f(x) is the XML data size

in GB. Figure 8 shows the scalability performance. In gen-

eral, as the x value increases, the scalability is more likely

to drop. Clearly, the scalability of task parallelism improves

the scalability of data parallelism significantly. In more de-

tails, queries Q4 and Q5 are able to maintain the scalability

above 0.82 and 0.98, respectively. Query Q3 maintains its

scalability above 0.57 as the least scalable. Queries having

more complex structures and higher selectivities tend to have

higher scalability performance. Some queries at particular

number of CPU-cores achieve super-linear scalability whose

values are more than 1.0. In this case, the same reasons as

mentioned in the efficiency measurement are applied.

7. Conclusions and Future Work

In this paper, we proposed the task parallelism tech-

nique that extends our data parallelism technique for par-

allel TwigStack algorithm on a multi-core system. We de-

vised a pipeline parallelism technique to create parallelism

between task one and task two that correspond with the

first and the second phases of the TwigStack algorithm, re-

spectively. The technique aims at hiding the computation of

task two by overlapping with the computation of task one.

In addition, we proposed the time analysis to predict the

behavior of queries and an estimation method to derive the

solution granularity for optimal query execution. The ex-

perimental results confirmed that our proposed task paral-

lelism technique outperformed the data parallelism technique

and showed good performance in terms of speedup, efficiency

and scalability, particularly for queries having more complex

structures and higher selectivities. Moreover, in some cases

the performance of task parallelism may achieve super-linear

scaleup and very high efficiency.

Some research issues remain for further study. In the fu-

ture, we will focus our study on the performance improve-

ment of parallelizing not only long-running queries by intra-

query parallelism, but also short-running queries by inter-

query parallelism. For this purpose, similarity of query pat-

terns and query caching can be explored thoroughly in the

context of parallel holistic twig join algorithms.

Acknowledgements

This study has been partially supported by Grant-in-

Aid for Young Scientists (B) (#21700093) and Grant-in-

Aid for Scientific Research on Priority Areas from MEXT

(#21013004).

文 献
[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,

N. Koudas, and D. Srivastava. Structural Joins: A Primitive

for Efficient XML Query Pattern Matching. In Proceedings

of the 18th International Conference on Data Engineering

(ICDE’02), pages 141–152, 2002.

[2] R. Bordawekar, L. Lim, and O. Shmueli. Parallelization

of XPath Queries Using Multi-core Processors: Challenges

and Experiences. In Proceedings of the International Con-

ference on Extending Database and Technology (EDBT’09),

pages 180–191, 2009.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig

Joins: Optimal XML Pattern Matching. In Proceedings

of the 2002 ACM SIGMOD International Conference on

Management of Data, pages 310–321, 2002.

[4] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal,

and K. S. Candan. Twig2Stack: Bottom-up Processing of

Generalized-tree-pattern Queries over XML Documents. In

Proceedings of the 32nd International Conference on Very

Large Data Bases (VLDB ’06), pages 283–294, 2006.

[5] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang. MCC-

DB: Minimizing Cache Conflicts in Multi-core Processors

for Databases. PVLDB, 2(1):373–384, 2009.

[6] J. Li and J. Wang. Fast Matching of Twig Patterns. In Pro-

ceedings of the 19th International Conference on Database

and Expert Systems Applications (DEXA’08), pages 523–

536, 2008.

[7] X. Li, H. Wang, T. Liu, and W. Li. Key Elements Trac-

ing Method for Parallel XML Parsing in Multi-core System.

In Proceedings of the International Conference on Parallel

and Distributed Computing, Applications and Technologies

(PDCAT’09), pages 439–444, 2009.

[8] L. Liu, J. Feng, Q. Qian, and J. Li. Parallel Structural Join

Algorithm on Shared-Memory Multi-core Systems. In Pro-

ceedings of the Ninth International Conference on Web-Age

Information Management (WAIM’08), pages 70–77, 2008.

[9] W. Lu and D. Gannon. Parallel XML Processing by

Work Stealing. In The 2007 Workshop in Service-oriented

Computing Performance: Aspects, Issues, and Approaches

(SOCP’2007), pages 31–38, 2007.

[10] I. Machdi, T. Amagasa, and H. Kitagawa. Executing Par-

allel TwigStack Algorithm on a Multi-core System. In Pro-

ceedings of the 11th International Conference on Informa-

tion Integration and Web-based Applications and Services

(iiWAS’09), pages 174–182, 2009.

[11] I. Machdi, T. Amagasa, and H. Kitagawa. XML Data Par-

titioning Schemes for Parallel Holistic Twig Joins. Interna-

tional Journal of Web Information Systems, 5(2):151–194,

June 2009.

[12] C. Mathis, T. Harder, and M. Haustein. Locking-Aware

Structural Join Operators for XML Query Processing. Pro-

ceedings of the 2006 ACM SIGMOD International Confer-

ence on Management of Data, pages 467–478, 2006.

[13] Y. Pang, W. Hu, L. Sun, and S. Yang. Adaptive Data-driven

Parallelization of Multi-view Video Coding on Multi-core

Processor. Science in China Series F: Information Sci-

ences, 52(2):195–205, 2009.

[14] L. Qin, J. Yu, and B. Ding. TwigList : Make Twig Pat-

tern Matching Fast. In Proceedings of the 12th International

Conference on Database Systems for Advanced Applications

(DASFAA 2007), pages 850–862, 2007.

[15] M. Waldvogel, M. Kramis, and S. Graf. Distributing

XML with Focus on Parallel Evaluation. In Proceedings

of Databases, Information Systems and Peer-to-Peer Com-

puting (DBISP2P’08), pages 55–67, 2008.

[16] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.

Lohman. On Supporting Containment Queries in Relational

Database Management Systems. In Proceedings of the 2001

ACM SIGMOD International Conference on Management

of data, pages 425–436, 2001.

