

DEIM Forum 2011 B2-1

Efficient Probabilistic Latent Semantic Indexing

using Graphics Processing Unit

Eli Koffi KOUASSI† Toshiyuki AMAGASA‡ Hiroyuki KITAGAWA‡

Graduate School of Systems and Information Engineering, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, JAPAN

E-mail:†keli@kde.cs.tsukuba.ac.jp,‡{amagasa, kitagawa}@cs.tsukuba.ac.jp

Abstract

In this paper, we attempt to accelerate the Probabilistic Latent Indexing (PLSI) exploiting the high parallelism of Graphic

Processing Unit (GPU). Our proposal is composed of three methods. The first method is to accelerate the

Expectation-Maximization (EM) computation by applying GPGPU matrix-vector multiplication. The second method uses the

same principles as the first method but deals with the sparseness of co-occurrence of words and documents. The third method

is to use the concurrent kernel execution, which is available on NVIDIA Fermi architecture, in order to speed up the second

method. We compare the results to the most recent parallel execution of PLSI which combines a method of parallelization by

OpenMP with the Message Passing Interface (MPI) for distributed memory parallelization. The experiments show that our

method could be more than 100 times faster than the previous results. By dealing with the sparseness of the data, we could not

only process more documents and words using GPU, but we could also keep more data on the device memory so that we can

avoid massive data copy transfer between the host and the device susceptible to reduce the execution performance.

Keyword Graphics Processing Unit (GPU), Algorithms, Data Mining, Probabilistic Latent Semantic Indexing (PLSI), Expectation

Maximization (EM)

1. Introduction

The importance of text analysis has been increasing due

to the growing needs of information retrieval and text

mining from large text databases. In such processes,

dimension reduction is often used to project a document

from a high-dimensional vector to a lower one in order to

speed up the process and/or improve the accuracy.

LSI (Latent Semantic Indexing) is a commonly used

technique of dimension reduction. It is based on the

mathematical principle of SVD (Singular Value

Decomposition), and has successfu lly been used in many

applications. However, it is known that LSI has some

drawbacks: 1) the resulting (reduced) dimensions are often

difficult to interpret; 2) the input is a bag-of-words, which

do not capable of incorporating structural information

from the text; 3) ambiguous terms create noise in the

vector space; and 4) SVD is computationally expensive.

To cope with these problems, Hofmann [1] proposed

PLSI (Probabilistic Latent Semantic Indexing). PLSI is a

statistically funded method which is based on the

co-occurrence of terms and documents with a latent class.

Consequently, it has a more robust statistical foundation,

and is able to provide a proper generative data model. In

addition, it can deal with domain specific synonymy and

polysemous words, while LSI cannot. PLSI has proven

to be effective and has been used in many applications.

However since PLSI is based on

Expectation-Maximization (EM) algorithm [2], it still

suffers from long execution time when dealing with large

datasets.

Many approaches have been trying to solve this

drawback. Among them, the most recent approach is

proposed by Wan et al. [3]. They executed the PLSI in a

multi-CPU and distributed shared memory by the means of

Message Passing Interface (MPI) across network

environment while reducing the memory required by

redesigning the EM principle applied to PLSI.

Meanwhile, for the last several years, GPGPU

(General-purpose computation on graphics processing

units) has been gaining much public attentions as a new

computational platform. The idea is to exploit GPUs for

not only image processing, but also general purpose

computation. GPGPU now covers diverse range of

applications, such as physical simulation, audio

processing, video processing, cryptography processing,

and so on [4][5][6][7]. However, text processing on

GPGPU has not yet been studied very well, because

available memory on GPGPU is generally limited, while

text processing requires much memory spaces.

In this paper, we propose a scheme for processing PLSI

using GPGPU. As mentioned earlier, the technical

challenge is twofold: how to deal with massive text data

using limited memory on GPGPU and how to speedup

PLSI using the functionality of GPGPU. Our

contribution can be summarized as following: 1)

reinterpretation of EM the algorithm using matrix vector

multiplication to make the best use of GPGPU

instructions; 2) reorganization of steps in the EM

algorithm to save the space and to reduce the complexity;

and 3) exploiting a dedicated data structure for sparse

matrixes called occurrence matrix to cope with data

sparseness. The above approach helps to process

thousands of documents with thousands of unique terms in

seconds. The feasibility of the proposed scheme is

demonstrated by experiments.

The remainder of the paper is organized as follows: In

Section 2 we present the preliminaries. In Section 4 we

expose our proposal after presenting some related work in

section 3. In Section 5 we show the results of experiments

conducted. Section 6 concludes this paper and mentions

some future works.

2. Preliminaries

2.1. GPU Programming with CUDA

In order to help programmers to concentrate on their

algorithm instead of wasting time on learning graphics

principles, NVIDIA has released an interface called

Compute Unified Device Architecture (CUDA). CUDA is

a C/C++ like language which exposes the hardware

internal memory architecture to the programmer.

Programming a GPU with CUDA makes i t able to run very

high number of threads in parallel.

The CUDA program runs in a unit called kernel. A

kernel is composed of a single grid. A grid is composed of

multiple threads blocks. A block is composed of multiple

threads which can cooperate among them through the

shared memory; a thread is the smallest execution unit.

So fare programming with CUDA requires

understanding the memory architecture. CUDA memory

architecture is composed of six different levels which are:

per-thread registers and local memory, per-block shared

memory, per-grid global, constant and texture memory.

While constant and texture are read-only, the other are

read-write memories.

2.2. Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (PLSI) is a

technique to reduce dimensions of a set of documents. The

core of PLSI is the aspect model, which is a latent or

"hidden" model associating the hidden class

},...,,{ 21 Kzzzz with the co-occurrence of document

},...,,{ 21 Ddddd and word },...,,{ 21 Wwwww .

Suppose that the terms are chosen independently of the

documents for each hidden class, the probability form of

this model can be expressed as:

 (1)

One of the common ways to solve (1) is maximizing the

log likelihood function as expressed in (2):

Dd Ww

wPwdnL),log(),((2)

where n(d, w) is the number of occurrence of the word w

in the document d. A standard procedure to solve the

likelihood is the Expectation-Maximization (EM)

algorithm [2]. The EM is an iterative method composed of

two steps. While the values of the log likelihood are

estimated in the Expectation (E) step based on the values

of the parameters in (1), these parameters are updated in

the maximization (M) step. The EM stops when a

predefined condition is reached. In our work we defined

the number of iterations. In the case of PLSI, the E step

defines the probability a word in a particular document is

explained by the hidden class z, as and the M step updates

the probabilities.

(E): (3)

(M):

d w

d

wdzPwdn

wdzPwdn
zwP

'
)',|()',(

),|(),(
)|((4)

'
),'|(),'(

),|(),(
)|(

d w

d

wdzPwdn

wdzPwdn
zdP (5)

Zz

zwPzdPzPwdP)|()|()(),(

'

)'|()'|()'(

)|()|()(
),|(

z

zwPzdPzP

zwPzdPzP
wdzP

wd

wd

wdn

wdzPwdn
zP

,

,

),(

),|(),(
)((6)

3. Related Work

Many researchers are now interested in GPU because of

its attractive performance benefit. One of the most famous

categories is physical simulation on GPU, such as fluid

dynamics and water condensation [6]. In the area of signal

and image processing, many works has been presented,

such as segmentation [7], image thresholding [8]. GPU has

been successfully applied to problems in databases and

data mining. Bakkum et al. proposed to accelerate SQL

queries using CUDA [9]. Zhan et al. accelerated text

mining using CUDA [10]. Govindaraju et al. proposed a

good frame work called GPUTeraSort, which is to provide

a fast sorting mechanism for large databases using CUDA

[11].

However, we found that few works exploit GPU for text

analysis. This is due to the fact that processing text da ta

using GPU gives rise to some technical challenges. One

major challenge is that text data are in many cases

voluminous, while the available memory on GPU is quite

limited. One of related works in this category is presented

by Wu et al. They proposed to c luster large data point

using CUDA [12]. Many other fields are available in the

survey on GPU published by Owens et al. [4].

3.1. Parallel Latent Semantic Indexing using

GPU

Cavanagh et al. proposed to accelerate LSI using GPU

[13]. Their idea is to speed up the most time-consuming

part of LSI, which is the singular value decomposition

(SVD), by parallelization using GPU. Specifically, they

use the Lanczos algorithm because of its efficiency. Also,

they use CUBLAS, which is a GPU version of the famous

numerical computation library called Basic Linear Algebra

(BLAS) [14]. As a result, they can process big matrices

such as 4000-by-4000 in seconds. Our work is different

from this work, because our target is PLSI. In addi tion,

their algorithm assumes that the number of latent classes

is divisible by 16, which is not flexible when we apply it

to real-life applications. Our approach, on the other hand,

can deal with any number of latent classes, though the

underlying indexing model is different.

3.2. Parallel and Distributed Latent Semantic

Indexing

Regarding research works on parallelizing PLSI, to the

best of our knowledge, there have been only few works . In

[3] Wan et al. attempt to cope with the drawbacks of PLSI,

that is, it considerably consumes computing resources in

terms of both execution time and internal memory.

Specifically, their approach is based on a former work by

Hong et al. [15], which proposes a shared-memory

parallelization using OpenMP. Wang et al., in addition,

combine distributed memory parallelization using MPI.

They also consider the sparseness of the co-occurrence of

terms and documents and retouch the EM algorithm in

order to save memory for computation. Our work is

different from those approaches, because we exploit GPU

for speeding up PLSI.

4. Parallelization of PLSI

4.1. Expectation-Maximization as Matrix-vector

Multiplication

Our approach reinterprets the PLSI equations as matrix

vector multiplication. Many optimized libraries such as

BLAS exist already so we could take advantage of such

libraries to get the work done in less time. Our approach is

summarized in the Figure 1. In the process of EM

implementation, we can distinguish two properties from

the expression. One part which stays constant for each

iteration and shared by all latent class and the other part

which depends on each latent class . This analysis helped

us to separate the computations and combine some steps of

the EM in order to save time and memory space. We also

think the equations at a matrix and vector level so that

computation can be done once a time, making the EM

more efficient. Thus, we adopt the matrix-vector

multiplication including transpose of vector and matrix. In

Equation (3), the most right parameters can be written as

shown in (7).

)|()]|()([),(zwPzdPzPwd T (7)

where AT is the transpose matrix A and P(z) is a K-by-K

diagonal matrix. The denominator Γ(d,w), is persistent

through all latent classes for each iteration and is a

D-by-W matrix. For any value },...,2,1{ Ki with K the

maximum number of classes, the numerator specific to

each class, can be computed as shown in equation (8),

where P(z i) is the probability of the latent class i, P(d|z i)

and P(w|z i) are vectors of size D and W representing the

probability of d and w knowing z respectively. These

vectors can easily be extracted from the Z-by-D matrix of

P(d|z) and Z-byd-W matrix of P(w|z).

 (8)

Finally, E step can be computed from Γ and Ψ . As

we can see from (4)~(6) and shown in Figure 2, we

implicitly hide computation complexity by multiplying

each pair (d,w) with its occurrence coefficient n(d,w)

when computing the final step of the expectation because

the probability calculated in (3) is never used alone but

always multiplied with the occurrence n(d,w). Equation

)|()]|()[(),(i

T

iiz zwPzdPzPwd
i

(9) gives the E step for a given class i.

 (9)

Fig. 1: Pseudo-code of proposal algorithm of EM computation

),(
),(

),(
.........),(

),(

),(
),(

),(

),(

............),(
),(

),(
),(

),(

),(
.....................

),(
),(

),(
............),(

),(

),(
),(

),(

),(

),(
),(

),(
.........,(

),(

),(
),(

),(

),(

2

2

2
1

1

1

21

2)1(

2)1(

11

1)1(

1)1(

2

2

21
22

22

22
12

21

21

1

1

1
)21

12

12
11

11

11

WD

DW

DW
D

D

D
D

D

D

D

D

D

D

D

D

W

W

W

W

W

W

wdn
wd

wd
wdn

wd

wd
wdn

wd

wd

wdn
wd

wd
wdn

wd

wd

wdn
wd

wd
wdn

wd

wd
wdn

wd

wd

wdn
wd

wd
wdn

wd

wd
wdn

wd

wd

Fig. 2 Final Step of Expectation multiplied by the occurrence

In our implementation, we adopt the array reduction

method in the M step. Belloch [16][17] has proposed a

method optimized for CUDA and publicly available as

library named CUDPP. We used the library to compute this

part of our proposal. Then we update the values of P(z),

P(d|z) and P(w|z).The process of array reduction consists

of three steps. The first scan, which consists of computing

the whole matrix reduction in order, be able to normalize

the probabilities. This method is more efficient than the

atomic add which could produce the same result during the

final step of expectation computation. In effect the atomic

add operation with CUDA makes all threads waiting.

Simple experiment showed our method is better than

atomic add for large matrix. The second step consist of

operating the “row multi scan“ feature available on

CUDPP to compute the probabilities of documents and the

last step is the “row multi scan “ of the transpose of

Expectation in order to compute the probabilities of words.

More details about CUDPP are available on the CUDPP

website [18]. After these steps the update process for

maximization starts. The update process is particularly

easy and fast on GPU because no loop is required.

4.2. Exploiting the Sparseness of the Occurrence

Matrix

4.2.1. Exploiting the Data Sparseness

The co-occurrence of terms and document from which

we build the occurrence matrix is a very sparse matrix.

Table 1 shows the sparseness level of some well -known

training sets we used for our experiments.

Table 1 Sparseness of some real world data sets

Dataset Docs Words Occurrence rate

CRAN 1398 7867 63813 0.58%

MED 1033 10062 28013 0.32%

CISI 1460 9765 34947 0.29%

Because the total memory size of GPU is strictly limited,

it is crucial to exploit sparse matrix representation

techniques to deal with large document dataset. There are

many kinds of such approaches [19] for GPU. Here we

have two main goals when dealing with the sparse

matrixes; 1) efficiently use of the memory so that we can

process more documents, 2) make the number of working

threads as many as possible. Our approach in order to

reach these goals combines the Compress Sparse Row

(CSR) and the Coordinate (COO) format to represent

sparse matrix on the device memory. These

representations are shown in Figure 3. The coordinate

(COO) format is a quite simple way of storing the sparse

matrix. The matrix is represented with three different

vectors name row, col, and data where a triplet (row, col,

data) represents the row index, the column index and

corresponding non-zero value in the matrix. The CSR on

the other hand is just the optimization of the COO

representation. In effect, the column indices and the data

vectors are exactly the same. The only difference is in the

representation of the row’s information. Here, the notion

of pointer appears. If we deal with an M-by-N matrix, the

size of the pointer is M+1; pointer[i] stores the stores the

offset of the non-zero element in the i th row. The last

element pointer[M+1] stores the total of non-zeros

elements in the sparse matrix.

 Using this approach, the generated number of threads

is exactly the number of non-zero elements of the

occurrence matrix, also by using both representations we

reach an interesting point of our research: the processing

depends on neither documents number nor terms number

but only on the occurrences of terms in the co-occurrence

matrix. During the computation each threads will be

assign the task to compute only for one occurrence. Thus

),(
)|()]|()([

)|()]|()[(
),(wdn

zwPzdPzP

zwPzdPzP
wdEz

T

i

T

ii

i

1: ComputeTotalOccurrence

2: For each iteration

3: ComputeExpectationDenominator

4: For each latent class

5: FinalizeExpectationForCurrentClass

6: ComputeWordScoreForCurrentClass

7: ComputeDocScoreForCurrentClass

8: UpdateProbabilitiesForCurrentClass

9: End latent class Loop

10: End iteration Loop

all the threads have approximately the same amount work

and we can keep all the threads busy during computations.

So far the maximum number of threads block that could

be run at once on any NVIDIA GPU is 65565 blocks. In

this research we use a Fermi architecture card which

allows 1024 threads block. By assigning one thread to one

occurrence we can easily determine the maximum size of

the dataset our system will be able to process a dataset of

about 67million occurrences. The number of element to be

process is quite large and outpaces the reasonable training

set we could get, allowing us to say our method can deal

with very large datasets.

Fig. 3: Sparse matrix representation (a) Coordinate format (b)

Compressed sparse row format

In the following paragraphs we show through a sample

occurrence matrix, how exactly the computations of the

PLSI on the device are done.

Let consider a small matrix of 3-by-5 dimension with 7

non-zero elements as shown in Figure 3. Following the

CSR and COO representation, we generate 7 threads, the

number of non-zero elements of the matrix. We compute

the numerator of the expectation steps in Figure 4. Each

thread is assigned the task to calculate the numerator of

each element.

1- Load P(zk) from global memory

2- Load P(d i|zk) from global memory

3- Load P(w j|zk) from global memory

4- Calculate the numerator

5- Update the numerator in global memory

Fig. 4: Task assignment to threads

Almost the same process leads to the computations the

denominator of the Expectation step. However, we need to

iterate through all the latent classes as following:

1- Load P(zk) from global memory

2- Load P(w j|zk) from global memory

3- Load P(d i|zk) from global memory

4- Repeat for all classes

5- Calculate the denominator in the local memory

6- Update the numerator in global memory

All other steps of the expectation and maximization are

computed though almost the same process that we don’t

describe in detail in this paper for space reason.

4.3. Optimization on Fermi Architecture

As explained Figure 1, the EM algorithm exposes the

class-dependent and class-independent part of or the PLSI.

We observed that computation of classes’ expectations and

updates do not interfere, thus is data independent. As the

recent release of NVIDIA Fermi architecture offers the

possibility to execute multiple kernels concurrently, we

take advantage of this feature to compute the PLSI for

each class per iteration. More details about CUDA

concurrent kernel execution are available in The CUDA

Programming Guide [20]. In order to avoid global memory

being overwritten, we design the system so that the each

kernel has its own write space. This is not memory

efficient and limits its application to data set of modest

size. In a near future we plan to fix this limitation .

5. Experimental Evaluation

We conducted numbers experiments in order to prove

the effectiveness of our method. We first compare our

results with the most recent work and then extend in order

to show how efficient our algorithm is.

5.1. Experimental Design

We conducted numbers experiments in order to prove

the effectiveness of our method. We first compare our

results with the most recent work and then extend in order

to show how efficient our algorithm is.

5.2. Dataset

We used both synthetic and real world data. We used the

CRAN, MED, and CSI training set publicly available . We

applied standard stemming and stopwords to the training

set in order to reduce noise. The data set specifications are

summarized in Table 1. We also generated synthetic dat.

We predefined the number of words documents and the

percentage of nonzero elements the data can hold. We also

specified the number of class into which we could classify

the document in order to measure the impact of classes to

the processing time in both GPU and CPU environment

5.3. Implementation Environment

The hardware specification for the CPU version of our

implementation is Intel Quad-core Xeon E5620 processors

with 6.4GT/s (Intel QuickPath Interconnect) and up to

8MB shared cache. We used C++(gcc 4.4.1) to implement

the algorithms. We executed on CentOS 5.0. The GPU card

used is the Tesla C2050. It is Fermi architecture with 14

Multiprocessors and 32 cores per multiprocessors and 3G B

memory, conned to the CPU memory with a PCIe up to

144Gb/s.

5.4. Evaluation Results

5.4.1. Real Data

We then executed both our proposal and ours in the

same environment making the number of latent class

varying from 8 to 32. The execution times are summarized

in Tables 2, all times are in milliseconds. For space reason

we show only one result in Table and two speed-up

comparison result in Figure 3. However due to memory

restriction, we could not execute our first proposal on real

data. Also the optimization should at least have the same

performance as method 2. The internal check specific to

the optimization method creates overheads making it

slightly slower than the sparse method. We show in the

next section how to get better performance of our

optimization.

Table 2: Med data set experimental results
Latent
Class

GPU
Sparse

GPU Concurrent
Kernel

MPI
Multiprocessor

8 44.21 45.69 3999.60

16 86.95 89.51 9997.30

32 167.73 172.59 20006.80

50 262.04 270.00 31003.50

Fig. 5: PLSI Speed-up with GPU (a) med; (b) CISI

5.4.2. Synthetic Data

In this section we conducted three different experiments.

First we tested the impact of the sparseness on the overall

execution time by varying the non-zero elements in the

occurrence matrix. Second we tested. We fixed the latent

class to 32, the occurrence matrix is of size 1000-by-5000,

and the concurrent kernels are 16. Figure 4(b) shows the

output showing how the number non-zero elements affect

execution time. Our second experiment was to show the

performance of the concurrent kernel execution. NVIDIA

allows at most 16 kernels to be executed concurrently. We

show how parallelizing the class execution through

concurrent kernel execution is advantage. Figure (b)

shows the overall execution time for different kernels.

Here 1 means no concurrent kernel execution thus the

same as the method 2, we set the latent class to 32. The

occurrence matrix is of size 1000-by-5000 and the

non-zero elements 1%.

Fig. 6: 7 Synthetic data (a) concurrent kernels, (b) sparseness

6. Conclusion and Future Work

In this research we show how the parallel PLSI executed

using GPU. Our implementation which uses the

matrix-vector implementation of EM is more efficient both

in memory and execution time. We also showed how the

use of sparse algorithms can help save memor y space for

the storing the data on device memory. Our optimization

using the concurrent kernels execution feature available

on NVIDIA Fermi architecture is a method which can

drastically reduce the execution time of PLSI of the

improved version we proposed. However the memory

inefficient of the method is a big problem we’re working

on now. We also plan to execute the folding-in operations

to make a full and complete application of the Parallel

PLSI of GPGPU.

Acknowledgement

The authors gratefully acknowledge the funding support

of Grant-in-Aid for Scientific Research on Priority Areas

by MEXT (#21013004).

7. References

[1] Thomas Hofmann, Probabilistic Latent Semantic

Indexing, Proceeding of the Twenty-Second Annual

International SIGIR Conference on Research and

Development in Information Retrieval (1999).

[2] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximization

likelihood from incomplete data via EM algorithm,

Journal of the Royal Statist ical Society. Series

B(Methodological), Vol. 39, No. 1 (1977),pp.1 -38

[3] R. Wan, V.N. Ahn, and H. Mamitsuka, Efficient

Probabilistic Latent Semantic Analysis through

Parallelization, AIRS (2009), LNCS 5839, pp.

432-443,2009

[4] John D. Owens, D. Luebke, N. Govindaraju, M.

Harris, J. Kruger J. Lefohn et al.(2007), A Survey of

General-Purpose Computation on Graphics Hardware,

Computer Graphics Forum, 26: 80-113.

[5] Harris M.J., BaxerⅢ W., S.T., Lastra A., Simulation

of cloud dynamics on graphics hardware, Graphics

Hardware 2003, pp.92-101 (2003)

[6] Lefohn A.E., Kniss J. M., Hansen C.D., Whitaker R.T.

A stream narrow-band algorithm: Interactive computation

and visualization surfaces. IEEE Trans. Visual. Comput.

Graph. !0(4): 422-433 (2004).

[7]N.K. Govindaraju, Jim Gray, Ritesh Kumar, Dinesh

Manacha, GPGPUTeraSort: High Performance Graphics

Co-processor Sorting for Large Database Management ,

ACM-SIGMOD (2006)

[8] Yan R., Welch G., Fast Image segmentation and

smoothing using commodity graphics hardware, J. Graph

Tools. 7(4):91-100.

[9] Peter Bakkum and Kevin Skadron, Accelerating SQL

Database Operations on a GPU using CUDA, 94-103.

(2010)

[10] Yongpeng Zhang, Franck Mueller, Xiaohui Cui,

Thomas Potok, GPU-Accelerated Text Mining, EPHAM’09

(2009).

[11] N.K. Govindaraju, Jim Gray, Ritesh Kumar, Dinesh

Manacha, GPGPUTeraSort: High Performance Graphics

Co-processor Sorting for Large Database Management,

ACM-SIGMOD (2006)

[12] Ren Wu, Bin Zhang, M. Hsu, Clustering Billions of

Data points Using GPUs. UCHPC-MAW (2009)

[13] J. M. Cavanagh, T. E. Potok, Xiaohui Cui, Parallel

Latent Semantic Analysis using a Graphics Processing

Unit, GECC’2009, pp.2505 -2509 (2009)

[14] CUBLAS, The NVidia SDK linear algebra

http://www.nvidia.com/content/cudazone/cuda_sdk/Linear

_Algebra.html

[15] Hong C., Chen W., Shan J., Chen Y., Zhang Y.

Parallelization and characterization of probabilistic latent

semantic analysis. In: Pro. 37 t h International Conference

on Parallel Processing, pp. 628-635(2008)

[16] Guy E. Belloch, Vector Models for Data-Parallel

Computing. The MIT Press (1990)

[17] Guy E. Blelloch. Prefix Sums and Their

Applications,"Synthesis of Parallel Algorithms", Edited

by John H. Reif, Morgan Kaufmann (1991).

[18] http://gpgpu.org/developer/cudpp

[19]N.Bell, M. Garland, Efficient Sparse Matrix-Vector

Multiplication on CUDA. NVIDIA Technical Report

(2008)

[20] www.nvidia.com, NVIDIA CUDA C Programming

Guide version 3.1 (2010)

