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Abstract 

In this paper, we attempt to accelerate the Probabilistic Latent Indexing (PLSI) exploiting the high parallelism of Graphic 

Processing Unit (GPU). Our proposal is composed of three methods. The first method is to accelerate the 

Expectation-Maximization (EM) computation by applying GPGPU matrix-vector multiplication. The second method uses the 

same principles as the first method but deals with the sparseness of co-occurrence of words and documents. The third method 

is to use the concurrent kernel execution, which is available on NVIDIA Fermi architecture, in order to speed up the second 

method. We compare the results to the most recent parallel execution of PLSI which combines a method of parallelization by 

OpenMP with the Message Passing Interface (MPI) for distributed memory parallelization. The experiments show that our 

method could be more than 100 times faster than the previous results. By dealing with the sparseness of the data, we could not 

only process more documents and words using GPU, but we could also keep more data on the device memory so that we can 

avoid massive data copy transfer between the host and the device susceptible to reduce the execution performance. 

 

Keyword Graphics Processing Unit (GPU), Algorithms, Data Mining, Probabilistic Latent Semantic Indexing (PLSI), Expectation 
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1. Introduction 

The importance of text analysis has been increasing due 

to the growing needs of information retrieval and text 

mining from large text databases. In such processes, 

dimension reduction is often used to project a document 

from a high-dimensional vector to a lower one in order to 

speed up the process and/or improve the accuracy.  

LSI (Latent Semantic Indexing) is a commonly used 

technique of dimension reduction.  It is based on the 

mathematical principle of SVD (Singular Value 

Decomposition), and has successfu lly been used in many 

applications.  However, it is known that LSI has some 

drawbacks: 1) the resulting (reduced) dimensions are often 

difficult to interpret; 2) the input is a bag-of-words, which 

do not capable of incorporating structural information 

from the text; 3) ambiguous terms create noise in the 

vector space; and 4) SVD is computationally expensive.  

To cope with these problems, Hofmann [1] proposed 

PLSI (Probabilistic Latent Semantic Indexing).  PLSI is a 

statistically funded method which is based  on the 

co-occurrence of terms and documents with a latent class.  

Consequently, it has a more robust statistical foundation, 

and is able to provide a proper generative data model.  In 

addition, it can deal with domain specific synonymy and 

polysemous words, while LSI cannot.  PLSI has proven 

to be effective and has been used in many applications.  

However since PLSI is based on 

Expectation-Maximization (EM) algorithm [2], it still 

suffers from long execution time when dealing with large 

datasets.  

Many approaches have been trying to solve this 

drawback. Among them, the most recent approach is 

proposed by Wan et al. [3]. They executed the PLSI in a 

multi-CPU and distributed shared memory by the means of 

Message Passing Interface (MPI) across network 

environment while reducing the memory required by 

redesigning the EM principle applied to PLSI.  

Meanwhile, for the last several years, GPGPU 

(General-purpose computation on graphics processing 

units) has been gaining much public attentions as a new 

computational platform.  The idea is to exploit GPUs for 

not only image processing, but also general purpose 

computation.  GPGPU now covers diverse range of 

applications, such as physical simulation, audio 

processing, video processing, cryptography processing, 

and so on [4][5][6][7]. However, text processing on 

GPGPU has not yet been studied very well, because 



 

 

available memory on GPGPU is generally limited, while 

text processing requires much memory spaces.  

In this paper, we propose a scheme for processing PLSI 

using GPGPU. As mentioned earlier, the technical 

challenge is twofold: how to deal with massive text data 

using limited memory on GPGPU and how to speedup 

PLSI using the functionality of GPGPU.  Our 

contribution can be summarized as following: 1) 

reinterpretation of EM the algorithm using matrix vector 

multiplication to make the best use of GPGPU 

instructions; 2) reorganization of steps in the EM 

algorithm to save the space and to reduce the complexity; 

and 3) exploiting a dedicated data structure for sparse 

matrixes called occurrence matrix to cope with data 

sparseness.  The above approach helps to process 

thousands of documents with thousands of unique terms in 

seconds.  The feasibility of the proposed scheme is 

demonstrated by experiments.  

The remainder of the paper is organized as follows: In 

Section 2 we present the preliminaries. In Section 4 we 

expose our proposal after presenting some related work in 

section 3. In Section 5 we show the results of experiments 

conducted. Section 6 concludes this paper and mentions 

some future works.  

 

2. Preliminaries 

2.1. GPU Programming with CUDA 

In order to help programmers to concentrate on their 

algorithm instead of wasting time on learning graphics 

principles, NVIDIA has released an interface called 

Compute Unified Device Architecture (CUDA). CUDA is 

a C/C++ like language which exposes the hardware 

internal memory architecture to the programmer. 

Programming a GPU with CUDA makes i t able to run very 

high number of threads in parallel.  

The CUDA program runs in a unit called kernel. A 

kernel is composed of a single grid. A grid is composed of 

multiple threads blocks. A block is composed of multiple 

threads which can cooperate among them through the 

shared memory; a thread is the smallest execution unit.  

So fare programming with CUDA requires 

understanding the memory architecture. CUDA memory 

architecture is composed of six different levels which are: 

per-thread registers and local memory, per-block shared 

memory, per-grid global, constant and texture memory. 

While constant and texture are read-only, the other are 

read-write memories. 

 

2.2. Probabilistic Latent Semantic Indexing 

Probabilistic Latent Semantic Indexing (PLSI) is a 

technique to reduce dimensions of a set of documents. The 

core of PLSI is the aspect model, which is a latent or 

"hidden" model associating the hidden class 

},...,,{ 21 Kzzzz  with the co-occurrence of document 

},...,,{ 21 Ddddd  and word },...,,{ 21 Wwwww .    

Suppose that the terms are chosen independently of the 

documents for each hidden class, the probability form of 

this model can be expressed as: 

 

 (1) 

 

One of the common ways to solve (1) is maximizing the 

log likelihood function as expressed in (2): 
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where n(d, w) is the number of occurrence of the word w 

in the document d. A standard procedure to solve the 

likelihood is the Expectation-Maximization (EM) 

algorithm [2]. The EM is an iterative method composed of 

two steps. While the values of the log likelihood are 

estimated in the Expectation (E) step based on the values 

of the parameters in (1), these parameters are updated in 

the maximization (M) step. The EM stops when a 

predefined condition is reached. In our work we defined 

the number of iterations. In the case of PLSI, the E step 

defines the probability a word in a particular document  is 

explained by the hidden class z, as and the M step updates 

the probabilities. 
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3. Related Work 

Many researchers are now interested in GPU because of 

its attractive performance benefit. One of the most famous 

categories is physical simulation on GPU, such as fluid 

dynamics and water condensation [6]. In the area of signal 

and image processing, many works has been presented, 

such as segmentation [7], image thresholding [8]. GPU has 

been successfully applied to problems in databases and 

data mining. Bakkum et al. proposed to accelerate SQL 

queries using CUDA [9]. Zhan et al. accelerated text 

mining using CUDA [10]. Govindaraju et al. proposed a 

good frame work called GPUTeraSort, which is to provide 

a fast sorting mechanism for large databases using CUDA 

[11]. 

However, we found that few works exploit GPU for text 

analysis. This is due to the fact that processing text da ta 

using GPU gives rise to some technical challenges. One 

major challenge is that text data are in many cases 

voluminous, while the available memory on GPU is quite 

limited. One of related works in this category is presented 

by Wu et al. They proposed to c luster large data point 

using CUDA [12]. Many other fields are available in the 

survey on GPU published by Owens et al. [4]. 

 

3.1. Parallel Latent Semantic Indexing using 

GPU 

Cavanagh et al. proposed to accelerate LSI using GPU 

[13]. Their idea is to speed up the most time-consuming 

part of LSI, which is the singular value decomposition 

(SVD), by parallelization using GPU. Specifically, they 

use the Lanczos algorithm because of its efficiency. Also, 

they use CUBLAS, which is a GPU version of the famous 

numerical computation library called Basic Linear Algebra 

(BLAS) [14]. As a result, they can process big matrices 

such as 4000-by-4000 in seconds. Our work is different 

from this work, because our target is PLSI. In addi tion, 

their algorithm assumes that the number of latent classes 

is divisible by 16, which is not flexible when we apply it 

to real-life applications. Our approach, on the other hand, 

can deal with any number of latent classes, though the 

underlying indexing model is different.  

 

3.2. Parallel and Distributed Latent Semantic 

Indexing 

Regarding research works on parallelizing PLSI, to the 

best of our knowledge, there have been only few works . In 

[3] Wan et al. attempt to cope with the drawbacks of PLSI, 

that is, it considerably consumes computing resources  in 

terms of both execution time and internal memory.  

Specifically, their approach is based on a former work by 

Hong et al. [15], which proposes a shared-memory 

parallelization using OpenMP. Wang et al., in addition, 

combine distributed memory parallelization using MPI.  

They also consider the sparseness of the co-occurrence of 

terms and documents and retouch the EM algorithm in 

order to save memory for computation.  Our work is 

different from those approaches, because we exploit GPU 

for speeding up PLSI.  

 

4. Parallelization of PLSI 

4.1. Expectation-Maximization as Matrix-vector 

Multiplication  

Our approach reinterprets the PLSI equations as matrix 

vector multiplication. Many optimized libraries such as 

BLAS exist already so we could take advantage of such 

libraries to get the work done in less time. Our approach is 

summarized in the Figure 1. In the process of EM 

implementation, we can distinguish two properties from 

the expression. One part which stays constant for each 

iteration and shared by all latent class and the other part 

which depends on each latent class . This analysis helped 

us to separate the computations and combine some steps of 

the EM in order to save time and memory space.  We also 

think the equations at a matrix and vector level so that 

computation can be done once a time, making the EM 

more efficient. Thus, we adopt the matrix-vector 

multiplication including transpose of vector and matrix. In 

Equation (3), the most right parameters can be written as 

shown in (7). 
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where AT is the transpose matrix A and P(z) is a K-by-K 

diagonal matrix. The denominator   Γ(d,w), is persistent 

through all latent classes for each iteration and is a 

D-by-W matrix. For any value },...,2,1{ Ki with K the 

maximum number of classes, the numerator specific to 

each class, can be computed as shown in equation (8), 

where P(z i) is the probability of the latent class i, P(d|z i) 

and P(w|z i) are vectors of size D and W representing the 

probability of d and w knowing z respectively.  These 

vectors can easily be extracted from the Z-by-D matrix of 

P(d|z) and Z-byd-W matrix of P(w|z).  

 
 (8) 

 

Finally, E step can be computed from Γ and Ψ . As 

we can see from (4)~(6) and shown in Figure 2, we 

implicitly hide computation complexity by multiplying 

each pair (d,w) with its occurrence coefficient n(d,w) 

when computing the final step of the expectation because 

the probability calculated in (3) is never used alone but 

always multiplied with the occurrence n(d,w). Equation 
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(9) gives the E step for a given class i. 

 (9) 

Fig. 1: Pseudo-code of proposal algorithm of EM computation 
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Fig. 2 Final Step of Expectation multiplied by the occurrence  

In our implementation, we adopt the array reduction 

method in the M step. Belloch [16][17] has proposed a 

method optimized for CUDA and publicly available as 

library named CUDPP. We used the library to compute this 

part of our proposal. Then we update the values of P(z), 

P(d|z) and P(w|z).The process of array reduction consists 

of three steps. The first scan, which consists of computing 

the whole matrix reduction in order,  be able to normalize 

the probabilities. This method is more efficient than the 

atomic add which could produce the same result during the 

final step of expectation computation. In effect the atomic 

add operation with CUDA makes all threads waiting. 

Simple experiment showed our method is better than 

atomic add for large matrix. The second step consist of 

operating the “row multi scan“ feature available on 

CUDPP to compute the probabilities of documents and the 

last step is the “row multi scan “ of the transpose of 

Expectation in order to compute the probabilities of words. 

More details about CUDPP are available on the CUDPP 

website [18]. After these steps the update process for 

maximization starts. The update process is particularly 

easy and fast on GPU because no loop is required.  

 

 

4.2. Exploiting the Sparseness of the Occurrence 

Matrix  

4.2.1. Exploiting the Data Sparseness 

The co-occurrence of terms and document from which 

we build the occurrence matrix is a very sparse matrix. 

Table 1 shows the sparseness level of some well -known 

training sets we used for our experiments. 

Table 1 Sparseness of some real world data sets  

Dataset Docs Words Occurrence rate 

CRAN 1398 7867 63813 0.58% 

MED 1033 10062 28013 0.32% 

CISI 1460 9765 34947 0.29% 

 

Because the total memory size of GPU is strictly limited, 

it is crucial to exploit sparse matrix representation 

techniques to deal with large document dataset. There are 

many kinds of such approaches [19] for GPU. Here we 

have two main goals when dealing with the sparse 

matrixes; 1) efficiently use of the memory so that we can 

process more documents, 2) make the number of working 

threads as many as possible. Our approach in order to 

reach these goals combines the Compress Sparse Row 

(CSR) and the Coordinate (COO) format to represent 

sparse matrix on the device memory. These 

representations are shown in Figure 3. The coordinate 

(COO) format is a quite simple way of storing  the sparse 

matrix. The matrix is represented with three different 

vectors name row, col, and data where a triplet (row, col, 

data) represents the row index, the column index and 

corresponding non-zero value in the matrix. The CSR on 

the other hand is just the optimization of the COO 

representation. In effect, the column indices and the data 

vectors are exactly the same. The only difference is in the 

representation of the row’s information. Here, the notion 

of pointer appears. If we deal with an M-by-N matrix, the 

size of the pointer is M+1; pointer[i] stores the stores the 

offset of the non-zero element in the  i th row. The last 

element pointer[M+1]  stores the total of non-zeros 

elements in the sparse matrix.  

 Using this approach, the generated number of threads 

is exactly the number of non-zero elements of the 

occurrence matrix, also by using both representations we 

reach an interesting point of our research: the processing 

depends on neither documents number nor terms number 

but only on the occurrences of terms in the co-occurrence 

matrix. During the computation each threads will be 

assign the task to compute only for one occurrence. Thus 
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1: ComputeTotalOccurrence  

2:     For each iteration  

3:       ComputeExpectationDenominator  

4:       For each latent class 

5:          FinalizeExpectationForCurrentClass  

6:       ComputeWordScoreForCurrentClass  

7:      ComputeDocScoreForCurrentClass  

8:      UpdateProbabilitiesForCurrentClass  

9:     End latent class Loop  

10: End iteration Loop 



 

 

all the threads have approximately the same amount work 

and we can keep all the threads busy during computations.  

So far the maximum number of threads block that could 

be run at once on any NVIDIA GPU is 65565 blocks. In 

this research we use a Fermi architecture card which 

allows 1024 threads block. By assigning one thread to one 

occurrence we can easily determine the maximum size of 

the dataset our system will be able to process  a dataset of   

about 67million occurrences. The number of element to be 

process is quite large and outpaces the reasonable training 

set we could get, allowing us to say our method can deal 

with very large datasets.  

 

 

Fig. 3:  Sparse matrix representation (a) Coordinate format (b) 

Compressed sparse row format  

In the following paragraphs we show through a sample 

occurrence matrix, how exactly the computations of the 

PLSI on the device are done.  

Let consider a small matrix of 3-by-5 dimension with 7 

non-zero elements as shown in Figure 3. Following the 

CSR and COO representation, we generate 7 threads, the 

number of non-zero elements of the matrix. We compute 

the numerator of the expectation steps in Figure 4. Each 

thread is assigned the task to calculate the numerator of 

each element.  

1- Load P(zk) from global memory  

2- Load P(d i|zk) from global memory 

3- Load P(w j|zk) from global memory  

4- Calculate the numerator  

5- Update the numerator in global memory 

 

Fig. 4: Task assignment to threads  

Almost the same process leads to the computations the 

denominator of the Expectation step. However, we need to 

iterate through all the latent classes as following:  

1- Load P(zk) from global memory  

2- Load P(w j|zk) from global memory 

3- Load P(d i|zk) from global memory 

4- Repeat for all classes 

5- Calculate the denominator in the local memory 

6- Update the numerator in global memory 

All other steps of the expectation and maximization are 

computed though almost the same process that we don’t 

describe in detail in this paper for space reason. 

 

4.3. Optimization on Fermi Architecture 

As explained Figure 1, the EM algorithm exposes the 

class-dependent and class-independent part of or the PLSI. 

We observed that computation of classes’ expectations and 

updates do not interfere, thus is data independent. As the 

recent release of NVIDIA Fermi architecture offers the 

possibility to execute multiple kernels concurrently, we 

take advantage of this feature to compute the PLSI for 

each class per iteration. More details about CUDA 

concurrent kernel execution are available in The CUDA 

Programming Guide [20]. In order to avoid global memory 

being overwritten, we design the system so that the each 

kernel has its own write space. This is not memory 

efficient and limits its application to data set of modest 

size. In a near future we plan to fix this limitation . 

 

5. Experimental Evaluation 

We conducted numbers experiments in order to prove 

the effectiveness of our method. We first compare our 

results with the most recent work and then extend in order 

to show how efficient our algorithm is.  

 



 

 

5.1. Experimental Design  

We conducted numbers experiments in order to prove 

the effectiveness of our method. We first compare our 

results with the most recent work and then extend in order 

to show how efficient our algorithm is.  

 

5.2. Dataset 

We used both synthetic and real world data. We used the 

CRAN, MED, and CSI training set publicly available . We 

applied standard stemming and stopwords to the training 

set in order to reduce noise. The data set specifications are 

summarized in Table 1. We also generated synthetic dat. 

We predefined the number of words documents and the 

percentage of nonzero elements the data can hold. We also 

specified the number of class into which we could classify 

the document in order to measure the impact of classes to 

the processing time in both GPU and CPU environment 

 

5.3. Implementation Environment 

The hardware specification for the CPU version of our 

implementation is Intel Quad-core Xeon E5620 processors 

with 6.4GT/s (Intel QuickPath Interconnect) and up to 

8MB shared cache. We used C++(gcc 4.4.1) to implement 

the algorithms. We executed on CentOS 5.0. The GPU card 

used is the Tesla C2050. It is Fermi architecture with 14 

Multiprocessors and 32 cores per multiprocessors and 3G B 

memory, conned to the CPU memory with a PCIe up to 

144Gb/s. 

 

5.4. Evaluation Results 

5.4.1. Real Data 

We then executed both our proposal and ours in the 

same environment making the number of latent class 

varying from 8 to 32. The execution times are summarized 

in Tables 2, all times are in milliseconds. For space reason 

we show only one result in Table and two speed-up 

comparison result in Figure 3. However due to memory 

restriction, we could not execute our first proposal on real 

data. Also the optimization should at least have the same 

performance as method 2. The internal check specific to 

the optimization method creates overheads making it 

slightly slower than the sparse method. We show in the 

next section how to get better performance of our 

optimization. 

 

 

 

Table 2:  Med data set experimental results  
Latent 
Class 

GPU 
Sparse 

GPU Concurrent 
Kernel 

MPI 
Multiprocessor  

8 44.21 45.69 3999.60 

16 86.95 89.51 9997.30 

32 167.73 172.59 20006.80 

50 262.04 270.00 31003.50 

 

 

 

Fig. 5: PLSI Speed-up with GPU (a) med; (b) CISI  

  

5.4.2. Synthetic Data 

In this section we conducted three different experiments. 

First we tested the impact of the sparseness on the overall 

execution time by varying the non-zero elements in the 

occurrence matrix. Second we tested. We fixed the latent 

class to 32, the occurrence matrix is of size 1000-by-5000, 

and the concurrent kernels are 16. Figure 4(b) shows the 

output showing how the number non-zero elements affect 

execution time. Our second experiment was to show the 

performance of the concurrent kernel execution. NVIDIA 

allows at most 16 kernels to be executed concurrently. We 

show how parallelizing the class execution through 

concurrent kernel execution is advantage. Figure (b) 

shows the overall execution time for different kernels. 

Here 1 means no concurrent kernel execution thus the 

same as the method 2, we set the latent class to 32. The 



 

 

occurrence matrix is of size 1000-by-5000 and the 

non-zero elements 1%. 

 

 

Fig. 6: 7 Synthetic data (a) concurrent kernels, (b) sparseness  

6. Conclusion and Future Work 

In this research we show how the parallel PLSI executed 

using GPU. Our implementation which uses the 

matrix-vector implementation of EM is more efficient both 

in memory and execution time. We also showed how the 

use of sparse algorithms can help save memor y space for 

the storing the data on device memory. Our optimization 

using the concurrent kernels execution feature available 

on NVIDIA Fermi architecture is a method which can 

drastically reduce the execution time of PLSI of the 

improved version we proposed. However the memory 

inefficient of the method is a big problem we’re working 

on now. We also plan to execute the folding-in operations 

to make a full and complete application of the Parallel 

PLSI of GPGPU. 
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