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Abstract Keyword search in relational databases has been widely studied in recent years. Most of the previous studies focus

on how to answer an instant keyword query. In this paper, we focus on how to efficiently answer continuous top-k keyword

queries in relational databases. As involving a large number of join operations between relations when answering a keyword

query, reevaluating the keyword query as long as the database is updated is rather expensive. We propose a method to compute

a range for the future relevance score of query answers. For each keyword query, our method compute a state of the query

evaluation process, which only contains a small amount of data and can be used to maintain top-k answers when the database is

growing continually. The experimental results show that our method can be used to settle the problem of answering continuous

keyword search in a relational database that is updated frequently.
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1. Introduction

As the amount of available text data in relational databases grow-

ing rapidly, the need for ordinary users to effectively search such

information is increasing dramatically. Keyword search is the most

popular information retrieval method because users need to know

neither a query language nor the underlying structure of the data.

Keyword search in relational databases has recently emerged as an

active research topic [1]～[7].

Example 1 In this paper, we use the same running exam-

ple of databaseComplaints as the previous work [3] (shown

in Figure 1). In the example, the database schema isR =

{Complaints,Products,Customers}. There are two foreign key

to primary key relationships: Complaints → Products and

Complaints→ Customers.

If a user gives a keyword query “maxtor netvista”, the top-3 an-

swers returned by keyword search system of [5] arec3, c3 → p2 and

c1 → p1, which are obtained by joining relevant tuples from mul-

tiple relations to form a meaningful answer to the query. They are

ranked by their relevance scores computed by a ranking strategy.

In the literature, the reported approaches that support keyword

search in relational databases can be categorized into two groups:

tuple-based[1], [6], [8]～[10] andrelation-based[2]～[5], [7] ones.

After a user inputs a keyword query, the relation-based approaches

first enumerate all possiblequery plans(relational algebra expres-

sions) according to the database schema, then these plans are eval-

uated by sending one or more corresponding SQL statements to the

RDBMS to find inter-connected tuples.

In this paper, we study the problem ofcontinuoustop-k keyword

search in relational databases. Assume you are a quality analysis

staff at an international computer seller, and you are responsible

for analyzing complaints of customers that are collected by cus-



Complaints
tupleId prodId cusId date comments

c1 p121 c3232 6.30.02 “disk crashed after just one week of moderate use on
an IBM

:::::
Netvista X41”

c2 p131 c3131 7.3.02 “lower-end IBM
::::
Netvista caught fire, starting appar-

ently with disk”
c3 p131 c3143 8.3.02 “IBM

:::::
Netvista unstable with

::::
Maxtor HD”

· · · · · · · · · · · · · · ·
Products
tupleId prodId manufacturer model

p1 p121 “
::::
Maxtor” “D540X”

p2 p131 “IBM” “
::::
Netvista”

p3 p141 “Tripplite” “Smart 700VA”
· · · · · · · · · · · ·

Customers
tupleId cusId name occupation

u1 c3232 “John Smith” “Software Engineer”
u2 c3131 “Jack Lucas” “Architect”
u3 c3143 “John Mayer” “Student”
· · · · · · · · · · · ·

Fig. 1 A Running Example from [3] (Query is “maxtor netvista”. Matches

are Underlined)

tomer service offices all over the world. Complaints of customers

are coming continuously, and are stored in the database Complaints

shown in Example 1. Suppose you want to find the information

related to Panasonic notes, then you give a keyword query “pana-

sonic note” and use one of the existing methods mentioned above to

find related information. After observing some answers, you may

doubt whether some newly arrived claims are more related to Pana-

sonic notes, i.e., you want to continuously search the database using

the keyword query. How should the system do to support such an

query?

A naive solution is to issue the keyword query after one or

some new related tuples are arrived. Existing methods, however,

are rather expensive as there might be a huge amounts of tuples

matched, and they require costly join operations between relations.

If the database has a high update frequency (as the situation of the

aforementioned example), recomputation will have a heavy work-

load to the database server.

In this paper, we present a method to incrementally maintain an-

swers for a top-k keyword search. Instead of full, non-incremental

recomputation, our method performs incremental answer mainte-

nance. Specifically, we keep the state of each query obtained

through the latest evaluation of the query. A state consists of the

current top-k answers, the query plans, and the related statistics. It

is used to incrementally maintain top-k answers after the database

is updated.

In summary, the main contributions of this paper are as follows:

• We introduce the concept of a continuous keyword query in

relational databases. To the best of our knowledge, we are

the first to consider the problem of incremental maintenance

of top-k answers for keyword queries in relational databases.

• We propose a method for efficiently answering continuous key-

word queries. By storing a state of a query evaluation process,

our algorithm can handle the insertion of new tuples in most

cases without restarting the keyword query.

The rest of this paper is organized as follows. Section 2 gives

the problem definition. Section 3 briefly introduces the framework

for answering continuous keyword queries in relational databases.

Section 4 proposes the details of our method. Section 5 shows the

experimental results. Section 6 presents the related work. Section 7

draws the conclusions.

2. Problem Definition

We first define some terms used throughout this paper, whose de-

tailed definition can be found in [3], [5], [7]. A relational database

is composed of a set of relationsR1,R2, · · · ,Rn. A Joint-Tuple-Tree

(JTT) T is a joining tree of different tuples. Each node is a tuple in

the database, and each pair of adjacent tuples inT is connected via

a foreign key to primary key relationship. A JTT is an answer to a

keyword query if it contains more than one keyword of the query

and each of its leaf tuples must contain at least one keyword. Each

JTT corresponds to the results produced by a relational algebra ex-

pression, which can be obtained by replacing each tuple with its

relation name and imposing a full-text selection condition on the re-

lations. Such an algebra expression is called aCandidate Network

(CN) [3]. For example, Candidate Networks corresponding to the

two answersc3 andc3 → p2 of Example 1 areComplaintsQ and

ComplaintsQ → ProductsQ, respectively (the notationQ means the

full-text selection condition). A CN can be easily transformed into

an equivalent SQL statement and executed by the RDBMS. Rela-

tions in a CN are calledtuple sets(TS). A tuple setRQ is defined

as a set of tuples in relationR that contain at least one keyword in

Q. For example, the two tuple setsComplaintsQ andProductsQ in

Example 1 are{c1, c2, c3} and{p1, p2} respectively.

A continuous keyword queryconsists of (1) a set of distinct key-

words, i.e.,Q = w1,w2, · · · ,w|Q|, and (2) a parameterk indicating

that a user is only interested in top-k answers ranked by the rele-

vance. The main difference of a continual keyword query to key-

word queries in the previous work [3], [10] is that the user wants to

keep the top-k answers list up-to-date while the database is updated

continuously. Let us return to the example in Section 1. After the

evaluation of the three CNs, two JTTs with the highest relevance

scoresc3 and c3 ← p2 are found. Then they are returned to the

user as the top-2 answers. Suppose new tuples arrive continuously,

as our computer dealer example mentioned in Section 1, the top-2

answers need to be updated if some arrived new claims are more

related to “maxtor” and “netvista”. For the following discussions,

we summarize the notations we use in Table 1.

In keyword search in relational databases [3], answers of keyword

queries are often ranked using an IR-Style ranking strategy. We first

assign atscore to each tuple in a given JTT by using a standard

IR-ranking formula, which models each tuple in a relation as a doc-

ument and all the tuples as a document collection. Then we combine

the individual tuple scores together by using a monotonic aggrega-

tion function to obtain the final score. In this paper, we adopt the

same ranking strategy. The relevance score of a JTTT is computed



Table. 1 Summary of Notations

Notation Description

t a tuple in a database

R(t) the relation corresponding tot

Q a keyword query

RQ the set of tuples inR that contain at least one keyword ofQ

T a joining tree of different tuples

sizeo f(T) the number of tuples inT

CN a candidate network

score(T,Q) the relevance score ofT to Q

tscore(t,Q) the relevance score of a tuplet to Q

using the following formulas based on the TF-IDF weighting. The

scoring function is used in [3].

score(T,Q) =
∑

t∈T(tscore(t,Q))
sizeo f(T)

tscore(t,Q) =
∑

w∈t∩Q

1+ ln(1+ ln(t ft,w))

1− s+ s · dlt
avdl

· ln
(
N + 1
d fw

)
,

(1)

wheret ft,w is the frequency of keywordw in tuplet, d fw is the num-

ber of R(t) tuples that containsw (R(t) means the relation that in-

cludest), dlt is the size (i.e., number of characters) oft, avdl is the

average tuple size,N is the total number ofR(t) tuples, ands is a

constant.

3. Query Processing Framework

Figure 2 shows our continuous query processing framework of

continuous keyword search on relational databases.

Fig. 2 Continuous Query Processing Framework

Given a keyword query, we first identify the top-k query results.

Specifically, we first generate all the non-empty query tuple setsRQ

for each relationR. Then these non-empty query tuple sets and the

schema graph are used to generate a set of valid CNs. Finally, the

generated CNs are evaluated to identify the top-k answers. For the

step of CN evaluation, several query evaluation strategies have been

proposed by [3], [5]. Instead of issuing a SQL query for each CN

and combining them to find the top-k results, they issue multiple

lightweight SQL queries and can stop the query execution imme-

diately after the top-k answers are determined. Our method of CN

evaluation is based on the method of [3], but can also find out the

JTTs that have the potential to become top-k answers after some

new tuples are inserted.

At the end of the CNs evaluation process, in order to achieve in-

cremental maintenance of the query answers, thestateof the process

is computed and stored. A state consists of the found JTTs, the set

of generated CNs, the tuples that have been joined, and the statis-

tics of the keywords. After being notified new data, the Incremen-

tal Maintenance Middleware (IMM) start the answers maintenance

procedure for each continuous keyword query.

The IMM uses some filter conditions to categorize the new data

into two types for each keyword query based on their relevance:

not relatedand related. Then the related new data and the stored

state are used by the IMM to start the incremental query evaluation

process and compute the new top-k answers. If the variations of

the new top-k answers fulfill the update conditions, the new top-k

answers are sent to the corresponding users.

We will present the details of the states and how to restart the

query evaluation process in the next section.

4. Continuous Keyword Query Evaluation

In this section, we first present the two-phase CN evaluation

method for creating the state for a keyword query, then we will show

how to calculate the effects of arrived new tuples.

4. 1 State of Continuous Keyword Query

Generally speaking, two tasks need to be done after newly tuples

are inserted: arrived new tuples can change the values ofd f , N and

avdl in Eq. (1), hence change the tuple scores of existing tuples.

Therefore the first task is to check whether some current top-k an-

swers can be replaced by other JTTs whose relevance scores are in-

creased. The arrived new tuples may lead new JTTs and new CNs.

Therefore, the second task is to compute the new JTTs and check

whether some of them can be top-k answers.

For the first task, a naive solution is to compute and store all the

JTTs that can be produced by evaluating the generated CNs when

the query is evaluated for the first time. After new tuples are in-

serted, we recompute the relevance score of the stored JTTs and

update the top-k answers. This solution is not efficient if the num-

ber of existing tuples are large, since it needs to join all the existing

tuples in each CN and store a large number of JTTs.

Fortunately, our method only needs to compute and store a small

portion of JTTs. For this purpose, we use the two-phase CN eval-

uation method shown in Algorithm 1 to efficiently evaluate a set of

candidate networksCNSetfor keyword queryQ, and create the state

of Q. The first phase (line 1-11) is for computing the top-k answers,

which is based on the method of [3]. The second phase (line 15-

22) is for finding the JTTs that have the potential to become top-k

answers.

The key idea of line 1-11 is as follows: all CNs of the keyword

query are evaluated concurrently following an adaptation of apri-

ority preemptive, round robinprotocol [12], where the execution of

each CN corresponds to a process. Tuples in each tuple set are

sorted in descending order of their tuple scores (line 2). There is



(a) Compute the top-2 answers (b) Find potential top-2 answers

Fig. 3 Two-phase CN evaluation

a cursor for each tuple set of all the CNs that indicates the index of

the tuple for next checking (line 3). All the combinations of tuples

before cursor in each tuple set have been joined to find the JTTs.

For each tuple settsi in a CNC, the algorithm use an upper bound

function to bound the relevance scores of potential answers that con-

tain the tupletsi [cursor]. The maximum upper bound scores of all

the tuple sets of a CN is regarded as thepriority of the CN (line 5),

which ensures that any potential results from future execution of the

CN will not have a higher score. At each loop iteration, the algo-

rithm picks the next tuple of the “most promising” tuple set from

the “most promising” CN for checking (line 8-10). The first phase

will stop immediately after finding out the top-k answers, which can

be identified when the score of the current top-k-th answer is larger

than all the priorities of the CNs (line 6). We call the tuples before

the cursor of each tuple set ascheckedtuples since all the combina-

tions of them have been joined to find the joining tuples trees, and

call the tuples with indexes not smaller than the cursor asunchecked

tuples.

Figure 3 presents the main data structure of our CN evalua-

tion method. In order to facilitate the discussion, only the CN

ComplaintsQ → ProductsQ is considered and suppose we want to

find top-2 answers. In Figure 3(a), tuples in the two tuple sets are

sorted according to the tuple scores in descending order and are rep-

resented by their primary key. Arrows between tuples indicate the

foreign key to primary key relationship. The top-2 answers found

out arec1 → p1 andc3 → p2. All the tuples in the deep back-

ground have been joined in order to obtain the top-2 answers. For

example, tuplep1 has been joined with tuplec1, c2 andc3, and

one valid JTTc1→ p1 are found out. After the execution of phase

1, the twocursors of the two tuple sets are pointing atc4 andp6,

respectively.

The procedureFindPotentialAnswersare used to find the poten-

tial top-k answers. The basic idea of our method is to compute a

range of the future tuple score for each tuple. Let us recall the scor-

ing function of computing tuple scores in Eq. (1):

tscore(t,Q) =
∑

w∈t∩Q

1+ ln(1+ ln(t ft,w))

1− s+ s · dlt
avdl

· ln
(
N + 1
d fw

)
. (2)

We consider the situation wherea) at most∆N new tuples are in-

Algorithm 1 CNEvaluation(CNSet, k,Q)
Input: CNS et: a set of candidate networks;k: an integer;Q: a keyword

query;

1: declare RTemp: a queue for not-yet-output results in descending

score(T,Q); Results: a queue for outputted results in descending

score(T,Q)

2: Sort tuples of each tuple set according totscorein descending order

3: Setcursorof each tuple set of each CN inCNSetto 0

4: loop

5: Compute the priorities of each CN inCNSet

6: if (the score of thek-th answer inResultsis larger than all the priori-

ties)then break

7: Output the JTTs inRTempto Resultswith score larger than all the

priorities

8: Select the next tuple from the tuple set that has the maximum upper

bound score from the CN with the maximum priority for checking

9: Add 1 to thecursor of the tuple set corresponding to the checked

tuple

10: Add all the resulting JTTs toRTemp

11: end loop

12: FindPotentialAnswers(CNSet,Results)

13: Setcursor= cursor2 of each tuple set of each CN inCNSet

14: Create state forQ and return the top-k JTTs inResults

15: ProcedureFindPotentialAnswers(CNSet,Results)

16: Compute the range oftscorefor all the tuples in each tuple set ofCNS et

and sort the tuples in each tuple set below thecursorin descending order

of tscoremax

17: lowerBound← the minimum lower bound ofscores of the top-k an-

swers inResults

18: for all tuple settsj of each CNCi in CNSetdo

19: Increase the value ofcursor2 fromcursoruntil max(tsj [cursor2]) <

lowerBound

20: for all tuple settsj of each CNCi in CNSetdo

21: Join the tuples betweencursor andcursor2 of tsj with the tuples

before thecursor in the other tuple sets ofCNi

22: Add the resulting JTTs toResultswhose upper bound ofscoreis

larger thanlowerBound

serted; andb) document frequency slightly changes due to the in-

sertion. ∆d f denotes the maximum increased count of the docu-

ment frequency for every term before∆N new tuples are inserted.

Note that∆d fw may be 0. We assume that the average docu-

ment length (avdl) is a constantto simplify the problem. Let us

use the shorthand notationsA(t,w) = 1+ln(1+ln(t ft,w))

1−s+s· dlt
avdl

and B(t,w) =

1+ln(1+ln(t ft,w))

1−s+s· dlt
avdl

· ln
(

N+1
d fw

)
. B(t,w) represents the contribution of key-

wordw to tscore(t,Q).

We derive the upperbound and the lowerbound of Eq.(2) which

are valid while the two constraints∆N and ∆d f are fulfilled.

First, we compute the maximum score for the existing tuplest.

The situation occurs when all the terms int ∩ Q do not ap-

pear in the new documents, hence we havetscore(t,Q)max =∑
w∈t∩Q A(t,w) · ln

(
N+1+∆N

d fw

)
. For eachB(t,w), the minimum value

is achieved when the firstdtw new tuples all containsw: B(t,w)min =



A(t,w) · ln
(

N+1+∆d fw
d fw+∆d fw

)
. Therefor the lowerbound oftscore(t,Q) is

tscore(t,Q)min =
∑

w∈t∩Q A(t,w) · ln
(

N+1+∆dtw
d fw+∆d fw

)
. Note that this lower

bound only can be achieved when all the∆dtws are equal. Using

such ranges, the range of relevance score of a JTTT can be com-

puted as [
∑

t∈T t.tscoremin,
∑

t∈T t.tscoremax] · 1
sizeo f(T) .

We continually watch the change of statistics to monitor whether

the thresholds∆N and∆d f are violated. This is not a difficult task.

Monitoring ∆N is straightforward. For∆d f , we accumulate∆d fw

for all the termsw in the process of handling new tuples. In the se-

quel, we consider the situation that the two thresholds∆N and∆d f

are not violated.

For each tuplet in C, we usemax(t) =
(
t.tscoremax+

∑
t<tsi

max(tsi)
)
·

1
sizeo f(C) to indicate the maximum upper bound ofscores of the pos-

sible JTTs that containt, wheremax(tsi) indicates the maximum

upper bounds oftscores of tuples intsi . If max(t) is larger than the

minimum lower bound ofscoreof answers inResults(lowerBound

in line 17), t can form some JTTs with potential to become top-k

answers in the future. We find such tuples in line 18-19, and join

them with the tuples beforecursor2 in the other tuple set (line 21).

Hence, all the JTTs that are formed by the tuples that have the po-

tential to form top-k answers are computed. However, not all the

JTTs computed in line 21 can become top-k answers in the future.

In line 22, only the JTTs whose upper bound of score is larger than

lowerBoundare added toResults.

After the execution of line 12,Resultscontains the top-k answers

and the JTTs that have the potential to become top-k answers. Tu-

ples can form the current or potential top-k answers are before the

cursor2 in each tuple set.

In line 14, the state forQ is created based on the snapshot of

CNEvaluation. The state mainly contains three kinds of data:

• The keyword statistics: the number of tuples, and document

frequencies (i.e., the number of tuples that contain at least one

keyword).

• The set of candidate networks: all the checked tuples (checked

tuples of multiple instances of one tuple set are merged to re-

duce the storage space).

• The JTT queueResults: its each entry contains the tuple ID

and thetscore.

Note that the tuples beforecursor2 in each tuple set can be con-

sidered as highly related to the keyword query and have high possi-

bilities to form JTTs with newly inserted tuples, hence they need to

be stored in the state for the second task. However, checked tuples

in the tuple sets that reference another tuple sets through consider

the situation that foreign key to primary key relationships need not

to be stored since they can not reference new inserted tuples. We

need to store the statistics value
∑

w∈t∩Q A(t,w) for each tupet in the

state in order to recompute the tuple scores after new tuples are in-

serted. Fortunately, the value is static and does not change once we

compute it.

Figure 3(b) presents the data structure of the CNComplaintsQ →
ProductsQ after the second phase of evaluation. The two tuple sets

are further evaluated by checking tuplesc4 andp6, respectively.

4. 2 Handling Insertions of Tuples

After receiving a new tuple, the IMM first checks whether the

values ofd f and N still keep the assumption, i.e., the differences

between the current values ofd f and N and the values when the

state was firstly created are smaller than∆d f and∆N, respectively.

If the assumption is fulfilled, the algorithmInsertionshown in Al-

gorithm 2 is used to incrementally maintain the top-k answers list

for a keyword query, otherwise the query must be reevaluated.

In Algorithm 2, line 1-3 are for the first task, and line 5-18 are

used to compute the the new JTTs that contain the new tuples. In

line 1, the values of ofN andd f of the relationR(t) are updated.

Then if it is necessary (line 2), the relevance scores of the JTTs in

the JTT queue are updated using the new values ofN andd f(line 3).

Algorithm 2 Insertion(t, Q, S)
Input: t: new tuple;Q: keyword query;S: stored state forQ

Output: New top-k answers ofQ

1: update the keyword statistics ofR(t)

2: if there are some tuples ofR(t) are contained in the JTT queue ofS then

3: recompute the scores of the JTTs in the JTT queue ofS

4: if t does not contain the keywords ofQ then return

5: if R(t)Q is a new tuple setthen generate new CNs

6: compute the value and range oftscoreof t

7: CNS et← CN in S that containsR(t)Q ∪
all the new CNs

8: for all CN C in CNS etdo

9: for all R(t)Q of C do

10: if t.tscoremax > minC(R(t)Q) then

11: addt to the checked tuples set ofR(t)Q

12: join t with the checked tuples in the other tuple sets ofC

13: if t.tscoremax > maxC(R(t)Q) then

14: for all the other tuple setts of C do

15: query the unchecked tuples ofts from the database

16: delete the new inserted tuples fromts that have not been

processed

17: call FindPotentialAnswers({C},S.Queue) while regardingts

only containst

18: end for

19: return S.Queue.Top(k)

If R(t)Q is a new tuple set, the new CNs that containR(t)Q need to

be generated (line 5). In line 6, the value oftscoreof the new tuple

is computed using the actual values ofd f andN, but the values of

d f andN for computing the range oftscoreare the values when the

state is created in order to be consistent with the ranges oftscores

of existing checked tuples ofR(t)Q. New tuples can be categorized

into two groups by deciding whether each new tuple belongs to the

new top-k answers (relatedandnot related). Generally speaking,

new tuples that do not contain any keywords of the query are not

related tuples (line 4), and new tuples that contain keywords may



be related. However, new tuplet that contains the keywords cannot

be related in case that its upper bound oftscoreis not larger than

minC(R(t)Q), which is the minimumtscoremaxs of checked tuples

of R(t)Q (line 10). For the related new tuples, they are processed

from line 11 to line 17. In line 12,t is joined with the checked tu-

ples in the other tuple sets ofC. Then the algorithm uses another

filtering condition t.tscoremax > maxC(R(t)Q) in line 13 to deter-

mine whether the new tuplet should be joined with the unchecked

tuples of the other tuple sets ofC. If t.tscoremax > maxC(R(t)Q),

which is the maximumtscoremaxs of checked tuples ofR(t)Q, some

max(tsi(cursor2)) may be larger than the minimum lower bound of

current top-k answers. Hence after querying the unchecked tuples

from the database in line 15, the procedureFindPotentialAnswers

of C is called while regardingR(t)Q only contains the new tuplet

(line 17). Note that the relevance scores of the new JTTs produced

in line 12 and 17 should be computed using the actual values ofd fs

andNs.

Execution of lines 14-17 needed to query unchecked tuples from

the database and perform the second phase of evaluation ofC, which

brings heavy workload to the database. However, the experimen-

tal studies show a very low execute frequency of lines 14-17 when

maintaining the top-k answers for a keyword query.

5. Experimental Study

For the evaluation,we use the DBLP（*1） data set. The down-

loaded XML file is decomposed into 8 relations, article(articleID,

key, title,
::::::::
journalID,

:::::::
crossRef, · · · ), aCite(id,

:::::::
articleID,

:::
cite),

author(authorID, author), aWrite(id,
:::::::
articleID,

:::::::
authorID), journal(

journalID, journal), proc(procID, key, title,· · · ), pEditors(pEditorID,

Name), procEditor(id,
:::::::::::
procEditorID,

:::::
procID), where underlines and

underwaves indicate the keys and foreign keys of the relations, re-

spectively. The numbers of tuples of the 8 relations are, 1092K,

109K, 658K, 2752K, 730, 11K, 12K, 23K. The DBMS used is SQL

Server 2005 Developer Edition with default configurations. Indexes

were built on all primary key and foreign key attributes, and fulltext

indexes are built on all text attributes.

We manually picked a large number of queries for evaluation. We

attempted to include a wide variety of keywords and their combina-

tions in the query set, such as the selectivity of keywords, the size

of the relevant answers, the number of potential relevant answers,

etc. We focus on 20 queries with query lengths ranging from 2 to 3,

which are listed in Table 2.

Exp-1 (Parameter tuning) In this experiment, we want to study

the effects of the two parameters of computing the range of future

tuple scores. The amount of tuples need to be joined in the second

phase of CN evaluation is determined by∆N and∆d f . Small val-

ues of∆N and∆d f result in small number of tuples be joined, but

large frequency of recomputing the state because the increases of

（*1）：http://dblp.mpi-inf.mpg.de/dblp-mirror/index.php

Table. 2 Queries

QID Keywords QID Keywords

Q1 bender, p2p Q11 Hardware, luk, wayne

Q2 Owens, VLSI Q12 intersection, nikos

Q3 p2p, Steinmetz Q13 peter, robinson, video

Q4 patel, spatial Q14 ATM, demetres, kouvatsos

Q5 vldb, xiaofang Q15 Ishikawa, P2P, Yoshiharu

Q6 sigmod, xiaofang Q16 Staab, Ontology, Steffen

Q7 constraint, nikos Q17 query, Arvind, parametric

Q8 fagin, middleware Q18 search, SIGMOD, similarity

Q9 fengrong, ishikawa Q19 optimal, fagin, middleware

Q10 hong, kong, spatial Q20 hongjiang, Multimedia, zhang

values ofN andd f will soon exceed∆N and∆d f , respectively, due

to insertion of tuples. Therefore, the values of∆N and∆d f are a

tradeoff between the storage space for the state and the efficiency

for top-k answers maintenance. In our experiments, the values of

∆N and∆d f are set to be thepercentof the values ofN andd f ,

respectively. For each query, we run the two-phase CN evaluation

algorithm with different values of∆N and∆d f . The main experi-

ment results of five queries are shown in Figure 4.

We use two metrics to eualuate the effects of the two parame-

ters. (1)cursor2/cursor. For each keyword query, we sum up the

values ofcursor2 andcursorof all the tuple sets respectively after

the two-phase CN evaluation, and then compute the ratio of the two

summations. (2) The size of the state. Figures 4(a) and 4(b) show

the changes ofcursor2/cursorto different∆N and∆d f while fixing

∆d f and∆N to 10%, respectively. Figure 4(a) and 4(b) show that

only a small number of tuples are joined in the second phase of CN

evaluation, which implies that the range of tuple score computed by

our method is very tight. The curves in Figure 4(a) and 4(b) are not

very steep. Hence, we can use some relatively large value of∆N and

∆d f when creating the state for a continuous keyword query. Note

that the values ofN in a database are always very large, therefor

even a small value of∆N (like 10%) can results in the state being

valid before a large number of new tuples (100, 000 in our exper-

iment) are inserted as long as∆d fs are not violated. Figure 4(c)

shows the change of the state size for a query when varying∆d f

while ∆N = 10%. The data size of the state of a continuous key-

word query is quite small (several MBs at most), hence theIMM

can easily load the state of a query for answers maintenance.

Exp-2 (Efficiency of answers maintenance)In this experiment,

we first crate states for the 20 keyword queries. Then we insert 14,

223 new tuples sequentially to the database. The CPU times for

maintaining top-k answers for the 20 keyword queries after each

new tuples being inserted are recorded. All the experiments are

done after the DBMS buffer is warmed. The values of∆N and∆d f

are all set to 1%. As the values of∆N and∆d f are very small, we

can regard the cost for creating a state of a query as the cost for the

first phase of CN evaluation of the query.

Figure 5(a) shows the time cost to create states (Create) and the



(a) Vary∆N when∆d f = 10% (b) Vary∆d f when∆N = 10%

(c) Change of the state size

Fig. 4 Effect of∆N and∆d f

average time cost of the 20 queries to handle the 14,223 new tuples

(Insert). Note that the are in log scale. From Figure 5(a), we can

find that the more time used to create a state of a query, the more

time used to maintain answers for the query. In our experiment, the

states of the 20 queries are stored to the database. The states of the

queries are read from the database after theIMM receive a new tu-

ple. The time for maintaining the new tuples also contains the time

cost of reading the states from database and writing them back to

database after handing new tuples. Hence such time costs occupy

a large percent of the time cost for handling new tuples when they

are not related. In order to reveal such relationship, we also plot

the state sizes of the 20 queries in Figure 5(a). The cost of reading

and writing back a state can be highly revealed by the data of Q6.

The data of Q6 seems as an exception because the value ofInsert

is larger thanCreate. The main reason is that Q6 is very easy to

answer. Hence the time used to load and write back the state is the

majority of time for handling new tuples for Q6.

Figure 5(b) presents the ratio ofCreateto Insert, which shows

that the more time cost to create a state of a query, the more speed-

up ratio is achieved. Figure 5(c) shows the total time for handing

each inserted new tuple. In most cases, the time used to handle a

new tuple is quite small, which corresponding to the situation that

the new tuple do not contain any keyword of the 20 queries. Hence

the algorithm only need to update the scores of JTTs in the JTT

queue of the states. The peaks of the data in Figure 5(c) correspond

to the situations that some queries need to be reevaluated due to vi-

olation of∆d f . At last,∆N is violated, hence several queries need

to be reevaluated at the same, which results in the highest peak in

Figure 5(c).

Table 3 presents the executed times of lines of algorithmInser-

tion when handling the 14, 223 new tuples for each query. Different

lines corresponding to different relevance of new tuples. We omit

the times that the new tuple is not related, i.e., only lines 1-3 are

executed. If algorithmInsertion execute to line 5, the new tuple

contains some keywords. If algorithmInsertionexecute to line 11,

the new tuple is related and is joined with stored tuples in the state.

If the new tuple is more related, it need to be joined with unchecked

tuples, which results in the execution of line 14 ofInsertion. The

violate line in Table 3 are the times of∆d f is violated. Table 3

shows that most of the highly related tuples are stored in the state

for each keyword, which results in small numbers of execution of

line 14 and violation of∆d f .

(a) Time for creating states and the av-

erage time for handling new tuples

(b) Speed-up ratios of each query

b

(c) Total time for handling each new tuple

Fig. 5 Efficiency of maintaining top-k answers

Table. 3 Executed times of lines of AlgorithmInsertion

QID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

line 5 14 2 14 300 0 0 70 17 0 320

line 11 1 0 0 0 0 0 0 1 0 2

line 14 0 1 0 0 1 0 0 0 1 2

violate 1 1 1 5 1 1 1 1 1 6

QID Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

line 5 7 8 98 0 0 5 215 295 85 267

line 11 9 1 0 13 14 24 2 0 0 54

line 14 0 0 0 0 0 3 0 0 0 0

violate 1 1 1 1 1 10 2 2 1 1

6. Related Work

Keyword search in relational databases has recently emerged as

a new research topic [11]. Existing approaches can be broadly

classified into two categories: those based on candidate networks

[2], [3], [7] and others based on Steiner trees [1], [8], [10].

DISCOVER2 [3] proposed ranking of tuple trees according to

their IR relevance scores to a query. Our work adopt theGlobal

Pipelined algorithm of [3], and can be viewed as a further im-

provement to the direction of continual keyword search in relational



databases. SPARK [5] proposed a new ranking formula by adapting

existing IR techniques based on a natural notion of a virtual doc-

ument. They also proposed two algorithms that have minimal ac-

cesses to the database, which are based on the algorithm of [3]. Our

method of incremental maintenance of top-k query answers can also

be applied to them, which will be a direction of the future work.

7. Conclusion

In this paper, we studied the problem of answer continuous top-

k keyword query in relational databases. We proposed to store the

state of the CN evaluation process, which can be used to restart the

query evaluation after the insertion of new tuples. An algorithm was

presented to maintain the top-k answer list on the insertion of new

tuples. Our method can efficiently maintain a top-k answers list for a

query without recomputation the keyword query, which can be used

to settle the problem of answering continual keyword searches in a

database that is updated frequently.
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