
DEIM Forum 2010 F5-1

Multidimensional Range Query Processing in Structured P2P Overlays

Djelloul BOUKHELEF† and Hiroyuki KITAGAWA†,††

† Computer Science Department, University of Tsukuba

†† Center for Computational Sciences, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki.〒 305–8573

E-mail: †boukhelef@kde.cs.tsukuba.ac.jp,††kitagawa@cs.tsukuba.ac.jp

Abstract The Multi-Ring Content Addressable Network (RCAN) [1] is a dynamic distributed index structure for efficient

management of large multidimensional data sets over peer-to-peer systems. RCAN propose a new self-organizing overlay

topology that achieves logarithmic routing performance and effective load balancing while minimizing the maintenance over-

head during nodes join and departure. In this paper, we extend RCAN with an efficient support for complex queries, namely

multi-attributes range queries. A range query issued by one node is successively refined by intermediate nodes until reaching

the nodes involved in the query range. Recursive decomposition is based only on local information about neighboring nodes.

Resulting sub-queries are forwarded in parallel to prospective target nodes. Our range query algorithm reduces the number of

involved nodes, the message overhead necessary to solve a range query, as well as the total query latency which is logarithmic

to number of nodes in the system(N) and involved nodes(M), namelyO(logN + logM) hops.

Key words Structured peer-to-peer, RCAN overlay, Multidimensional data, Range query processing.

1. Introduction

Peer-to-peer (P2P) is a powerful key paradigm for structuring

scalable distributed systems which are decentralized and highly dy-

namic. Research on indexing on structured P2P networks started

with the introduction of Distributed Hash Tables (DHTs). A wide

range of structured P2P protocols have been proposed over the last

few years, such as: Chord [2], CAN [3], P-Grid [4], to name only a

few. DHT protocols support efficiently exact-match lookups. How-

ever, because the randomization does not preserve the locality of

data, DHT schemes are generally not efficient to support complex

queries such as range queries and nearest-neighbor searches. In

situations where applications require efficient execution of such

queries, more sophisticated methods that simultaneously achieve

good load balance and preserve data locality are highly required.

Research on storage and management of multidimensional data

in P2P systems has gained emerging intension during last years.

The aim is to propose efficient techniques for indexing and process-

ing complex queries over huge collections of multidimensional and

spatial data shared among a large-scale structured P2P. Towards the

efficient processing of complex and range queries, non-DHT struc-

tured P2P techniques consider adapting well-known centralized hi-

erarchical data structures (such as search trees, tries, and skip list)

to the P2P settings. These techniques do not employ hashing for

data placement, and aim to address more complex problems such

as multi-attribute indexing, nearest-neighbor and similarity index-

ing, and range search. One of the most challenging problem that

face this class of structured P2P system is to avoid overloading the

higher levels of the structure. Several P2P range indexes have been

proposed, such as Mercury [5], BATON [6] and its variants [7], [8].

Unlike simplepoint queries, evaluation of a range query is, much

more complicated. This is mainly due to the lack of global knowl-

edge about the actual network composition, and its dynamism due

to churn, that is nodes that join and leave the network freely. The

major challenge in this settings to resole a range query is how to ef-

ficiently refine and propagate the query to all relevant nodes, while

fulfilling the following properties:

• Reduce the number of visited (non-computing) nodes, that is

nodes whose regions do not intersect with the query range, yet they

may help forwarding the query message.

• Reduce the number of messages necessary to solve the range

query, as well as the total time to answer the query (latency).

• Balance the workload among the processing nodes.

RCAN, a Multi-ring Content Addressable Network [1], is a new

fully self-scaling decentralized P2P protocol with a novel topolog-

ical and routing infrastructure. RCAN proposes a dynamic dis-

tributed index structure for the efficient management of large mul-

tidimensional data sets over P2P systems. Based on a new self-

organizing overlay topology, RCAN is able to achieves logarithmic

routing performance and effective load balancing [9] while mini-

mizing the maintenance overhead during nodes join and departure.

In this paper we are interested in proving mechanisms for effi-

— 1 —



cient support of complex multidimensional queries in a structured

P2P. We propose an extension of RCAN overlay to supports efficient

evaluation of range queries and partial-match queries. To achive

this goal, RCAN relies on an important property of range query, we

called “query locality”, which is the ability to efficiently traverse

in between nodes whose regions are adjacent on thed-dimensional

key space. This means that once entering the query region (start-

ing from any boundary) the query propagation paths will never get

out of the query range when forwarding the query message to other

relevant nodes. The query locality property is considerably useful

in reducing the number ofnon-computingnodes to be visited, and

consequently the total query latency. Based on this property, the

proposed range query processing algorithm fulfills all the above-

mentioned properties. While most of the existing works fail to fulfill

both properties (1) and (3) as they do not preserve the query locality.

The communication and time complexities of our range query

processing algorithm are both logarithmic to the number of nodes

that intersect with the query range. This parameter depends heavily

on the query selectivity (ratio of query range to the whole space)

and the distribution of nodes.

The remainder of this paper is organized as follows. Section 2.

covers the related work and compares our proposal with existing

methods. Section 3. briefly describes RCAN overlay and its rout-

ing topology. Section 4. presents the details of the proposed range

query processing mechanism. Finally, section 5. concludes this pa-

per and discusses future work.

2. Related work

In the literature there exist two common approaches for manag-

ing multidimensional data over structured P2P systems: either by

using an order-preserving hash function over existing DHT, or by

proposing distributed variants of centralized search structures.

Methods belonging to the first approach maps the multidimen-

sional space onto a one-dimensional space using space filling curves

(SFC) techniques. Then it makes use of well-known DHT protocols

to manage the one-dimensional space. A main drawback of this ap-

proach which is inherited directly from the usage of SFC, is its fail-

ure to preserve the locality of data on the one-dimensional space.

Moreover, the data locality of SFC will become worse with the in-

crease of dimensionality. Another unfavorable factor, is the random

hashing of partitions of the key space onto nodes in the DHT over-

lay.

Methods of the second approach propose distributed hierarchical

indexing schemes originated from well-known centralized multidi-

mensional indexes. A common feature of this approach is to assign

special roles to some peers in the system to maintain higher-layer

of the hierarchy. As a result, methods of this class present severe

scalable limitations as the upper level peers might easily become

bottleneck (single point of failure).

Mercury [5] attempts to support multiple-attribute range queries

by using an individual hub for each attribute. Mercury organizes

each attribute hub into a separate circular overlay of nodes and

places data contiguously on the ring. MAAN [10] uses locality-

preserving hashing to map data values onto Chord identifier space.

Both MAAN and Mercury employ multiple DHTs (one for each

attribute) that are mapped onto the same overlay. The separate

attribute indexing scheme is not effective for processing complex

queries that explicitly specify constraints among the attributes such

as skyline queries [11], and range queries. Moreover, multi-attribute

range query is more complicated since is has to be evaluated on one

dimension at a time and then take a join operation of the results.

P-Grid [4] is a one-dimensional distributed index based on a ran-

domized binary prefix tree (trie) which is induced by recursively

bisecting the data space. Each peer is associated with one partition

of the key space and maintains random connections to other peers

such that prefix routing is enabled. A peer stores also some data in-

dex replicas belonging to other peers, to guarantee fault-tolerance.

However, this way still has high index costs. The work in [12] pro-

poses two algorithms of range query in P-Grid,i.e. min-max traver-

sal algorithm (sequential) and shower algorithm (parallel).

BATON [6] is a one-dimensional index that uses a distributed

search tree wherein-levelsideway links are employed to reduce the

number of accesses to higher levels of the hierarchy and achieve

routing efficiency, fault-tolerance, and load balancing. BATON* [7]

extends the idea of BATON by increasing the tree fan-out to speedup

the search. Work in [8] proposed the VBI-tree, a P2P network based

on BATON that can adapt many data partitioning schemes. Inher-

ited from BATON, the three methods share the following common

problems: the tree structures undertake rigid node insertion proce-

dures, where a tree restructuration may affect several nodes. This re-

structuring process is expensive and prevents concurrent insertions.

The works closest to ours in the multi-dimensional data in-

dexing are MURK and SCRAP [13], SkipIndex [14], ZNet [15],

Squid [16]. Belonging to the first category, these methods employ

SFC techniques for dimension reduction. Multi-dimensional data is

converted into single-dimensional data and then range-partitioned

across peers. Existing DHT networks are then used to manage

the one-dimensional space. MURK indexes multi-dimensional data

partitions using thekd-tree. SkipIndex stores partition information

in a binary tree. ZNet proposes a mapping of Quad-tree onto skip

graph overlay usingZ-curve. The evaluation of a range query in

these methods rely mainly on the hierarchical overlay structure. For

example, in ZNet a range query is converted to a set of zones, which

is a superset of zones covered by the query range. As the query is

routed, this superset is refined. To reduce unnecessary visits, the

query is routed along two opposite directions, that is towards nodes

which contain zones of largerZ-addresses as well as smallerZ-

addresses than zones’ of the current node. Apparently this solution

is targeting to reduce the number of visited nodes, as well as the

associated network overhead. However, such a top-down approach

— 2 —



may cause serious scalability issues, as the query request is always

sent to higher level nodes that maintain a larger search range.

The work in [17] proposes a distributed version of the MX-

CIF quad-tree that supports range queries and objects with multi-

dimensional extents. The leaves of the quad-tree are mapped onto

a Chord overlay. In order to avoid the bottleneck of higher-layer

nodes, the tree is cut-down to a certain level(fmin), so that no ob-

jects are stored in upper levels of the quad-tree. Also they limit the

depth of the tree to(fmax) to avoid too much fragmentation. Each

peer caches direct links to the children of the quad-tree nodes it is

covering. Thus, it takesO(logN) hops to find anfmin-node and

then a constant number of steps to reach the relevant leaves. How-

ever, the resulting structure is rather complex and need to maintain

multiple sub-roots to access the structure which incurs a very high

maintenance overhead.

Range query processing in the above methods consist basically

of translating the query range into set of cells using the SFC, then

routing each cluster of cells to relevant nodes. To reduce the rout-

ing overhead, the query is refined during the routing process using

SFCs of different granularities. Besides visiting many irrelevant

nodes (non-processing) during the query routing and propagation, a

potential drawback in the previous methods, including the efficient

shower algorithms [12], is that unnecessary overlay hops may be in-

troduced in order to forward sub-queries to relevant nodes which are

naturally adjacent on the multidimensional space.

SpatialP2P [18] is a recently proposed structured P2P framework,

targeted to spatial data (2 dimensions only). Like our RCAN, Spa-

tialP2P is the only pure P2P overlay that does not employ neither

SFC techniques nor built using hierarchical structure. However,

SpatialP2P is intrinsically different from RCAN. SpatialP2P uses

a statically grid-partitioned key space, where nodes handle areas,

which are either cells of the grid-partitioned space or sets of cells

that do not necessarily form a rectangular region. Although this

choice makes the load balancing task more flexible, however the

size of metadata needed to manage complex regions may be very

large especially for higher dimensions. Similarly to the above meth-

ods, SpatialP2P converts the query range into the a set of predefined

cells, and route them to the relevant nodes. To reduce the routing

overhead, SpatialP2P group non-resolved cells and send them to a

neighboring node that is closer to all of them which in its turn will

continue the query resolution.

3. Overview of RCAN framework

In this section we will briefly describe RCAN, a Multi-ring Con-

tent Addressable Network [1]. RCAN is a new self-scaling P2P

protocol with a novel topological and routing infrastructure. The

basic substrate of RCAN is a conventional grid-like overlay, where

nodes know only about their immediate neighborhoods. The key

design of RCAN is to equip each node with a few long links to-

wards some distant nodes in the system. Long links are established

in such a way that the routing path is shortened while the mainte-

nance overhead for building and updating these links when nodes

join or leave the system is very low. Distant neighbors are situated

at distances inverse of powers of2 on the coordinate space from

the originating node. The set of long links from each node is parti-

tioned intod small subsets, each of which is established along one

dimension. Long links are clockwise-directed and wrap around the

key space. The set of all long links in the system yields multiple in-

dependent rings along each dimension (routing infrastructure with

multiple rings). The rings are of small size (number of nodes per

ring), and their maintenance is very easy. The number of rings and

their sizes self-adjust as nodes join and leave the network. In a uni-

formly partitioned key space, a node is member of only one ring

along each dimension,i.e. the ring that intersects with its region.

The goal of RCAN is twofold. First it aims to improve the routing

performance and enhance the fault-tolerance of CAN-like overlays

by building fast shortcuts between nodes on the overlay level, while

minimizing their maintenance cost during frequent nodes joins and

departures (churn). The second ultimate goal is to efficiently sup-

port semantic queries over data with multidimensional keys. Se-

mantic queries include, for example, multi-attributes range queries,

k-nearest neighbor search, etc. On the architectural point of view,

RCAN is mainly designed for a large scale dynamic P2P systems.

3. 1 Design principle

RCAN operates on a natived-dimensional Cartesian key space

that warps around each dimension. The key space is subdivided

into non-overlapping hyper-rectangular regions (called alsozone).

Regions’ extents could be changed dynamically through split and

merge operations that occur when nodes join or leave. In what fol-

lows we will describe the data and overlay structures of RCAN.

Regions

Each regionr os the key space is given a globally unique identi-

fier (r.id) generated by applying a hash function to a reference point

from r itself. Actually, an identifier of a region, may not bear any

semantic, yet it should distinguish the region during all its life-time.

In RCAN, the reference point of a region is the smallest point that

may possibly belong to that region1. The goal it to guarantee that the

reference point does not change when the region is split or merged.

Level of a region

RCAN is a decentralized self-organizing content addressable net-

work. Multiple splits and merges may occur independently at the

same time and at different locations in the key space. As conse-

quence, regions with different extents may coexist. To keep track of

the evolution of the key space, each regionr is associated a positive

integerr.l (called level) that indicates the number of partitioning

operations (split and merge) the regionr has undertaken2. The next

1：In 2D RCAN (figure 1(a)), the reference of a region corresponds to the

top-left corner of its bounding rectangle.

2：Conceptually, the level represents the depth of a region in thevirtual parti-

— 3 —



 0 8 2 9 1 5 11 12 10 7 
3 6 4 (0,0) 

(0,1) (1,1) 
(1,0) 

(a) Long links model

 
Source Target 

(b) Torus model

Fig. 1 2D RCAN overlay. (a) Multi-ring infrastructure; (b) Routing from

sourceto target in CAN (black arrows) and RCAN (blue arrows).

dimension along which the region should be split (resp. merged) is

inferred from the region’s level. Specifically, the next dimension to

splitting (resp. merging)r is (r.l mod d) (resp.r.l − 1 mod d).

Example: In figure (Fig. 1(a)), nodes 3 and 4 are sibling nodes,

but 2 and 8 are not. The levels of nodes 11, 7, 10, 3, and 6 are 3, 4,

5, 6, and 7 respectively.

Split

The bounding hyper-rectangle of a regionr is subdivided into

two equal distinct regions along one dimensioni′. The extent ofr

is collapsed to cover only the first half. The second half is assigned

to a new sibling regions. Data items that fall into the second half

are also transferred tos. After the split, the level ofr is incremented

by one. The level ofs takes the same value asr’s level.

Merge

It is the inverse of split operation. Two sibling regionsr ands

are combined into one big region that covers both of them. One

of the two regions is extended to take the place of the new region,

(let us sayr). The other region (s) is deleted after transferring its

responsibility tor. Finally, the level ofr is decremented by one.

Assigning data items to regions

As stated above, our aim is to efficiently support semantic queries

(i.e. range queries, nearest neighbor search, etc.) over multidimen-

sional data. The idea is to use alocality preserving mappingthat

places data items in the key space according to theirsemantic(Spa-

tial coordinates of data points in the3d space, for example). Local-

ity preserving mappings ensure that items with similar attribute val-

ues are assigned to the same region, or at least stored in the nearby.

CAN [3] and Chord [2] are examples of DHTs that employ hash-

ing techniques to assign IDs to items and nodes. Unfortunately,

this randomization destroys data proximity and can only support ex-

act match queries. Instead of that, RCAN operates on a native key

space where data items are mapped directly to regions according

to their attributes values. As discussed above, this is very essential

to efficiently support semantic queries. However, in the absence of

effective load balancing techniques, this may result in ahighly im-

balanced partitioning where some regions store a large amount of

tioning tree.

data, while others are store very few items (or empty in the worst

case). The situation may become arbitrarily bad if the data distri-

bution in not uniform. To cope with this problem, RCAN proposes

simple and efficient load balancing techniques that cope with load

imbalance caused by changes in the network composition due to

nodes joins (static load balancing) [9].

Assigning regions to nodes

Conceptually, RCAN builds ad-dimensional overlay on top of

an evolving set of computers (nodes) connected through a physical

communication network. Actually, regions in RCAN are assigned

to nodes usingone-to-onemapping, which is independent of the

structure and composition of the underlaying network. Each nodep

in the network owns one regionr in the whole key space, and is re-

sponsible for the data items covered byr. The logical address ofp is

taken to be the identifer of its region(p.id = r.id). Other sophisti-

cated mappings can also be employed in RCAN, since our definition

of region is logical and independent of the physical network.

3. 2 Multi-ring routing overlay

For routing purpose, each node in the system maintains routing

information (routing state) about its neighboring nodes which con-

sists of two types of links3: shortandlong.

Short Links

A node maintains contacts withO(d) adjacent neighbors on aver-

age. Short links are maintained by exchanging heartbeat messages

between neighboring nodes.

Long Links

They are at the heart of the design of RCAN. The routing state of

a node in RCAN is augmented with a few unidirectional links to-

wards nodes in the system that are at distance inverse of the power

of 2 on the key space. Actually, the number of links maintained by a

node along each dimension is equal to the number of times its region

had split along that dimension. As result, the total number of long

links at each node is always proportional to the size of its region.

This property enables the implementation of self-scaling routing ta-

bles, since a node can adapt dynamically the number of long links

by establishing additional links when its region splits, or dropping

extra links when its region shrinks. With high probability, the total

number of long links per node is tightly bounded byO(logN) [1].

Multi-rings routing infrastructure

Long links are parallel to data axes and wrap around along each

dimension. Long links originating from nodes whose origins are

situated on the same line form a ring. Multiple small sub-rings

are hence formed along each dimension. In a regularly partitioned

grid, a node is a member of one ring along each dimension (i.e. the

ring passing by its origin). The number of rings and the number

3：When we say that a nodep has a link towards a nodeq, this means that

a direct communication channel is established between the two nodes, and

through whichp can send messages toq. A link is materialized by the net-

work address, region extent, etc. of the node towards which the link points.

— 4 —



of nodes per ring self-scales as the network size changes. In case

where regions may have different sizes, a node may become tempo-

rary member of more thand rings, because its region is large and

might intersect with more than one ring along each dimension.

Example: Nodes 0, 8, 2, 9, 5, and 11 are members of the first

horizontal ring. Nodes 0, 12, 10, and 7 are members of the first

vertical ring. Node 11 owns a big region, it is thus member of other

horizontal rings like the one passing by nodes 12, 6, 4, etc.

When a nodep splits its region with a new nodeq along dimen-

sion i.Nodeq becomes the successor ofp on the same ring along

dimensioni. On the other dimensions,q becomes a member of

the ring adjacent (in the positive direction) top’s ring and takes the

same position asp on its ring. If the level ofp is the highest in its

ring, this means that the adjacent ring whereq will join does not

yet exist. In this case a new ring is created andq becomes the first

member in it.

RCAN’s multi-rings infrastructure is a virtual model to organize

long links. Rings are built using existing long links and do not in-

cur additional building or maintenance overhead. This multi-ring

routing model is highly flexible. Rings are created or removed dy-

namically with almost no extra cost. The number of rings and their

sizes self-adjust to reflect changes in the network size or nodes dis-

tribution.

Routing mechanism

RCAN adopts ahop-by-hopgreedy routing approach. A node

uses only local routing state to decide the next routing step. In our

design, a message is identified by a multidimensional key specify-

ing the coordinates of the target point. During a routing task, a node

looks-up in it routing table for a neighboring node (either immedi-

ate or distant) that is strictly closer to the target, according to a well

defined metric, and forwards the message through that neighbor. If

there are many neighbors at the sameexpecteddistance to the target,

one of them is selected at random.

Intuitively, the routing task in RCAN consists of solving the rout-

ing path along one ring at each step. Rings can be used in an arbi-

trary order. Another good feature of RCAN’s multi-ring topology

is that there are many paths with almost the same expected distance

between any pair of nodes. This property enables more routing flex-

ibility and robustness against nodes and links failures.

4. Distributed query processing

RCAN provides efficient supports for exact-match queries, range

queries and partial-match queries. Formally, a range queryQ(l, u)

is a d-dimensional hypercuboid delineated by the pair< l, u >,

wherel = (l1, ..., ld) andu = (u1, ..., ud) define the minimum

(lower) and maximum (upper) points of the query range, respec-

tively (cf. Fig. 2). Given a range queryQ(l, u), the answer should

contains all the data items whose attribute values are in the specific

range[l, u).

Exact-match query (also calledpoint query) is a special case of

Node 8 Node 3Node 9 Node 5Node 11st step 2nd step 3rd step
60

2

7 8

3

4

10

1

9

5

Fig. 2 2D range queryQ(< 0.47, 0.81 >;< 0.65, 0.85 >)

range queries where the lower and upper bounds of the query range

coincide, that isli = ki = ui; for i = 1...d. The evaluation of

point query consists simply of a lookup message sent to the node

that covers the query point using the overlay lookup service.

The evaluation of a range query is, however, much more compli-

cated than a point query. This is mainly due to the lack of global

knowledge about the actual composition of the network, and its dy-

namic nature due to nodes churn. The challenge in this settings to

resolve a range query is how to refine and propagate the query to

relevant nodes in and efficient and deterministic way. The proposed

mechanism should enable to visit all nodes which are relevant to the

query, once and only once, while satisfying the following proper-

ties:

• Reduce the number of visited (non-computing) nodes, that’s

nodes whose regions do not intersect with the query range, yet they

may participate in the routing process.

• Reduce the number of messages necessary to solve the

query, as well as the total time to answer the query (latency)

• Balance the workload among the processing nodes.

If we assume that the entire key space was evenly divided into re-

gions of the same level. The querying node (initiator) could easily

partition the query into a set of sub-queries, and then route inde-

pendently each sub-query to a relevant node. Besides relying on

static partitioning of the key space, this method is obviously very

inefficient when the query range spans over a large number of zones

(large query selectivity). Sub-queries might also traverse through

many irrelevant nodes, which causes a very high network overhead

and excludes eventual intra-query optimizations.

4. 1 Range query

When an initiator node receives a range queryQ(l, u) from its

application, it routes the query to a nodep whose region intersects

with the query range. Besides the query range, the query message

embeds also the network address or simply the coordinates on the

key space of the initiator node, so that the answers can be easily

routed back “directly” to the initiator node.

The query initiator happens to be any node in the system. With-

out loss of generality, let us assume that it is the node covering the

lower bound of the query range,l. A naive method to propagate the

range query is to broadcast the query message from one node to its

adjacent neighbors until reaching the other boundary of the query

range. This method guarantees that all the relevant nodes are visited

at leastonce at a lower message cost. However, the query latency

— 5 —



may be high in particular for large query selectivity.

In RCAN, the query evaluation is a recursive process where

the query is progressively refined and delivered to relevant nodes

through neighboring nodes. Specifically, processing a range query

consists of two steps: First, routing the query message to a node

that is involved in the query range, then decomposing the query into

smaller sized sub-queries and propagating them to their correspond-

ing nodes.

a ) Query routing

A node on the propagation path that receives the query message

checks whether its local region intersects with the query range. If

not, it simply routes the query message towards the node that covers

the lower bound of the query range.

b ) Query propagation

When the query message reaches a noden that is involved in the

query range, noden determines if its own region covers the whole

query range, in which case it evaluates the query over its local data

and sends the answer back to the initiator node. The process of

query propagation stops here as well. Otherwise, noden processes

only the part of the query range that intersects with its region, and

forward the remainder to its adjacent neighbors that are also rele-

vant to the query. The propagation of the query message continue

until reaching the other boundary of the query range. Since RCAN

schema preserves data and region proximity when mapped into the

overlay. The range query can be answered in a straightforward man-

ner by visiting only neighboring node.

Note also an important property for range query, we called ”query

locality”, which is the ability to efficiently traverse in between nodes

whose regions are adjacent on the native multidimensional space.

This means that once entering the query region (starting from any

boundary) the query propagation pathways will not get out of this

range when forwarding the query message to other relevant nodes.

The query locality property is considerably useful to reduce the

number ofnon-computingnodes to be visited, and consequently the

overall query latency. Other exiting methods such as BATON, P-

Grid, and ZNet do not fully satisfy the query locality property.

4. 1. 1 Speedup the query propagation

In case of large query range, the propagation of the query mes-

sage through adjacent neighbors may result in higher latency and

makes it more vulnerable to failures. In order to speedup the query

propagation process, it would be advantageous to forward the query

message also along the long-range contacts. Figure 3 illustrates this

idea. In this simple example node8 would forward the query mes-

sage directly to node5.

4. 1. 2 Analysis

As in the case of a simple point query, a range query message

takesO(logN) steps to reach the first node that is involved in the

query range. Thereafter, additional nodes will be discovered at a

cost of one message each. Therefore, to answer a range query, with

the range coveringM nodes, the first scenario requires an amortized

 
Node 8 

Node 3 

Node 9 

Node 5 

Node 1 

1st step 2nd step 3rd step 

Fig. 3 Range query evaluation.

cost ofO(logN +M1/d) hops, while the second scenario requires

only O(logN + logM) hops. While using the same number of

message to solve the range query, the query latency in other sys-

tems (like BATON) is linear to the number of covered nodes(M),

that isO(logN +M) hops.

4. 1. 3 Optimization

In order to further reduce the query latency, the query decomposi-

tion can be anticipated before reaching the first node that is involved

in the query range. In this sophisticated scenario, the query range

can be partitioned, by any node on the propagation path, into small

sized sub-queries which will be forwarded separately to their rele-

vant nodes. The query decomposition by intermediary nodes rely on

their expected knowledge about target nodes’ locations on the key

space. Figure 4 illustrates an example of solving the same range

query as above using this optimized schema.Node 8 Node 3Node 9Node 5 Node 1
1st step 2nd stepNode 6Node 0Phase 1: Query routing Phase 2: Query decomposition and propagation

Node 10
Fig. 4 Range query evaluation (Optimization).

Obviously, additional network overhead may be incurred in order

to route the sub-queries through separate paths. However, this strat-

egy allows further reduction in the query latency. To avoid visiting

too many non-relevant nodes, and hence less query refinement bur-

den during the routing phase, the query is always routed towards the

neighboring nodes whose regions intersects with the query range or

closer to it than other neighbors.

A trade-offs between the communication overhead and latency

would be to limit the number of parallel query propagation paths

that can be generated by any intermediary node tok (outbound).

The parameterk may be application-dependent or estimated de-

pending on the actual node workload and available bandwidth.

— 6 —



Larger values ofk are desirable for mission-critical and high-

performance systems. Smaller values are, however, more suitable

for resource-limited nodes (e.g bandwidth). The valuek can not ex-

ceed in any case theout-degreeof a node which is logarithmic to

the network size [1].

4. 1. 4 Query termination

Upon receiving the answer messages, the query initiator com-

bines all the sub-answers to form the total answer for its query. In

the meanwhile the initiator node checks whether the query range is

fully covered by the combined answer. If some part remain uncov-

ered, sub-queries corresponding to the missing parts are generated

and routed towards their respective nodes. The final answer of the

query will be the union of all the answers it receives.

4. 2 Partial-match query processing

The above mechanism to solve a range query can be adapted in

a straightforward way to support partial much queries as well. The

idea is to rewrite the partial-match query into a range query. A wild-

card, that is a boundary which is not specified on a dimension in the

partial-match query, is replaced by the boundary of the domain on

this dimension.

5. Conclusion and Future work

RCAN is a dynamic distributed indexing framework for efficient

management of large multidimensional datasets over massively de-

centralized P2P environments. Our main focus in this paper is to

efficiently support complex multidimensional queries in structured

P2P. We presented an extension of RCAN protocol to supports ef-

ficient evaluation of range queries and partial-match queries. The

proposed mechanisms fulfills all the desired properties, namely: (1)

reduce the number of visited nodes; (2) reduce the number of mes-

sages needed to solve the range query; (3) and reduces the query

latency by exploiting thequery localityproperty. Most of the ex-

isting methods fail to satisfy properties (1) and (3) simultaneously

as they do not preserve thequery locality. The communication and

time complexities of our range query processing algorithm are both

logarithmic to the number of nodes that intersect with the query

range. This parameter depends essentially on the query selectivity

and the distribution of nodes.

We are currently deploying the proposed range query processing

mechanism on top of our RCAN protocol to validate it under re-

alistic settings and investigating further optimizations of the query

engine. We are also working to extend our protocol to support other

non-trivial queries, such as spherical range queries, nearest neigh-

bor searches and skyline queries.

The next step will be to study the robustness of our query eval-

uation mechanisms in the presence of high rate of nodes’ churn by

providing abest-effort answerfor given query.

Acknowledgment

This study has been partially supported by Grant-in-Aid for Sci-

entific Research on Priority Areas from MEXT (#21013004).

References
[1] D. Boukhelef and H. Kitagawa, “Multi-ring infrastructure for content

addressable networks,” Proc. of CoopIS, pp.193–211, 2008.
[2] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-

nan, “Chord: A scalable peer-to-peer lookup protocol for Internet
applications,” IEEE/ACM Transactions on Networking, vol.11, no.1,
pp.17–32, 2003.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” Proc. of ACM-
SIGCOMM, pp.161–172, August 2001.

[4] K. Aberer, “P-grid: A self-organizing access structure for P2P infor-
mation systems,” Proc. of CoopIS, pp.179–194, 2001.

[5] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” Proc. of ACM SIGCOMM,
pp.353–366, 2004.

[6] H.V. Jagadish, B.C. Ooi, and Q.H. Vu, “Baton: A balanced tree struc-
ture for peer-to-peer networks,” Proc. of VLDB, pp.661–672, 2005.

[7] H.V. Jagadish, B.C. Ooi, K.L. Tan, Q.H. Vu, and R. Zhang, “Speed-
ing up search in peer-to-peer networks with a multi-way tree struc-
ture,” Proc. of ACM SIGMOD, pp.1–12, 2006.

[8] H.V. Jagadish, B.C. Ooi, Q.H. Vu, R. Zhang, and A. Zhou, “VBI-tree:
A peer-to-peer framework for supporting multi-dimensional indexing
schemes,” Proc. of ICDE, p.34, 2006.

[9] D. Boukhelef and H. Kitagawa, “Dynamic load balancing in RCAN
content addressable network,” Proc. of ICUIMC, pp.98–106, 2009.

[10] M. Cai, M.R. Frank, J. Chen, and P.A. Szekely, “Maan: A multi-
attribute addressable network for grid information services,” Journal
of Grid Computing, vol.2, no.1, pp.3–14, 2004.

[11] S. Wang, Q.H. Vu, B.C. Ooi, A.K.H. Tung, and L. Xu, “Skyframe:
a framework for skyline query processing in peer-to-peer systems,”
VLDB Journal, vol.18, no.1, pp.345–362, 2009.

[12] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer, “Range
queries in trie-structured overlays,” Proc. of IEEE P2P, pp.57–66,
2005.

[13] P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to rule them
all: Multidimensional queries in P2P systems,” Proc. of WebDB,
pp.19–24, 2004.

[14] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,
S. Shenker, and J.M. Hellerstein, “A case study in building layered
dht applications,” Proc. of ACM SIGCOMM, pp.97–108, 2005.

[15] Y. Shu, B.C. Ooi, K.L. Tan, and A. Zhou, “Supporting multi-
dimensional range queries in peer-to-peer systems,” Proc. of IEEE
P2P, pp.173–180, 2005.

[16] C. Schmidt and M. Parashar, “Squid: Enabling search in dht-based
systems,” Journal of Parallel Distributed Computing, vol.68, no.7,
pp.962–975, 2008.

[17] E. Tanin, A. Harwood, and H. Samet, “Using a distributed quadtree
index in peer-to-peer networks,” VLDB Journal, vol.16, no.2,
pp.165–178, 2007.

[18] V. Kantere, S. Skiadopoulos, and T.K. Sellis, “Storing and indexing
spatial data in p2p systems,” IEEE TKDE, vol.21, no.2, pp.287–300,
2009.

[19] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A sur-
vey and comparison of peer-to-peer overlay network schemes,” IEEE
Commnications Surveys and Tutorials, vol.7, no.2, pp.72–93, 2005.

[20] M. Yu, Z. Li, and L. Zhang, “Supporting multi-attribute queries in
peer-to-peer data management systems,” Proc. of PDCAT, pp.515–
522, 2007.

— 7 —


