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トレーサブルなP2Pレコード交換システムにおける実体化ビューの活用
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あらまし 既存のリレーションから得られて，データベースに格納される実体化ビューは問合せ処理の高速化にしば

しば使用される．本論文では，トレーサブルな P2Pレコード交換システムにおける実体化ビューの活用に注目する．

データの複製や修正などがよく発生する P2P環境において交換されるデータの信頼性を確保するために，我々はデー

タベース技術を基盤としたトレーサブルな P2Pレコード交換システムのアーキテクチャを提案し，その開発を進めて

いる．提案したシステムの枠組みは，トレース処理を実現可能とする点で基本的な要求を満たすものであったが，各

ピアに最低限の情報量しか保存しないため，効率の面で改善の余地が大きい．そのため，本論文では実体化ビューを

用いた問合せ処理の効率化に関する提案を行う．
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Abstract Materialized views which are derived from base relations and stored in the database are often used to

speed up query processing. In this paper, we leverage them in a traceable peer-to-peer (P2P) record exchange frame-

work which was proposed to ensure reliability among the exchanged data in P2P networks where duplicates and

modifications of data occur independently in autonomous peers. In our proposed framework, the provenance/lineage

of the exchanged data can be available by issuing tracing queries. The framework can achieve low maintenance cost

since each peer only maintains minimum amount of information for tracing. However, the user must pay relatively

high query processing cost when he or she issues a query. In this paper, we focus on how to improve the efficiency

for query processing by using the materialized views.
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1. Introduction

With the advance of high-performance of computer and

the wide spread of high-speed network, peer-to-peer (P2P)

network has become a new paradigm for information shar-

ing. However, unlike the traditional client-server architec-

ture, a P2P network allows a peer to publish information and

share data with other peers without going through a separate

server computer. It brings us a critical problem; since copies

and modifications of data are performed independently by

autonomous peers without a specific central server control,

it is difficult to determine how data is exchanged among the

peers and why the data is located in a peer.

To interpret database contents and to enhance the reliabil-

ity of data, the notion of data provenance is considered very

important. Practical and theoretical methodologies for de-

scribing, querying, and maintaining provenance information

have been proposed, for example in [6], [7]. The importance

of understanding the process by which a result was generated

is fundamental to many real life applications, such as fields

of bioinformatics and archaeology. Without such informa-

tion, users cannot reproduce, analyze or validate processes



or experiments.

Based on the background, to ensure the reliability of data

exchanged in P2P networks, we have proposed a traceable

P2P record exchange framework in [18], [20]. In the frame-

work, a record means a tuple-structured data item that obeys

a predefined schema globally shared in a P2P network. An

important feature of the P2P record exchange framework is

that it is based on the database technologies to support the

notion of traceability . User can trace the lineage of target

record by issuing a tracing query. Processing for tracing

queries was described in [21].

In this paper, we focus on the issue on how to improve

query processing performance by using materialized views.

The remainder of this paper is organized as follows. Sec-

tion 2. describes the fundamental framework of the proposed

P2P record exchange system. Section 3. shows the current

strategy for query processing and analyzes its problems. Sec-

tion 4. explains how materialized views are used to improve

efficiency in our context for query processing and discusses

the maintenance of materialized views. Section 5. reviews

the related work. Finally, Section 6. concludes the paper

and addresses the future work.

2. Traceable P2P Record Exchange Frame-
work

Rapid progress in many specialized areas such as molec-

ular biology and computational science leads to a vast and

constantly increasing amount of data sharing. The process

may include the activity of curation [6], in which the data

is corrected and/or annotated based on professional knowl-

edge, new experimental results, and so forth. Due to the

copying, modification, and exchange of data performed by

autonomous users, it becomes difficult to know the original

source of the data and the reason why the data is located in

a particular database. This is a problem of data provenance.

A peer-to-peer (P2P) network is a technology for support-

ing flexible and efficient data sharing among autonomous

peers, and there exist many systems and proposals [1], [3].

However, they do not support the notion of data provenance.

For reliable data sharing in a P2P network, we want to know,

for example, the original creator of the given data and the

path of the data in circulation before reaching the current

peer.

As an example, assume that information about novels is

shared among peers in a P2P network. Figure 1 shows an ex-

ample record set Novel owned by some peer that consists of

four attributes: title, author, language, and year. Other

peers also maintain their Novel records with the same struc-

ture, but their contents are not the same.

A traceability problem occurs, for instance, when

title author language year

Pride and Prejudice Jane Austen English 1813

Madame Bovary Gustave Flaubert French 1857

War and Peace Leo Tolstoy Russian 1865

Fig. 1 Example record set Novel

peer wishes to ask the question:“Which peer cre-

ated the record (War and Peace, Leo Tolstoy, Russian,

1865) originally?” However, finding such lineage of data from

a P2P network is quite difficult.

With this background, we proposed the concept of a trace-

able P2P record exchange framework [18], [20] in which tuple-

structured records are exchanged in a P2P network（*1）. Fig-

ure 2 shows the overview of the traceable P2P record ex-

change framework proposed in [18], [20], but some terminolo-

gies are revised.

Local Layer
traceGlobal Layer globalvirtualview
…

ExchangeChangeData
browse, search,register, deleteUser Layer

Record Set
browse, search,register, deletelocalview

…User 1 User N

From ChangeToData
Peer N

Record Set localview

From ChangeToData
Peer 1

Fig. 2 Traceable P2P Record Exchange Framework

In the framework, we assume that each peer corresponds

to a user and maintains the records owned by the user. Each

record has the same structure, which is defined by a prede-

fined schema that globally shared within the network. The

framework has the following main features:

（ 1） In our P2P record exchange framework, every peer

can act as a provider and a searcher. Records are exchanged

between peers and peers can modify, store, and delete their

records independently. Each peer has its own record set in

the user layer , but their contents are not the same. Peers can

behave autonomously and exchange records when required.

A peer can find desired records from other peers by issuing

a query.

（ 2） For reliable data sharing in a P2P network, we want

to know, for example, the original creator of the given record

and the path of the record in circulation before reaching the

（*1）：We use the term “Record exchange” differently from that of data

exchange [17]; the latter is the problem of taking data that obeys a

source schema and creating data under a target schema that reflects

the source data as accurately as possible.



current peer. We assume that each peer maintains its own

relational tables for storing record exchange and modifica-

tion histories in the local layer and facilitates traceability.

All the information required for tracing is maintained in dis-

tributed peers. When a tracing query is issued, the query is

processed by coordinating related peers in a distributed and

recursive manner.

（ 3） For ease of understanding and writing tracing

queries, we provide an abstraction layer called the global

layer which virtually integrates all distributed relations and

a datalog-like query language [2] for writing tracing queries

in an intuitive manner.

In the following, we briefly explain the three-layer model

using an example.

a ) User Layer

The user layer supports what users see. For the ease of

presentation, we assume that each peer in a P2P network

maintains a Novel record set that has two attributes title

and author. Figure 3 shows three record sets maintained by

peers A to C in the user layer. Each peer maintains its own

records and wishes to incorporate new records from other

peers in order to enhance its own record set. For example,

the record (t1, a2) in peer A may have been copied from

peer B and registered in peer A’s local record management

system.

Peer A

title author

t1 a2

t7 a6

Peer B

title author

t1 a2

t5 a5

Peer C

title author

t1 a1

t3 a3

Fig. 3 Record Sets in Three Peers

b ) Local Layer

In the local layer, each peer maintains minimum amount

of information that is required to represent its own record

set and local tracing information. In our framework, every

peer maintains the following four relations in its local record

management system implemented using an RDBMS.

• Data[Novel]: It maintains all the records held by

peer. Figure 4 shows Data[Novel] for peer A. Every record

has its own record id for the maintenance purpose. Each

record id should be unique in the entire P2P network. Note

that there are additional records compared to Fig. 3; they

are deleted records and usually hidden from the user. They

are maintained for data provenance.

• Change[Novel]: It is used to hold the creation, modifi-

cation, and deletion histories. Figure 5 shows an example for

peer A. Attributes from id and to id express the record ids

before/after a modification. Attribute time represents the

timestamp of modification. When the value of the from id

attribute is the null value (−), it represents that the record

has been created at the peer. Similarly, when the value of

the to id attribute is the null value, it means that the record

has been deleted.

id title author

#A01 t1 a2

#A02 t6 a6

#A03 t7 a6

#A04 t3 a3

Fig. 4 Data[Novel]@’A’

from id to id time

− #A02 . . .

#A02 − . . .

#A02 #A03 . . .

− #A04 . . .

#A04 − . . .

Fig. 5 Change[Novel]@’A’

• From[Novel]: It records which records were copied

from other peers. When a record is copied from other peer,

attribute from peer contains the peer name and attribute

from id has its record id at the original peer. Attribute

time stores the timestamp information.

id from peer from id time

#A01 B #B02 . . .

Fig. 6 From[Novel]@’A’

id to peer to id time

#A04 C #C02 . . .

Fig. 7 To[Novel]@’A’

• To[Novel]: It plays an opposite role of From[Novel]

and stores information which records were sent from peer A

to other peers. Fig. 7 shows the To[Novel] relation of peer

A.

c ) Global Layer

The global layer provides virtual integrated views of all

information in the P2P network. Three virtual global views

are constructed by unifying all the relations in distributed

peers. Relation Data[Novel] in Fig. 8 expresses a view that

unifies all the Data[Novel] relations in peers A to C shown

in Fig. 3. The peer attribute stores peer names. Relation

Change[Novel] shown in Fig. 9 is also a global view which

unifies all Change[Novel] relations in a similar manner.

peer id title author

A #A01 t1 a2

A #A02 t6 a6

A #A03 t7 a6

A #A04 t3 a3

B #B01 t1 a1

B #B02 t1 a2

B #B03 t5 a5

C #C01 t1 a1

C #C02 t3 a3

Fig. 8 View Data[Novel]

Exchange[Novel] shown in Fig. 10 unifies all the underly-

ing From[Novel] and To[Novel] relations in the local layer.



peer from id to id time

A − #A02 . . .

A #A02 − . . .

A #A02 #A03 . . .

A − #A04 . . .

A #A04 − . . .

B #B01 − . . .

B #B01 #B02 . . .

B − #B03 . . .

C − #C01 . . .

Fig. 9 View Change[Novel]

from peer to peer from id to id time

C B #C01 #B01 . . .

B A #B02 #A01 . . .

A C #A04 #C02 . . .

Fig. 10 View Exchange[Novel]

Attributes from peer and to peer express the origin and

the destination of record exchanges, respectively. Attributes

from id and to id contain the ids of the exchanged record

in both peers.

Since recursive processing is required to collect historical

information, our framework provides a modified version of

datalog query language [2]. We introduce some tracing query

examples in the following.

Query Example 1 detects whether peer X copied the record

(t1, a2) owned by peer A or not.

Query Example 1:

Reach(P, I1) :- Data[Novel](’A’, I2, ’t1’, ’a2’),

Exchange[Novel](’A’, P, I2, I1, )

Reach(P, I1) :- Reach(P, I2),

Change[Novel](P, I2, I1, ), I1 != NULL

Reach(P, I1) :- Reach(P1, I2),

Exchange[Novel](P1, P, I2, I1, )

Query(I) :- Reach(’X’, I)

Assume that peer A wants to know that which peer cre-

ated the record (t1, a2) originally. Then the query can be

described as the below Query Example 2.

Query Example 2:

BReach(P, I1) :- Data[Novel](’A’, I2, t1’, ’a2’),

Exchange[Novel](P, ’A’, I1, I2, )

BReach(P1, I1) :- BReach(P1, I2),

Change[Novel](P1, I1, I2, ),

BReach(P1, I1) :- BReach(P2, I2),

Exchange[Novel](P1, P2, I1, I2, )

Origin(P) :- BReach(P, I),

NOT Exchange[Novel]( , P, , I)

Query(P) :- Origin(P)

Datalog is so flexible that we can specify various types of

queries using the three global views; please refer to [18], [20]

for the detail.

3. Query Processing Approach and Prob-
lem Statement

In our original framework, every peer only maintains the

minimum amount information for tracing in the local layer.

In order to process tracing queries which are described in

datalog using virtual global views, it is necessary to trans-

form the given query to suit the organization of the local

layer.

According to the mapping rules [18], the Query Example

1 in Section 2. can be mapped as follows. The symbol @ is

a location specifier which indicates the location (peer id) of

relation in the local layer.

Reach(P, I1) :- Data[Novel]@’A’(I2, ’t1’, ’a2’),

To[Novel]@’A’(P, I2, I1, )

Reach(P, I1) :- Reach(P, I2),

Change[Novel]@P(I2, I1, ), I1 != NULL

Reach(P, I1) :- Reach(P1, I2), To[Novel]@P1(P, I2, I1, )

Query(I) :- Reach(’X’, I)

In [19], we compared two major strategies for datalog query

execution, the seminaive method and the magic set method ,

in our context. Both of them are based on the “pay-as-

you-go” approach [16] for tracing. It means that we need to

aggregate the required historical information from the dis-

tributed peers when a tracing query is issued from a user;

the user should pay the cost when he or she traces informa-

tion.

The advantage is that this method is simple and there

is no wastefulness in respect of the storage cost. However,

when we perform the query processing, since it is necessary

to spread a requirement to all the related distributed peers.

We should trace the path along the process that the records

were exchanged. Generally, the cost for query processing is

relatively large. To solve this problem, we consider to con-

struct materialized views which are often used to speed up

query processing.

4. Query Processing with Materialized
Views

4. 1 Definitions of Materialized Views

Materialized views play important roles in databases [14].

In our case, all of the materialized views do not store all of

the information in the whole P2P network. They are only

used to store the information at the peers in the target scope.

A target scope is determined by a materialized view main-

tenance policy. In this paper, we assume that materialized

views at each peer store the related information to k hops（*2）.

（*2）：In this paper, a number of hops means the number of peers in-

volved in a record exchange. For example, if peer A received a record

from peer B and peer B received the record from peer C, peer C is in

two hops from peer A in terms of the record.



For instance, Fig. 11 shows the target scope of the materi-

alized views for peer X in case of K = 2. A solid line arrow

shows the route of the record that has been copied. A dotted

line arrow shows the copy route of the offered records. Peer

A, D, E, F, and H are the peers in the scope of the mate-

rialized views at peer X since there were record exchanges

between them and peer X directly or indirectly in two hops.

In this paper, we assume that each peer maintains four mate-

rialized views: MVData, MVChange, MVFrom, and MVTo.

Each of them corresponds to Data, Change, From, and To

relations in the local layer, respectively.

D

A
XHG

F I
B

E
C

Fig. 11 Target Scope for Peer X (K = 2)

In the following, we show the representation of material-

ized views in case of k = 2. Like a tracing query, they are

expressed in datalog and using Data, Change and Exchange

virtual views in the global layer.

• MVData: MVData is a materialized view that stores

the exchanged records owned by peers which locates in the

target scope.

For example, MVData stored at peer X can be described

as below:

RData1(P, I1, T, A, H) :- Data[Novel](’X’, I2, T, A),

Exchange[Novel](P, ’X’, I1, I2, ), H=1

RData1(P, I1, T, A, H) :- RData1(P, I2, T, A, H),

Change[Novel](P, I1, I2, )

RData1(P, I1, T, A, H) :- RData1(P1, I2, T, A, H1),

Exchange[Novel](P, P1, I1, I2, ), H=H1+1, H<=2

RData2(P, I1, T, A, H) :- Data[Novel](’X’, I2, T, A),

Exchange[Novel](’X’, P, I2, I1, ), H=1

RData2(P, I1, T, A, H) :- RData2(P, I2, T, A, H),

Change[Novel](P, I1, I2, )

RData2(P, I1, T, A, H) :- RData2(P1, I2, T, A, H1),

Exchange[Novel](P1, P, I2, I1, ), H=H1+1, H<=2

RData(P, I, T, A) :- RData1(P, I, T, A, H)

RData(P, I, T, A) :- RData2(P, I, T, A, H)

MVData@X(P, I, T, A) :- RData(P, I, T, A)

The variable H is used to count the number of hops. RData1

is the collection of the records which copied from other peers

owned by peer X in two hops. RData2 stores the information

that which peer copied the records owned by peer X in two

hops and also stores the contents of records in these peers.

RData1 and RData2 are finally combined into MVData@X. Peer

X executes the program and stores DataMV@X as a materi-

alized view.

• MVChange: It is used to store the change histories

of the exchanged records in target scope.

The following is the definition of the materialized view

MVChange located at peer X:

RPeer1(P, I1, T, A, H) :- Data[Novel](’X’, I2, T, A),

Exchange[Novel](P, ’X’, I1, I2, ), H=1

RPeer1(P, I1, T, A, H) :- RPeer1(P, I2, T, A, H),

Change[Novel](P, I1, I2, )

RPeer1(P1, I1, T, A, H) :- RPeer1(P2, I2, T, A, H1),

Exchange[Novel](P1, P2, I1, I2, ), H=H1+1, H<=2

RChange1(P, I1, I2, , H) :- RPeer1(P, , , , H),

Change[Novel](P, I1, I2, )

RPeer2(P, I1, T, A, H) :- Data[Novel](’X’, I2, T, A),

Exchange[Novel](’X’, P, I2, I1, ), H=1

RPeer2(P, I1, T, A, H) :- RPeer2(P, I2, T, A, H),

Change[Novel](P, I1, I2, )

RPeer2(P, I1, T, A, H) :- RPeer2(P1, I2, T, A, H1),

Exchange[Novel](P1, P, I2, I1, ), H=H1+1, H<=2

RChange2(P, I1, I2, , H) :- RPeer2(P, , , , H),

Change[Novel](P, I1, I2, )

RChange(P, I, I1, ) :- RChange1(P, I, I1, , H)

RChange(P, I, I1, ) :- RChange2(P, I, I1, , H)

MVChange@X(P, I, I1, ) :- RChange(P, I, I1, )

Both MVData and MVChange will increase the cost for stor-

age and management in the operation and maintenance of

materialized views. But they not only are used to improve

query processing efficiency, but also can be used for the re-

covery of the lost data when some peer disappeared suddenly.

• MVFrom: This materialized view stores the informa-

tion of records which copied from other peers in two hops.

For example, materialized view MVFrom located at peer

X can be described as below:

FromH(I2, P, I1, H) :- Data[Novel](’X’, I2, T, A),

Exchange[Novel](P, ’X’, I1, I2, ), H=1

FromH(I2, P, I3, H) :- FromH(I1, P, I2, H),

Change[Novel](P, I3, I2, )

FromH(I2, P, I1, H) :- FromH(I1, P, I2, H1),

Exchange[Novel](P, P1, I1, I2, ), H=H1+1, H<=2

MVFrom@X(I, P, I1, H) :- FromH(I, P, I1, H)

MVFrom is effective for tracing the record retrospectively.

Management cost is negligible though the storage cost is ad-

ditionally needed. Path information caching and the record

insertion to the materialized view can be executed one when

the record is exchanged.

• MVTo: A similar idea can be applied to the side

of the To relation. The following materialized view MVTo

stores the information that which peer copied records from

peer X in the scope of two hops.

ToH(I2, P, I1, H) :- Data[Novel](’X’, I2, T, A),

Exchange[Novel](’X’, P, I2, I1, ), H=1

ToH(I2, P, I3, H) :- ToH(I1, P, I2, H),

Change[Novel](P, I2, I3, ), I3 != NULL

ToH(I2, P, I1, H) :- ToH(I1, P1, I2, H1),

Exchange[Novel](P1, P, I2, I1, ), H=H1+1, H<=2

MVTo@X(I, P, I1, H) :- ToH(I, P, I1, H)



The management cost for the MVTo is not negligible. For

example, in Fig. 11, when the record is copied from peer D

to peer E, it is necessary to pass on the information of the

copy event to peer X. In other words, not only peer D and E

but also peer X should be involved in the transaction of the

copy of the record from peer D to peer E. This becomes an

additional overhead to some extent.

4. 2 Query Processing with Materialized Views

Materialized views stored locally as base relations can im-

prove query performance through query rewrites. We illus-

trate their use in query processing using our example.

Including the materialized views, there are eight base rela-

tions stored at each peer in the local layer. For a same query,

we have several query mapping options. When we perform

the query mapping, the optimization for mapping should be

considered. Based on the materialized views, we can rewrite

the Query Example 1 in Section 2. as below.

Mapped Query Example 1:

Reach(P, I1) :- Data[Novel]@’A’(I2, ’t1’, ’a2’),

MVTo[Novel]@’A’(I2, P, I1, )

Reach(P, I1) :- Reach(P1, I2), MVTo[Novel]@’A’(I2, P, I1, )

Reach(P, I1) :- Reach(P, I2),

Change[Novel]@P(I2, I1, ), I1 != NULL

Reach(P, I1) :- Reach(P1, I2), MVTo[Novel]@P1(P, I2, I1, )

Query(I) :- Reach(’X’, I)

In this example, peer A wants to detect that which peer

copied the record (t1, a2). In our original approach with-

out materialized views, the query processing starts at peer

A and the query fragments generated at peer A are first for-

warded to peer H, and then peer H forwards them to peer

X. The query is executed in this way until it reaches the

fixpoint. The query processing strategy is based on the sem-

inaive method.

With the materialized views, peer A can do the execution

locally since peer X copied the record (t1, a2) in the tar-

get scope of peer A. In the following, we describe the query

processing in details referring to the Fig. 11. Assume that

materialized view MVTo shown in Fig. 12 is stored at peer

A. At peer A, notice that when the first rule is executed,

the result (H, #H01) will become a tuple in Reach which is

shown in Fig. 13. When the second rule is executed, a new

tuple (X, #X01) should be inserted in Reach. Finally, when

the last rule is executed, the #X01 as a result should return

to the query. That is to say, peer X copied the record (t1,

a2) from peer A.

The example indicates that the materialized views speed

up the query processing although this is a special example

since peer X copied this record in the target scope of peer

A. Like this case, with the materialized views, processing

id to peer to id #hop

#A01 H #H01 1

#H01 X #X01 2

Fig. 12 Relation MVTo at Peer A

P I

H #H01

X #X01

Fig. 13 Relation Reach

for queries which include recursive operation does not have

to do the forward processing and queries can be answered

immediately at the local peer.

Similarly, Query Example 2 can be mapped based on the

materialized views as follows.

Mapped Query Example 2:

BReach(P, I1) :- Data[Novel]@’A’(I2, ’t1’, ’a2’),

MVFrom[Novel]@’A’(I2, P, I1, )

BReach(P, I1) :- BReach(P1, I2), MVFrom[Novel]@’A’(I2, P, I1, )

BReach(P1, I1) :- BReach(P1, I2),

Change[Novel]@P1(I1, I2, ),

BReach(P1, I1) :- BReach(P2, I2),

MVFrom[Novel]@P2(I2, P1, I1, )

Origin(P) :- BReach(P, I), NOT MVFrom[Novel]@P(I, , , )

Query(P) :- Origin(P)

This query trace the origin of a target record. The query

execution can be handled as above. With the materialized

views, the number of peers which should involve in the query

processing will be reduced. It is thought that the material-

ized views work well effectively in the query processing. Of

course, processing for many tracing queries still needs for-

warding operations until it reaches the fixpoint based on the

seminaive method.

We constructed four materialized views for each peer. In

the mapped query examples, MVData and MVChange are

not used since the examples only need to trace the path of

a target record. We can use the materialized views MVData

and MVChange to map another type tracing queries, for ex-

ample, the query which detects the original contents in a

special peer.

If the query processing can not be executed using materi-

alized views, then it will be executed ordinarily as before.

4. 3 Maintenance for Materialized Views

View maintenance which means the processing of updating

a materialized view in response to changes to the underly-

ing data. As we described above, materialized views can

speed up query processing greatly. But they have to be kept

up to date. If some of the base relations are changed, ma-

terialized views must be recomputed to ensure correctness

of results to query processing. For maintaining general re-

cursive views, [15] proposed the DRed (Delete and Rederive)

algorithm that can handle incremental updates. However,



the algorithm assumes a centralized environment, and it is

quite costly to apply the algorithm in our context because

the maintenance process is propagated among distributed

peers. Materialized view maintenance problem in deductive

databases was described in [14], [23].

In our case, we can utilize a feature of our framework. Ev-

ery update can be handled as a tuple insertion. Assume that

the related peer in the first hop for peer X is peer Y, and peer

Z is related peer in the second hop. Of course, related peers

for peer Z in two hops are peer Y and peer X. Depending on

the update types, a record is inserted in each of the following

local relations and materialized views:

• record update in peer X: Data@X, Change@X, MVData@Y,

MVData@Z, MVChange@Y, and MVChange@Z

• record modification in peer X: Data@X, Change@X,

MVData@Y, MVData@Z, MVChange@Y, and MVChange@Z

• record deletion in peer X: Change@X, MVChange@Y, and

MVChange@Z

• record copy from peer X to peer Y: To@X, From@Y,

Data@Y, MVData@X, MVData@Z, MVTo@X, and MVFrom@Y

It means that there only exists insertion in the database

updates in our framework. Materialized view maintenance

for insertion can use the seminaive method for computation

easily. When the fixpoint is found, the current incremental

maintenance should be finished [15].

5. Related Work

Understanding provenance of documents is not a new prob-

lem. The importance of provenance goes well beyond veri-

fication. It is used in a wide range of fields, including data

warehousing [9], uncertain data management [4], [24], curated

databases [6], and other scientific fields such as bioinformat-

ics [5]. In this area, one of the well-known projects would

be the Trio project at Stanford University, in which both of

the uncertainty and lineage issues are considered [24]. Our

research is devoted to the data provenance issue in P2P in-

formation exchange, where data provenance is important but

there is few proposals for this topic.

There are a variety of research topics regarding P2P

databases, such as coping with heterogeneities, query pro-

cessing, and indexing methods [1]. One related project with

our problem is the Orchestra project [11], [17], which aims

at collaborative sharing of evolving data in a P2P network.

In contrast to their approach, our research focuses on a sim-

ple record exchange scenario and does not consider schema

heterogeneity. One of the features of our framework is to

employ database technologies as the underlying foundation

to support reliable P2P record exchange.

The seminaive method and the magic set method are well-

known query processing strategies for deductive databases

[2]. Query processing based on the deductive database ap-

proach was not a hot topic in recent years, the situation

is now changing. As proved in the declarative networking

project [8], [22], declarative recursive queries are very power-

ful in writing network-oriented database applications such as

sensor data aggregation.

Materialized views can be used to summarize, pre-

compute, and replicate data. Maintenance for them is very

important in database. We can find the recent survey about

maintenance of materialized views in [13]. The incremen-

tal maintenance of views has received a lot of attention in

database research, many incremental methods have been al-

ready proposed in the literature [10], [12], [23], [25]. In all pa-

pers, only [14], [23] described materialized view maintenance

problem in deductive databases. In our research, for trac-

ing queries, especially for the queries asking past histories,

materialized views [14] are quite helpful to reduce query re-

sponse time. For that purpose, we develop a query process-

ing method which effectively uses materialized views and a

view selection and maintenance method which considers the

trade-off of cost and benefit.

6. Conclusions and Future Work

For the efficient query processing, data replication and

caching are popular techniques. Considering practical re-

quirements of tracing, we added some incorporate additional

features and constructs to our fundamental P2P record ex-

change system. Although the storage and maintenance cost

will increase, the query processing cost can be reduced.

In this paper, we described how to define materialized

views and how to use them to improve query processing in

our proposed P2P record exchange system. The maintenance

of materialized views was also discussed. Nevertheless much

work remains to be done. We need to consider how to take

trade-off considering the total cost reduction. Several future

research issues are summarized as follows:

• Fault-tolerance: In this paper, we omitted the issue

of fault tolerance, but it is important for supporting P2P

networks in which failure occurs frequently.

We need to consider that how to use materialized views to

do the data recovery for left peer in detail.

• Full specification of complete query processing strate-

gies: We need to enhance the strategies to handle more com-

plex tracing queries. The effectiveness and limitation of the

declarative language-based approach will become more clear.

• Efficient coupling with DBMSs: For implementing

our framework, we assume that a local record management

system in each peer is implemented using a conventional

RDBMS. We would like to effectively use the powerful and

robust DBMS functionalities based on the tight coupling of



the record management system and the underlying RDBMS.

• Prototype system implementation and experiments:

We are currently developing a prototype system of our P2P

record exchange framework. Also, we started to construct a

P2P network simulator that can be used for simulating our

prototype system in a virtual P2P network. Their develop-

ments will have positive feedbacks to improve our fundamen-

tal framework.
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