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Abstract Keyword search in relational databases has been widely studied in recent years. Most of the previous studies focus
on how to answer an instant keyword query. In this paper, we focus on hoffidietly answer continuous tdpkeyword

queries in relational databases. As involving a large number of join operations between relations when answering a keyword
guery, reevaluating the keyword query as long as the database is updated is rather expensive. We propose a method to comput
a range for the future relevance score of query answers. For each keyword query, our method compute a state of the query
evaluation process, which only contains a small amount of data and can be used to mairk@ndegers when the database is
growing continually. The experimental results show that our method can be used to settle the problem of answering continuous
keyword search in a relational database that is updated frequently.

Key words Relational databases, keyword search, continuous queries, incremental maintenance

1. Introduction swers return.ed by keywo-rd searc-h.sy./stem of [5lcare; — p2 and
c; — p1, Which are obtained by joining relevant tuples from mul-
As the amount of available text data in relational databases growtiple relations to form a meaningful answer to the query. They are
ing rapidly, the need for ordinary users tfiextively search such ranked by their relevance scores computed by a ranking strategy.
information is increasing dramatically. Keyword search is the most In the literature, the reported approaches that support keyword
popular information retrieval method because users need to knosearch in relational databases can be categorized into two groups:
neither a query language nor the underlying structure of the datauple-baseddl], [6], [8]T [10] andrelation-based2] [5], [7] ones.
Keyword search in relational databases has recently emerged as After a user inputs a keyword query, the relation-based approaches
active research topic [ [7]. first enumerate all possiblguery plang(relational algebra expres-
Example 1 In this paper, we use the same running exam-sions) according to the database schema, then these plans are eval-
ple of databaseComplaints as the previous work[3] (shown uated by sending one or more corresponding SQL statements to the
in Figure 1). In the example, the database schem® is= RDBMS to find inter-connected tuples.
{ComplaintsProductsCustomers There are two foreign key In this paper, we study the problem adntinuougop-k keyword
to primary key relationships: Complaints — Products and  search in relational databases. Assume you are a quality analysis
Complaints— Customers stdf at an international computer seller, and you are responsible
If a user gives a keyword query “maxtor netvista”, the top-3 an-for analyzing complaints of customers that are collected by cus-



Complaints
tupleld prodid | cusld date | comments

, the problem definition. Section 3 briefly introduces the framework

c1 pl21 | ¢3232| 6.30.02| “disk crashed after just one week of moderate useg o
an IBM Netvista x41” for answering continuous keyword queries in relational databases.
[ pl31 | ¢3131| 7.3.02 | “lower-end IBMwa caught fire, starting appayr- . i .
ently with disk” Section 4 proposes the details of our method. Section 5 shows the
c3 p131 | c3143| 8.3.02 | “IBM Netvista unstable witMaxtor HD" . . .
SN DA experimental results. Section 6 presents the related work. Section 7
Products draws the conclusions.
tupleld | prodid | manufacturer model
Py p121 “Maxtor” “D540X” .
P B T Nt 2. Problem Definition
p3 pl41 “Tripplite” “Smart 700VA’ ) ) )
We first define some terms used throughout this paper, whose de-
Customers . .. . .
wpleld | cusid | name occupation tailed definition can be found in[3],[5], [7]. A relational database
U | c8282] “John Smith | *Software Engineer” is composed of a set of relatioRs, Ry, - - - , Ry. A Joint-Tuple-Tree
Uy ¢3131] “Jack Lucas” “Architect” e ’
u3 3143 | “John Mayer” “Student’ (JTT) T is a joining tree of dierent tuples. Each node is a tuple in

Fig.1 A Running Example from [3] (Query is “maxtor netvista". Matches the database, and each pair of adjacent tupl@signiconnected via

are Underlined) a foreign key to primary key relationship. A JTT is an answer to a

tomer service fiices all over the world. Complaints of customers keyword query if it contains more than one keyword of the query

are coming continuously, and are stored in the database Complair@§d €ach of its leaf tuples must contain at least one keyword. Each

shown in Example 1. Suppose you want to find the informatiord TT corresponds to the results produced by a relational algebra ex-

related to Panasonic notes, then you give a keyword query upang_ression, which can be obtained by replacing each tuple with its

sonic note” and use one of the existing methods mentioned above f§!ation name and imposing a full-text selection condition on the re-

find related information. After observing some answers, you ma)}ations. Such an algebra expression is callétbadidate Network

doubt whether some newly arrived claims are more related to PandCN) [3]. For example, Candidate Networks corresponding to the

sonic notes, i.e., you want to continuously search the database usiffjC answersss andcs — p, of Example 1 ar€Com plaint® and

the keyword query. How should the system do to support such afy®M plaint§ — Product$, respectively (the notatio@ means the

query? full-text selection condition). A CN can be easily transformed into

A naive solution is to issue the keyword query after one or@" equivalent SQL statement and executed by the RDBMS. Rela-
some new related tuples are arrived. Existing methods, howevelions in @ CN are calledlple setTS. A tuple setR? is defined
are rather expensive as there might be a huge amounts of tupl@s & set of tuples in relatidR that contain at least one keyword in
matched, and they require costly join operations between relation§- For example, the two tuple se@omplaint§ andProducts in
If the database has a high update frequency (as the situation of tif&@mPple 1 arécy, ¢z, cs} and{py, pz} respectively.
aforementioned example), recomputation will have a heavy work- A continuous keyword queronsists of (1) a set of distinct key-
load to the database server. words, i.e.,Q = Wi, Ws, - -+ ,Wg, and (2) a parametdrindicating

In this paper, we present a method to incrementally maintain anthat & user is only interested in tépanswers ranked by the rele-

swers for a topk keyword search. Instead of full, non-incremental Vance. The main dierence of a continual keyword query to key-
recomputation, our method performs incremental answer mainte¥0rd queries in the previous work 3], [10] is that the user wants to
nance. Specifically, we keep the state of each query obtainekeep the topk answers list up-to-date while the database is updated

through the latest evaluation of the query. A state consists of thgontinuously. Let us return to the example in Section 1. After the

current topk answers, the query plans, and the related statistics. [gvaluation of the three CNs, two JTTs with the highest relevance

is used to incrementally maintain tdpanswers after the database SCOTeSCs andcs « p, are found. Then they are returned to the

is updated. user as the top-2 answers. Suppose new tuples arrive continuously,

In summary, the main contributions of this paper are as follows: & 0Ur computer dealer example mentioned in Section 1, the top-2
answers need to be updated if some arrived new claims are more
* We introduce the concept of a continuous keyword query ine|ated to “maxtor” and “netvista”. For the following discussions,
relational databases. To the best of our knowledge, we arge summarize the notations we use in Table 1.

the first to consider the problem of incremental maintenance |, keyword search in relational databases [3], answers of keyword
of topk answers for keyword queries in relational databases. qyeries are often ranked using an IR-Style ranking strategy. We first
e We propose a method foffiiently answering continuous key- assign ascoreto each tuple in a given JTT by using a standard

word queries. By storing a state of a query evaluation proceséB'rank'ng formula, which models each tuple in a relation as a doc-

our algorithm can handle the insertion of new tuples in mc)Stument and all the tuples as a document collection. Then we combine

cases without restarting the keyword query. the individual tuple scores together by using a monotonic aggrega-

tion function to obtain the final score. In this paper, we adopt the
The rest of this paper is organized as follows. Section 2 givegame ranking strategy. The relevance score of aDT&lcomputed



Table. 1 Summary of Notations

Notation | Description At the end of the CNs evaluation process, in order to achieve in-

t atuple in a database cremental maintenance of the query answerssthieof the process
R(t) the relation corresponding to is computed and stored. A state consists of the found JTTs, the set
Q a keyword query of generated CNs, the tuples that have been joined, and the statis-
RO the set of tuples iR that contain at least one keyword@f|  tics of the keywords. After being notified new data, the Incremen-
T a joining tree of diferent tuples

tal Maintenance MiddlewardNIM) start the answers maintenance

sizeo{T) | the number of tuples i
CN a candidate network
scordT, Q) | the relevance score dfto Q

procedure for each continuous keyword query.

The IMM uses some filter conditions to categorize the new data

tscordt, Q) | the relevance score of a tugleo Q into two types for each keyword query based on their relevance:

not relatedandrelated Then the related new data and the stored

using the following formulas based on the TF-IDF weighting. Thestate are used by the IMM to start the incremental query evaluation

scoring function is used in [3]. process and compute the new toanswers. If the variations of

scordT. Q) = Sier(tscordt, Q)) the new topk answers fulfill the update conditions, the new top-
' sizeo{T) O answers are sent to the corresponding users.
tscordt, Q) = Z 1+In(1+ In(tdfht,w)) . In(NdJ; 1)’ We will present the details of the states and how to restart the
weanQ 1= S+S gy W guery evaluation process in the next section.
wheret f;,, is the frequency of keywordr in tuplet, d f,, is the num- 4. Continuous Keyword Query Evaluation

ber of R(t) tuples that containg/ (R(t) means the relation that in-

cludest), dI; is the size (i.e., number of charactersycdvdl is the In this section, we first present the two-phase CN evaluation

average tuple size\l is the total number oR(t) tuples, andsis a method for creating the state for a keyword query, then we will show

constant. how to calculate thefeects of arrived new tuples.

4.1 State of Continuous Keyword Query

3. Query Processing Framework Generally speaking, two tasks need to be done after newly tuples

Figure 2 shows our continuous query processing framework oft'® inserted: arrived new tuples can change the valué$,df and

continuous keyword search on relational databases. avdl in Eqg. (1), hence change the tuple scores of existing tuples.
Therefore the first task is to check whether some currenktap-

Keyword Query @ swers can be replaced by other JTTs whose relevance scores are in-

Query F
L

Incremental TS ser Therefore, the second task is to compute the new JTTs and check
Maintenance E )TO” ko Answers \whether some of them can be te@nswers.
ate

Middleware i ) o
Y @ For the first task, a naive solution is to compute and store all the
~

JTTs that can be produced by evaluating the generated CNs when

creased. The arrived new tuples may lead new JTTs and new CNs.

New Data
Not Related Keyword Query
Related

User the query is evaluated for the first time. After new tuples are in-

serted, we recompute the relevance score of the stored JTTs and
Fig.2 Continuous Query Processing Framework update the tofanswers. This solution is noffiient if the num-

ber of existing tuples are large, since it needs to join all the existing
Given a keyword query, we first identify the tdpguery results. tuples in each CN and store a large number of JTTs.

Specifically, we first generate all the non-empty query tupleRts Fortunately, our method only needs to compute and store a small

for each relatiorR. Then these non-empty query tuple sets and theDOrtlon of JTTs. For this purpose, we use the two-phase CN eval-

schema graph are used to generate a set of valid CNs. Finally, giggtion method shown in Algorithm 1 taficiently evaluate a set of

generated CNs are evaluated to identify the kamswers. For the candidate networkeNSefor keyword quenQ, and create the state

step of CN evaluation, several query evaluation strategies have be8f, Q- The first phase (line 1-11) is for computing the fopAswers,

proposed by [3], [5]. Instead of issuing a SQL query for each CNwhich is based on the method of [3]. The second phase (line 15-

and combining them to find the tdpresults, they issue multiple 22) is for finding the JTTs that have the potential to becomektop-

lightweight SQL queries and can stop the query execution imme2NSWers.

diately after the top-k answers are determined. Our method of CN The key idea of line 1-11 is as follows: all CNs of the keyword

evaluation is based on the method of [3], but can also find out thguery are evaluated concurrently following an adaptation pila

JTTs that have the potential to become fopaswers after some ority preemptiveround robinprotocol [12], where the execution of

new tuples are inserted. each CN corresponds to a process. Tuples in each tuple set are

sorted in descending order of their tuple scores (line 2). There is



Complaints“ Products? Complaintsa Products? Algonthm 1 CNEVaantiOmCNseIk, Q)
ID | tscore [range] \ ID | tscore range] | | ID | tscore [range] | ID | tscore [range] Input: CNSet a set of candidate networkk; an integer;Q: a keyword
€3 | 20[195,203] | pl | 877,841 c3 | 20[195,203] | pl | 817.7,84] query;
2| 176728 NN oEe e 2 | 17067128 Ao e 1: declare RTemp a queue for not-yet-output results in descending
Lcl 15 1438, 153] Lp2 5 [47 5.6] J Lcl 15143, 153] Lp2 5[4.7,5.6] J . . .
| 141130.1081 i ey Y e o4 | 45 (az.am scordT,Q); Results a queue for outputted results in descending
5 | 10195,107) Lg p5 | 4[38,43] ¢5 | 109,107 pS | 413843 scorgT, Q)
6 | 5145,54] p6 | 3126,34] 5 (45, 5.4] 6 | 3[26 3.4] 2: Sort tuples of each tuple set accordinggdoorein descending order
P7 | 2119.22] e P7 | 209,221 3: Setcursorof each tuple set of each CN @&NSetto 0
— 4: loop
(a) Compute the top-2 answers  (b) Find potential top-2 answers 5: Compute the priorities of each CN @NSet
. ) 6: if (the score of th&-th answer irResultss larger than all the priori-
Fig. 3 Two-phase CN evaluation .
ties)then break
7 Qutput the JTTs ilRTempto Resultswith score larger than all the

acursorfor each tuple set of all the CNs that indicates the index of
the tuple for next checking (line 3). All the combinations of tuples 8:
before cursor in each tuple set have been joined to find the JTTs.
For each tuple sdt in a CNC, the algorithm use an upper bound 9

function to bound the relevance scores of potential answers that co%_

tain the tuples[cursorl. The maximum upper bound scores of all
the tuple sets of a CN is regarded as phierity of the CN (line 5),

CN will not have a higher score. At each loop iteration, the algo-14:
rithm picks the next tuple of the “most promising” tuple set from 15:
the “most promising” CN for checking (line 8-10). The first phase 16:

will stop immediately after finding out the tdpanswers, which can

priorities

Select the next tuple from the tuple set that has the maximum upper

bound score from the CN with the maximum priority for checking
Add 1 to thecursor of the tuple set corresponding to the checked
tuple

Add all the resulting JTTs tBTemp

11: end loop

12:
which ensures that any potential results from future execution of thez:

FindPotentialAnswe(€NSetResulty
Setcursor = cursor2 of each tuple set of each CN@NSet
Create state fdD and return the tof-JTTs inResults

Procedure FindPotentialAnswe(CNSetResulty
Compute the range tdcorefor all the tuples in each tuple setGN S et
and sort the tuples in each tuple set belowdhesorin descending order

ax
be identified when the score of the current top-k-th answer is larger  °f tSCOT€"
17: lowerBound « the minimum lower bound o$cores of the topk an-

than all the priorities of the CNs (line 6). We call the tuples before i
swers inResults
for all tuple sets;j of each CNCj in CNSetdo
Increase the value ofirsor2 fromcursoruntil maxts;j[cursor2]) <
lowerBound
for all tuple sets; of each CNCj in CNSetdo

Join the tuples betweanrsor andcursor2 of ts; with the tuples

the cursor of each tuple set @seckeduples since all the combina- 18:
tions of them have been joined to find the joining tuples trees, andq.
call the tuples with indexes not smaller than the cursamehecked

20:

Figure 3 presents the main data structure of our CN evalua2l:

tuples.

before thecursorin the other tuple sets &N

tion method. In order to facilitate the discussion, only the CN

. . . 22 Add the resulting JTTs tResultswhose upper bound afcoreis
Complaint® — Product® is considered and suppose we want to 9 PP
) . . larger tharlowerBound
find top-2 answers. In Figure 3(a), tuples in the two tuple sets are

sorted according to the tuple scores in descending order and are rep-

resented by their primary key. Arrows between tuples indicate théerted; and) document frequency slightly changes due to the in-
foreign key to primary key relationship. The top-2 answers foundsertion. Adf denotes the maximum increased count of the docu-
out arecl — pl andc3 — p2. All the tuples in the deep back- Ment frequency for every term beforN new tuples are inserted.

ground have been joined in order to obtain the top-2 answers. FdYote thatAdf, may be 0. We assume that the average docu-

example, tuplepl has been joined with tuplel, c2 andc3, and ~ Ment length gvd) is a constantto simplify the problem. Let us

. 1+In(1+In(t frw
one valid JTTcl — p1 are found out. After the execution of phase Use the shorthand notatiorgt, w) = —Tf;;(i; ) and B(t,w) =
ave

1, the twocursors of the two tuple sets are pointing @t and p6, Mrff#»
1—S+S‘m

wordw to tscordt, Q).

In(%:2). B(t,w) represents the contribution of key-
respectively.

The procedurdindPotentialAnswerare used to find the poten-  We derive the upperbound and the lowerbound of Eq.(2) which

tial topk answers. The basic idea of our method is to compute are valid while the two constraintdN and Adf are fulfilled.
range of the future tuple score for each tuple. Let us recall the scogijrst, we compute the maximum score for the existing tuples
ing function of computing tuple scores in Eq. (1):

1+In(L+In(thw) In(

it
We consider the situation whe&d at mostAN new tuples are in-

The situation occurs when all the terms tm Q do not ap-

N+1
dfy

pear in the new documents, hence we haseordt, QM =

tscordt, Q) = Z

wetnQ

). @)

1-s+s- Swetno Alt,w) - In (%{WAN) For eachB(t,w), the minimum value

is achieved when the first,, new tuples all containg: B(t, w)™" =

avdl



A(t, W) - In('}?ﬁﬁj&“) Therefor the lowerbound dfcordt, Q) is ~ compute it.

tscordt, Q™" = Yetng Alt,W) - In (Z';;Vl:ﬁm) Note that this lower Figure 3(b) presents the data structure of the@Mnplaint® —

bound only can be achieved when all thet,s are equal. Using Product® after the second phase of evaluation. The two tuple sets

such ranges, the range of relevance score of aDE&an be com-  are further evaluated by checking tupteisandp6, respectively.
puted as F.r t.tscord™ ¥, . t.tscoré™ . m 4.2 Handling Insertions of Tuples

We continually watch the change of statistics to monitor whether After receiving a new tuple, the IMM first checks whether the
the thresholdAN andAd f are violated. This is not a fiicult task. ~ values ofdf andN still keep the assumption, i.e., thefidrences
Monitoring AN is straightforward. Fondf, we accumulate\d f,, between the current values df andN and the values when the
for all the termsw in the process of handling new tuples. In the se-state was firstly created are smaller thihf andAN, respectively.

quel, we consider the situation that the two threshalisandAd f If the assumption is fulfilled, the algorithinsertionshown in Al-

are not violated. gorithm 2 is used to incrementally maintain the topnswers list
For each tuplein C, we usemax(t) = (t,tscoréﬂax + Yits max(ts-))- for a keyword query, otherwise the query must be reevaluated.
m to indicate the maximum upper boundsifores of the pos- In Algorithm 2, line 1-3 are for the first task, and line 5-18 are

sible JTTs that contait, wheremaxts) indicates the maximum used to compute the the new JTTs that contain the new tuples. In
upper bounds afscores of tuples ints. If maxt) is larger than the  line 1, the values of oN anddf of the relationR(t) are updated.
minimum lower bound o6coreof answers irResultglowerBound ~ Then if it is necessary (line 2), the relevance scores of the JTTs in
in line 17),t can form some JTTs with potential to become top- the JTT queue are updated using the new valuésaridd f(line 3).

answers in the future. We find such tuples in line 18-19, and join _ i
Algorithm 2 Insertior(t, Q, S)

Input: t: new tuple;Q: keyword queryS: stored state fo@
Hence, all the JTTs that are formed by the tuples that have the PQutput: New topk answers oD

tential to form topk answers are computed. However, not all the 1: ypdate the keyword statistics Bft)

them with the tuples beforeursor2 in the other tuple set (line 21).

JTTs computed in line 21 can become topnswers in the future.  2: if there are some tuples B{t) are contained in the JTT queue®fthen

In line 22, only the JTTs whose upper bound of score is larger than3: ~ recompute the scores of the JTTs in the JTT quetg of

lowerBoundare added t&Results . if t does not contain the keywords Qfthen return

. Qi
After the execution of line 1Resultontains the togcanswers -1 R(H)¥ is a new tuple sahen generate new CNs

. compute the value and rangets€oreof t

4
5
. 6
and the JTTs that have the potential to becomektapswers. Tu- 7. CNSet CN in'S that contain&()@ L all the new CNs
8
9

ples can form the current or potential tag@nswers are before the 4. for all CNC in CNS etdo

cursor2 in each tuple set. for all R(t)° of C do

In line 14, the state foR is created based on the snapshot of 10: if t.tscoré"@ > min®(R(t)Q) then
CNEvaluation The state mainly contains three kinds of data: 11 addt to the checked tuples set B(t)?
12: join t with the checked tuples in the other tuple set€of
e The keyword statistics: the number of tuples, and documeny ;. if t.tscoré™ > ma(R(t)Q) then
frequencies (i.e., the number of tuples that contain at least ongs: for all the other tuple s of C do
keyword). 15: query the unchecked tuplestsffrom the database
16: delete the new inserted tuples frasthat have not been
e The set of candidate networks: all the checked tuples (checked processed
tuples of multiple instances of one tuple set are merged to res7: call FindPotentialAnswex$C}, SQueud while regardings
duce the storage space). only containg

18: end for
® The JTT queueResults its each entry contains the tuple ID 9. oturn S.QueueT op(k)

and thetscore

Note that the tuples beforirsor2 in each tuple set can be con-  If R(t)? is a new tuple set, the new CNs that conta{)? need to
sidered as highly related to the keyword query and have high possibe generated (line 5). In line 6, the valuetstoreof the new tuple
bilities to form JTTs with newly inserted tuples, hence they need tds computed using the actual valuesddfandN, but the values of
be stored in the state for the second task. However, checked tupldd andN for computing the range @&coreare the values when the
in the tuple sets that reference another tuple sets through considstate is created in order to be consistent with the rangéscofes
the situation that foreign key to primary key relationships need nobf existing checked tuples &(t)°. New tuples can be categorized
to be stored since they can not reference new inserted tuples. Vileto two groups by deciding whether each new tuple belongs to the
need to store the statistics valbig.q A(t, W) for each tupginthe  new top-k answersr¢lated andnot related. Generally speaking,
state in order to recompute the tuple scores after new tuples are inew tuples that do not contain any keywords of the query are not
serted. Fortunately, the value is static and does not change once wadated tuples (line 4), and new tuples that contain keywords may



be related. However, new tupli¢hat contains the keywords cannot Table. 2 Queries

be related in case that its upper boundsforeis not larger than | QID | Keywords QID | Keywords
min®(R(t)?), which is the minimuntscoré"®s of checked tuples g; gender, fj_p& gii _H?rdwa:_e’ IUk’_llNayne

. wens, Intersection, Nikos
of R(t)? (line 10). For the related new tuples, they are processed Q3 | p2p, Steinmetz Q13| peter, robinson, video
from line 11 to line 17. In line 12 is joined with the checked tu- Q4 | patel, spatial Q14| ATM, demetres, kouvatsos
ples in the other tuple sets Gf. Then the algorithm uses another | s | vidb, xiaofang Q15| Ishikawa, P2P, Yoshiharu
filtering conditiont.tscoré® > maxX(R(t)°) in line 13 to deter- Q6 | sigmod, xiaofang Q16 | Staab, Ontology, Sften
mine whether the new tupleshould be joined with the unchecked | Q7 | constraint, nikos Q17| query, Arvind, parametric
tuples of the other tuple sets 6f If t.tscoré™ > ma¥(R(t)?), Q8 | fagin, middleware Q18| search, SIGMOD, similarity
which is the maximuntscord"®s of checked tuples d®(t)?, some Q9 | fengrong, ishikawa Q19 optimal, fagin, middleware

Q10 | hong, kong, spatial Q20 | hongjiang, Multimedia, zhang

maxts (cursor2)) may be larger than the minimum lower bound of
current topk answers. Hence after querying the unchecked tuples
from the database in line 15, the proced&mdPotentialAnswers  values ofN andd f will soon exceed\N andAd f, respectively, due
of C is called while regardingR(t)® only contains the new tuple  to insertion of tuples. Therefore, the values/df andAdf are a
(line 17). Note that the relevance scores of the new JTTs produceitiadedt between the storage space for the state and flicesicy
in line 12 and 17 should be computed using the actual valug$f for topk answers maintenance. In our experiments, the values of
andNs. AN andAdf are set to be theercentof the values ofN anddf,
Execution of lines 14-17 needed to query unchecked tuples frorrespectively. For each query, we run the two-phase CN evaluation
the database and perform the second phase of evaluatiymdiich ~ algorithm with diferent values oAN andAdf. The main experi-
brings heavy workload to the database. However, the experimernment results of five queries are shown in Figure 4.
tal studies show a very low execute frequency of lines 14-17 when We use two metrics to eualuate thieets of the two parame-
maintaining the togk answers for a keyword query. ters. (1)cursor2/cursor. For each keyword query, we sum up the
5. Experimental Study values ofcursor2 andcursc.)rof all the tuple sets respectiyely after
the two-phase CN evaluation, and then compute the ratio of the two
For the evaluation,we use the DBLP data set. The down- summations. (2) The size of the state. Figures 4(a) and 4(b) show
loaded XML file is decomposed into 8 relations, artialticlelD, the changes afursor2/cursorto differentAN andAd f while fixing
key, title, journallD, crossRef,---), aCite{d, articlelD, cite), Adf andAN to 10%, respectively. Figure 4(a) and 4(b) show that
author@uthorlD, author), aWritéq, articlelD, authorID), journal(  only a small number of tuples are joined in the second phase of CN
journallD, journal), proggrocID, key, title, - - ), pEditorspEditorlD,  evaluation, which implies that the range of tuple score computed by
Name), procEditoi€,procEditorID,procID), where underlines and our method is very tight. The curves in Figure 4(a) and 4(b) are not
underwaves indicate the keys and foreign keys of the relations, retery steep. Hence, we can use some relatively large valbl@ind
spectively. The numbers of tuples of the 8 relations are, 1092KAd f when creating the state for a continuous keyword query. Note
109K, 658K, 2752K, 730, 11K, 12K, 23K. The DBMS used is SQL that the values oN in a database are always very large, therefor
Server 2005 Developer Edition with default configurations. Indexegven a small value AN (like 10%) can results in the state being
were built on all primary key and foreign key attributes, and fulltext valid before a large number of new tuples (100, 000 in our exper-
indexes are built on all text attributes. iment) are inserted as long aslfs are not violated. Figure 4(c)
We manually picked a large number of queries for evaluation. Weshows the change of the state size for a query when varyiti
attempted to include a wide variety of keywords and their combinawhile AN = 10%. The data size of the state of a continuous key-
tions in the query set, such as the selectivity of keywords, the sizeord query is quite small (several MBs at most), henceltié/
of the relevant answers, the number of potential relevant answersan easily load the state of a query for answers maintenance.
etc. We focus on 20 queries with query lengths ranging from 2 to 3, Exp-2 (Efficiency of answers maintenanceln this experiment,
which are listed in Table 2. we first crate states for the 20 keyword queries. Then we insert 14,
Exp-1 (Parameter tuning) In this experiment, we want to study 223 new tuples sequentially to the database. The CPU times for
the dfects of the two parameters of computing the range of futurgmaintaining topk answers for the 20 keyword queries after each
tuple scores. The amount of tuples need to be joined in the seconiéw tuples being inserted are recorded. All the experiments are
phase of CN evaluation is determined b andAdf. Small val-  done after the DBMS Hier is warmed. The values ofN andAd f
ues of AN andAd f result in small number of tuples be joined, but are all set to 1%. As the values AN andAdf are very small, we
large frequency of recomputing the state because the increases @&fn regard the cost for creating a state of a query as the cost for the
first phase of CN evaluation of the query.

0 * 100 httpy/dblp.mpi-inf.mpg.dgdblp-mirroyindex.php Figure 5(a) shows the time cost to create sta@redte and the



25 contains some keywords. If algorithimsertionexecute to line 11,

. Q5
— —8—Q10 . .. . .
] @ 5 —=an the new tuple is related and is joined with stored tuples in the state.
5 3 —axn . . . .
3 3 // If the new tuple is more related, it need to be joined with unchecked
[=] S 15 -7 e . . . . .
£ 2 4 e tuples, which results in the execution of line 14lpnéertion The
o PRI o . . . . . .
p O 4B ————%  yjolateline in Table 3 are the times afdf is violated. Table 3
0 2 4 6 8 10 0 2 4 6 8§ 10 ] )
AN (% of N) Adf (% of df) shows that most of the highly related tuples are stored in the state
(a) Vary AN whenAd f = 10% (b) Vary Ad f whenAN = 10% for each keyword, which results in small numbers of execution of
4000 —— = ;_a-a—a’/‘d] line 14 and violation ofAd f.
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average time cost of the 20 queries to handle the 14,223 new tuplés) Time for creating states and the avb) Speed-up ratios of each query

(Inserf). Note that the are in log scale. From Figure 5(a), we carerage time for handling new tuples
70000
60000
time used to maintain answers for the query. In our experiment, the 50000
40000
30000
20000

10000 +—1 l
0 M

find that the more time used to create a state of a query, the more

states of the 20 queries are stored to the database. The states of the

queries are read from the database afted & receive a new tu-

CPU (ms)

ple. The time for maintaining the new tuples also contains the time

cost of reading the states from database and writing them back to T8 % % E g E % g % g § % % %
database after handing new tuples. Hence such time costs occupy New tuples X
a large percent of the time cost for handling new tuples when they
. . (c) Total time for handling each new tuple
are not related. In order to reveal such relationship, we also plot . . .
Fig. 5 Hficiency of maintaining tofxanswers
the state sizes of the 20 queries in Figure 5(a). The cost of reading
and writing back a state can be highly revealed by the data of Q6.
The data of Q6 seems as an exception because the valnseof Table. 3 Executed times of lines of Algorithimsertion
is larger thanCreate The main reason is that Q6 is very easy to QD Q1] Q21 Q3] Q4]Q Q6] Q7 Q8| Q9 QL0
) ) ] line5 | 14 | 2 | 14 [300| O | O | 70 | 17 | O | 320
answer. Hence the time used to load and write back the state is the", 7T T, o | o 11 o
majority of time for handling new tuples for Q6. line14| 0 | 1 | 0O 110 0| 1
Figure 5(b) presents the ratio Gfreateto Insert which shows violate| 1 | 1 | 1 111 111

that the more time cost to create a state of a query, the more speed-Qip | Q11| Q12| Q13| Q14| Q15| Q16| Q17| Q18| Q19| Q20

up ratio is achieved. Figure 5(c) shows the total time for handing |line5 | 7 | 8 | 98 | 0 | 0 | 5 |215]295| 85 | 267

each inserted new tuple. In most cases, the time used to handle a1 ° | 1 | 0 | 13|14 /24 | 2 | 0 | O | 5
) ) ) ) o line14| 0 | 0 | © 0| 3 0

new tuple is quite small, which corresponding to the situation that voael 11 11 11 111 ol 21211

the new tuple do not contain any keyword of the 20 queries. Hence
the algorithm only need to update the scores of JTTs in the JTT
gueue of the states. The peaks of the data in Figure 5(c) correspond 6. Related Work
to the situations that some queries need to be reevaluated due to vi-

Keyword search in relational databases has recently emerged as

olation of Ad f. At last, AN is violated, hence several queries needa new research topic[11]. Existing approaches can be broadly

o be reevaluated at the same, which results in the highest peak Uassified into two categories: those based on candidate networks
[2], [3], [7] and others based on Steiner trees[1], [8], [10].

DISCOVER2[3] proposed ranking of tuple trees according to

Figure 5(c).
Table 3 presents the executed times of lines of algorithser-

tion when handling the 14, 223 new tuples for each querffebent their IR relevance scores to a query. Our work adoptGhebal

lines corresponding to fierent relevance of new tuples. We omit _. . . . .
P 9 P Pipelined algorithm of[3], and can be viewed as a further im-

he times that the new tuple is not rel i.e., only lines 1-3 ar L . . .
the times that the new tuple is not refated, i.e., only lines 3a%rovementtothedlrectlonofcontlnual keyword search in relational

executed. If algorithrminsertion execute to line 5, the new tuple



databases. SPARK [5] proposed a new ranking formula by adapting
existing IR techniques based on a natural notion of a virtual doc-
ument. They also proposed two algorithms that have minimal ac-
cesses to the database, which are based on the algorithm of [3]. Our
method of incremental maintenance of toguery answers can also

be applied to them, which will be a direction of the future work.

7. Conclusion

In this paper, we studied the problem of answer continuous top-
k keyword query in relational databases. We proposed to store the
state of the CN evaluation process, which can be used to restart the
query evaluation after the insertion of new tuples. An algorithm was
presented to maintain the tdpanswer list on the insertion of new
tuples. Our method carfieiently maintain a togeanswers list for a
query without recomputation the keyword query, which can be used
to settle the problem of answering continual keyword searches in a
database that is updated frequently.
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