
DEIM Forum 2010 F5-4

MOLAP
����������	
� �
† � ��† �� �†

†������������ �910-8507������ ! 3-9-1

E-mail: †{jindong,tsuji}@pear.fuis.fukui-u.ac.jp, ††higuchi@u-fukui.ac.jp"#$% &'()*'+,-./01234
OLAP5678,9:;<=>?@ABCDEFG@H&'(I,JKCLM?@AB,;NOP,QR,STUTVWX&'()*'+,YZ[\,]^1DEFG@H_`aF1bcdNeZ,fgChijA

2
U,YZ[\,]^<klmnoYZp5qr')7stuChijWvw?@HbcdNeZ1xyEz,{e|<?@}T~���,]OC��CbcdNFG@H;N��CUjW�I�C��VX}��,]^,����<�?H���� � YZ&'(�'6XMOLAP

X&'()*'+XbcdNeZXmno�klp�t�����
A New Parallel MOLAP Data Cube Construction Scheme

Dong JIN†, Tatsuo TSUJI†, and Ken HIGUCHI†

† Graduate School of Engineering, University of Fukui Bunkyo 3–9–1, Fukui-shi, Fukui, 910–8507 Japan

E-mail: †{jindong,tsuji}@pear.fuis.fukui-u.ac.jp, ††higuchi@u-fukui.ac.jp

Abstract The pre-computation of data cubes is critical for improving the response time of multidimensional

OLAP systems. In order to meet the need for improved performance created by growing data sizes, parallel solu-

tions for data cube construction are becoming increasingly important. This paper presents two parallel methods for

data cube construction based on an extendible multidimensional array, which is dynamically extendible along any

dimension without relocating any existing data. Load balancing is achieved by simple solutions on shared-memory

multiprocessors. Quantitative analysis on the performance limit and parallel scalability of the methods are also

given in this paper.

Key words Parallel Database, MOLAP, Data Cube, Extendible Array, Shared-memory Multiprocessors

1. Introduction

The pre-computation of the various views (group-bys) of

a data cube, i.e. the forming of aggregates for every com-

bination of GROUP-BY attributes, is critical for improving

the response time of On-Line Analytical Processing (OLAP)

queries in decision support systems [4]. When the number of

dimension attributes is n, the data cube computes 2n group-

bys, each of which is called a cuboid. A lattice can be used

to express dependencies among cuboids [7]. Figure 1 shows

a lattice for a 4-dimensional data cube with dimension a, b,

c and d. An edge between two cuboids indicates that the

target cuboid can be computed from the source cuboid by

aggregation along one dimension. We call the cuboid abcd at

the bottom of the lattice base cuboid. The others are called

dependent cuboids because they can be computed directly or

indirectly from the base cuboid.

Cuboid (group-by)

Aggregation

abcd

abc abd acd bcd

a b c d

ac ad bc bdab cd

∅

abcd

abc abd acd bcd

a b c d
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Base cuboid

Fig. 1 A 4-dimensional data cube lattice

As the number of dimensions increases, data cube compu-

tation cost grows exponentially. Besides many methods have

been proposed for data cube construction on sequential sys-



tems [6–10], parallel solutions on multiprocessor systems are

becoming very popular for fast data cube computation [11–

21]. They are all based on two kinds of cluster architecture:

shared-storage or shared-nothing architecture depending on

the nature of disks access. In this paper, we choose to im-

plement on shared-memory multiprocessors. The processors

can use shared memory to exchange data between each other

to avoid the large data communication cost which may be

caused by parallel data cube computation on shared-nothing

multiprocessors systems.

In previous works on parallel systems [11–21], data man-

agement is one challenge because they all organize a data

cube on cuboid level as far as we know. Data management

becomes very complex for high dimensional data cubes be-

cause a full data cube is usually stored into O(2n) files cor-

responding to the 2n cuboids. All of the parallel methods

are also challenged by load imbalance which is caused by dif-

ferent cuboid sizes or data skew[12,19]. Due to dependency

among cuboids, there must be parallel data cube construc-

tion performance limit in the previous works[11–21]. How-

ever, the performance limit was not explicitly discussed in

those papers.

In this paper we overcome the challenge of complex data

management by implementing a single array based data

cube. The parallel data cube construction algorithms pro-

posed in this paper achieve load balancing by simple solu-

tions on shared-memory multiprocessors. We will also dis-

cuss the parallel performance limit quantitatively together

with the related construct, parallel scalability.

There are two basic data cube representations: ROLAP

representations where cuboids are represented as relational

tables and MOLAP representations where cuboids are rep-

resented as multi-dimensional arrays. Multi-dimensional ar-

rays are natural to express the multi-dimensionality of OLAP

data, which makes MOLAP more suitable for data analysis.

Among the parallel data cube construction papers [11–21],

papers [11–13, 18–21] are for ROLAP; papers [14–17] are

for MOLAP. Fixed-size multidimensional arrays are used in

MOLAP papers [14–17]. In this paper, we use the extendible

multidimensional array model proposed in [5] as a basis for

data cube construction in MOLAP. Unlike a fixed size mul-

tidimensional array usually employed for MOLAP, the array

size can be extended dynamically along any dimension with-

out any relocation of existing data [1–3], so that the fact data

from a front-end OLTP database can be dumped into the ar-

ray in real time. This paper is, to our knowledge, the first

using extendible arrays on parallel data cube construction.

The remainder of this paper is organized as follows. Sec-

tion 2. shows how to use a single extendible array to store a

full data cube and how to dump fact data into the extendible

array online with data partitioning. In section 3. we present

our parallel MOLAP data cube construction algorithms with

discussion on load balancing, performance limit and scalabil-

ity. Section 4. concludes the paper.

2. Extendible Array-based Data Cubing

Model Color Sales

Chevy Red 1
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Chevy Green 8
Ford Red 4
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(a) Fact Data (b) ROLAP data cube
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Fig. 2 Fact data, ROLAP data cube and MOLAP data cube

Consider a 2-dimensional data cube with model(m),

color(c) as dimensions and sales as a measure. 22 = 4 cuboids

are computed for the data cube: mc, m, c, and φ, where φ

denotes the empty group-by. Obviously cuboid mc is a base

cuboid, while m, c, and φ are dependent cuboids. An ag-

gregate of a dimension is represented by introducing a new

value ALL. Given fact data in Fig.2(a), (b) and (c) illustrate

the 2-dimensional data cube represented by a relational table

and a fixed size array respectively.

2. 1 Extendible Array

In this paper we store data cubes by the extendible mul-

tidimensional array model proposed in [5]. It is based upon

the index array model presented in [3]. An extendible array

is dynamically extendible along any dimension without relo-

cating any existing data. Such an extendible array consists

of a set of subarrays; each subarray is allocated along some

dimension d as a new distinct dimension value appears on

dimension d. Figure 3 shows an extendible array based data

cube given the fact data in Fig.2(a). Refer to [5] for detail

on how to address an array element in an extendible array.



Element address can be computed very efficiently owing to

the random access capability of multidimensional array.

As shown in Fig.3, the total number of subarrays in an

extendible array based data cube is hmax + 1 where hmax is

the total of all the dimension cardinality. Each subarray is

uniquely identified by a history value from 0 to hmax in se-

quence of the extension history, so we will denote a subarray

which is identified by history value h simply as subarray h.

As a full data cube is stored into a single extendible array,

data management becomes simpler than that in the previ-

ous works as mentioned in Section 1.. Named as single-array

data cube scheme, [22] describes the extendible array based

data cube scheme in detail.

Note that a subarray of an extendible array based data

cube generally consists of the base cuboid part and the de-

pendent cuboid part. We call the cells in the base cuboid

part as base cells, the cells in the dependent cuboid part

as dependent cells. For example in Fig.3(b), subarray 4 con-

sists of two base cells 〈Red,Ford〉 and 〈Blue, Ford〉, and one

dependent cell 〈All, Ford〉.
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Fig. 3 An extendible array based data cube

2. 2 Data Partitioning On-line

As mentioned in Section 1., the fact data from a front-end

OLTP database can be dumped into an extendible array in

real time. For each new fact data, its dimensional values

are inspected and the fact data are stored in the correspond-

ing extendible array element. If a new dimensional value is

found, the corresponding dimension of the extendible array is

extended by one, and the dimensional value is mapped to the

new subscript of the dimension. Consider dumping the fact

data in Fig.2(a). First, the array is empty, and cell 〈All, All〉

which represents overall sales with the initial value of 0 is

added into the array. Then the fact data are loaded into the

array one after another to build the base cuboid mc into the

array; this causes extensions of the array. Figure 3(a) shows

the dumping result. We can see that the fact data dumped

are naturally partitioned into corresponding subarrays.

In the previous works [14–17] in which parallel MOLAP

data cube construction is based on fixed size arrays, loading

and partitioning fact data into the base cuboid are neces-

sary for data cube construction. In contrast, these steps can

be saved in parallel data cube construction based on the ex-

tendible array as the base cuboid is ready in the extendible

array after dumping on line. Parallel data cube construction

discussed in our paper means computing the other 2n − 1

dependent cuboids from the base cuboid as input. We use

the data cube in Fig.3 as the running example in the next

section.

3. Parallel Data Cube Construction

In [23], subarray-based method is proposed for data cube

maintenance. In this paper we apply the method on data

cube construction. For detailed explanation on subarray-

based method, refer to [23]. By this method, data cube

construction becomes a repeated process of computing de-

pendent cells in the 2n − 1 dependent cuboids by subar-

ray. The method bases on a fact that base cells in a

subarray usually can not determine the dependent cells in

the subarray by themselves. For example, subarray 2 in

Fig.3(b). The dependent cell 〈All,Chevy〉 is not only de-

termined by internal cell 〈Red,Chevy〉, but also determined

by external cell 〈Green,Chevy〉 which is out of subarray 2.

Through subarray-based method, first the intermediate re-

sult for 〈All, Chevy〉 in subarray 2 is kept by aggregation

with the external cell 〈Green,Chevy〉 in subarray 5; then

〈All,Chevy〉 can be computed from the intermediate result

together with the internal cell 〈Red,Chevy〉. By using the in-

termediate result as a bridge between the subarrays, a build-

ing block of subarray processing is setup so that a data cube

can be constructed in parallel grained by subarray as will be

described in this section.

3. 1 Subarray Processing

We describe the building block of subarray processing in

Procedure 1. For a subarray h, d denotes the extended di-

mension of subarray h; BC represents for base cuboid part

and DC for dependent cuboid part in subarray h. In the

algorithm, we divide the intermediate result involved in sub-

array processing into two parts: IR and FIR. For a subarray

h, IR denotes the intermediate result for DC; FIR denotes

the intermediate result further updated in subarray h pro-

cessing. IR is located in subarray h; FIR is distributed in

some subarrays whose history values are less than h. See

the running process of data cube construction from the base

cuboid in Fig. 3(a) by repeated subarray processing from

subarray hmax = 5 to 0 in Table 1.

Subarray processing consists of two subroutines: updat-

ing FIR and computing DC. Note that subroutine updating

FIR is unnecessary to be executed in subarray 0 processing.



Procedure 1: Subarray-processing

Input: BC, IR and FIR

Output: FIR and DC

(1) Updating FIR subroutine

Update FIR by aggregating with BC and IR along dimension d.

(2) Computing DC subroutine

Aggregate BC and IR to get DC, and combine DC with BC.

Table 1 Data cube construction by subarray-based method

<All,All>:15<All,All>:150

<Red,All>:5<All,All>:10�15<Red,All>:5c1

<All,All>:2�10<All,Chevy>:8

<All,Chevy>:9 <Red,All>:4�5<Red,Chevy>:1m2

<Blue,All>:2<All,All>:0�2<Blue,All>:2c3

<Blue,All>:0�2 <Blue,Ford>:2

<All,Ford>:6<Red,All>:0�4 <Red,Ford>:4m4

<Green,All>:8<All,Chevy>:0�8<Green,Chevy>:8c5

DCFIRIRBCdh

<All,All>:15<All,All>:150

<Red,All>:5<All,All>:10�15<Red,All>:5c1

<All,All>:2�10<All,Chevy>:8

<All,Chevy>:9 <Red,All>:4�5<Red,Chevy>:1m2

<Blue,All>:2<All,All>:0�2<Blue,All>:2c3

<Blue,All>:0�2 <Blue,Ford>:2

<All,Ford>:6<Red,All>:0�4 <Red,Ford>:4m4

<Green,All>:8<All,Chevy>:0�8<Green,Chevy>:8c5

DCFIRIRBCdh

Figure 4 shows the data flow diagram of subarray 2 process-

ing in Table 1. The input includes BC {〈Red,Chevy〉:1},

IR {〈All, Chevy〉:8} and FIR {〈Red,All〉:4, 〈All, All〉:2}; the

output includes DC {〈All, Chevy〉:9} and FIR {〈Red,All〉:5,

〈All, All〉:10}. FIR is both in the input and output because

it is updated in the subarray processing. Since the input

and output of computing DC are limited in current process-

ing subarray, computing DC can be executed in parallel by

subarray based manner without confliction. Subroutine up-

dating FIR is responsible for data exchange among subarrays

through intermediate result. The output of updating FIR in

a subarray h must be input of subarray processing for some

subarrays whose history values are smaller than h. For ex-

ample, the output FIR {〈Red,All〉:5, 〈All, All〉:10} of sub-

array 2 updating FIR are input IR {〈Red,All〉:5} and FIR

{〈All, All〉:10} of subarray 1 processing. In other words, sub-

array 2 updating FIR must be prior to subarray 1 processing.

Updating FIR in various subarrays processing may access

the same intermediate result. Consider FIR for subarray 2

and 4 in Table 1. They all include the intermediate result

for 〈Red,All〉. It means if subarray 2 and 4 are in parallel

processing, FIR accessing should be mutually exclusive.

Due to above properties in updating FIR, it should be care-

fully dealt with to ensure intermediate result to be updated

exclusively in the reverse order of history values of subarrays.

In the following, we will show two methods of parallel sub-

array processing. The methods are based on shared-memory

multiprocessors system and all the inputs of subarray pro-

cessing are shared and can be accessed by all processors.

Computing DC

Updating FIR

FIR

BC

DC

IR

In Subarray 2

<Red,Chevy>:1 <All,Chevy>:8 

<All,Chevy>:9

<Red,All>:4→5
<All,All>:2→10

Fig. 4 Data flow diagram of subarray processing for subarray 2

in Table 1

3. 2 Simple Parallel Method

In this method, all the two subroutines in the subarray pro-

cessing are performed by each processor. See the algorithm

executed by each processor in Procedure 2. The subarrays

are allocated to the processors by a shared subarray pointer

sp. The initial value of the pointer is hmax; i.e., the max-

imum history value. The pointer sp also controls updating

FIR to be executed exclusively by subarray in sequence.

Procedure 2: Simple Parallel Algorithm

Repeat the following until no unprocessed subarrays exist.

(1) Take control of the subarray pointer sp. Otherwise wait.

(2) Get the current value h of sp.

(3) If h > 0, execute updating FIR for subarray h.

(4) Decrease sp by 1 and release control of sp.

/* From this point, other processors can take control of the sub-

array pointer sp and execute updating FIR */

(5) Execute computing DC for subarray h.

As all of the subarrays are not allocated to the processors

in advance, there is no processor overload because each pro-

cessor applies for a subarray to process only when it is idle.

In other words, the method is free of load balancing. See the

illustration of simple parallel method in Fig.5.

3. 3 Layered Parallel Method

In this method, subarray processing is divided into two

“layers”: updating FIR layer and computing DC layer. In

updating FIR layer, subroutine updating FIR are exclusively

executed by one processor. See the algorithm in Procedure

3. In computing DC layer, the other processors execute com-

puting DC in parallel. See the algorithm in Procedure 4. A

shared subarray counter sc is used between two layers to

memorize the current number of subarrays for which updat-

ing FIR is finished and computing DC is still not started.

The subarray counter sc is initialized to zero. If the subarray

counter sc is 0, computing DC processors wait until a new
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Fig. 5 Illustration of Simple Parallel Method for a data cube

having 6 subarrays.

subarray is available for processing. Such an arrangement

ensures the intermediate result ready to start computing DC

for any subarray. A shared subarray pointer sp is still used in

computing DC layer to allocate subarrays to the processors.

Its initial value is hmax.

Procedure 3: Updating FIR layer algorithm

/* The subarray counter sc should be accessed exclusively */

For h = hmax to 1 do

(1) Execute updating FIR for subarray h.

(2) Increase the subarray counter sc by 1 for subarray h.

(3) Wakeup slept processors in computing DC layer.

End For

(4) Increase sc by 1 for subarray 0.

Procedure 4: Computing DC layer Algorithm

/* The subarray counter sc and pointer sp should be accessed

exclusively */

Repeat the following until no unprocessed subarrays exist.

(1) If the subarray counter sc is zero, then sleep else decrease sc

by 1.

(2) Get the current value h of the subarray pointer sp.

(3) Decrease sp by 1.

(4) Execute computing DC for subarray h.

Layered Parallel Method is also free of load balancing in-

side each layer, but it has two kinds of load imbalance be-

tween the two layers. In the following we will analyze them

and provide load balancing solutions.

1. In the case of overload in updating FIR layer and idle

in computing DC layer.

In fact, this is not a load imbalance issue because updat-

ing FIR can not be speeded up by multiprocessors. In this

condition, parallel processing must approach to the perfor-

mance limit. There are unnecessary processors in computing

DC layer. By reducing those unnecessary ones, parallel pro-

cessing should still approach to the performance limit with

load balance. We will discuss the performance limit later.

2. In the case of overload in computing DC layer and idle

in updating FIR layer.

This means that there are many subarrays waiting to be

processed in computing DC layer when updating FIR for all

the subarrays are finished. We can simply solve the issue by

assigning the updating FIR layer processor to execute com-

puting DC with other processors after it finished updating

FIR for all the subarrays. See the illustration of Layered

Parallel Method in Fig.6. The updating FIR layer processor

can execute computing DC for subarray 0 because updating

FIR for all the subarrays are already finished.
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5

updating FIR computing DC

Time

12345

Fig. 6 Illustration of Layered Parallel Method for a data cube

having 6 subarrays.

3. 4 Performance Limit and Scalability

It can be proved that there must be a minimum parallel

processing time in both of the above methods. Figure 5 and

6 illustrate the minimum parallel processing time of Simple

Parallel Method and Layered Parallel Method respectively.

We can conclude that the two methods’ minimum parallel

processing time should be same regardless of other perfor-

mance loss. Assume the following denotations. Let T , TF IR

and TDC denote total data cube construction time, total up-

dating FIR time and total computing DC time in sequential



mode respectively, where T = TF IR+TDC; Th denotes subar-

ray h processing time and Tmin denotes the minimum parallel

processing time. Obviously if any Th ≪ T , Tmin is approxi-

mate to TF IR. In other words, TF IR is the performance limit

on parallel processing time. Correspondingly, ψ = T/TF IR

is the performance limit represented by speedup ratio.

We can also use the ratio ψ as a scalability index of our

parallel methods because data cube construction can be ef-

fectively parallelized by more processors if T is much larger

relative to TF IR. Obviously larger ψ indicates higher scal-

ability. The ratio ψ also means the minimum processor re-

source utilization needed to reach the performance limit if

there is no performance loss.

4. Conclusion

In this paper, we present and analyze subarray-based par-

allel MOLAP data cube construction methods based on an

extendible multidimensional array. The extendible array can

be dynamically extended along any dimension without relo-

cating any existing data and enables on-line fact data load-

ing and partitioning. The data management are simplified

by storing a full data cube into an extendible array. Load

balancing is achieved by simple solutions on shared-memory

multiprocessors. Quantitative analysis on the performance

limit and parallel scalability of the methods are also given

in this paper. We have implemented and evaluated our

parallel data cube construction methods on shared-memory

multiprocessors. Given the performance limit, the methods

achieved close to linear speedup with load balance. We also

proved by the experiments that our parallel methods can be

more scalable on higher dimensional data cube construction.

Due to the paper length limit, the detailed experiment result

can not be presented in this paper.
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