

DEIM Forum 2011 B6-3

Single document Summarization based on Clustering Coefficient
and Transitivity Analysis

Yanting Li† and Kai Cheng‡

†Graduate School of Information Science, Kyushu Sangyo University, 〒813-8503 Matukadai 1-3-2 Fukuoka
E-mail: †k09gjk14@ip.kyusan-u.ac.jp, ‡chengk@is.kyusan-u.ac.jp

Abstract：
Document summarization is a technique aimed to automatically extract the main ideas from electronic documents. With the

fast increase of electronic documents available on the network, techniques for making efficient use of such documents become
increasingly important. In this paper, we propose a novel algorithm, called TriangleSum for single document summarization
based on graph theory. The algorithm builds a dependency graph for the document based on syntactic dependency relation
analysis. The nodes represent words or phrases of high frequency, and edges represent dependency relations between them.
Then, a modified version of clustering coefficient is used to measure the strength of connection between nodes in a graph. By
identifying triangles of nodes, a part of the dependency graph can be extracted. At last, a set of key sentences that represent the
main document information can be extracted.

Keyword：summarization, dependency graph, clustering coefficient, transitivity analysis

1. Introduction

With the fast increase of electronic documents available
on the network, techniques for making efficient use of
such documents become increasingly important. Document
summarization is a technique aimed to extract main ideas
from electronic documents so that it is easy to get gist of
the underlying document. Document summarization is
related to the issues of keywords and key-phrases
extraction, or text decomposition [2][3]. Some of the
well-known approaches to extractive document
summarization utilize supervised learning algorithms that
are trained on collections of “ground truth” summaries
built for a relatively large number of documents. However,
they cannot be adapted to new languages or domains
without training on each new type of data.

In this paper, we propose a graph theory based novel
algorithm called TriangleSum for the task of single
document summarization. Our algorithm extends the
KeyGraph algorithm [2] for automatic keyword extraction
in the following ways: Firstly, a dependency graph is built
based on the extracted words with high frequency, and the
dependency relationship between words. We introduce
syntactic dependency relations among words so that key
sentences instead of individual keywords can be extracted.
Secondly, we extract heaviest triangles as anchor points of
key sentences. A smodified version of clustering
coefficient to measure the importance of each node so that
partial dependency graph will be extracted. Thirdly,
strongly connected components of the dependency graph

will be extracted in terms of triangles based on the
network’s transitivity. This paper concentrates on the
algorithmic aspects of computing these indices.

2. Preliminary Definitions
In this section, we begin with the introduction of some

important definitions.

2.1. Word Frequency
The word frequency or term frequency of a word w in

document D is the occurrence frequency of w in D,
denoted by tf(w) .

Let Stop be the set of stop words. Let HighFreq be
such a set of words in D that any w∊HighFreq and w∉Stop
satisfies that tf(w) > δ for some δ> 0

.

2.2. Dependency Frequency
A document is defined as a set of sentences, denoted

by D = {s1, s2, …,sm}, where sk (k=1, 2,…, m) is called a
sentence of D. A word wi is said to be dependent on word
wj or simply wi depends on wj in sentence sk if wi is
syntactically modified by word wj, denoted by wi → wj.
For example, in sentence “Tom sent three letters to Jim
this week” , Tom→ sent, sent→ letters, letters (to) → Jim.

Let dep(wi, wj, sk) be an indicator function of
dependency relationship defined as follows:

⎩
⎨
⎧

=
otherwise,0

in on depends ,1
),,(kji

kji

sww
swwdep

The dependency frequency between wi and wj in
document D can be defined as below:

2.3. Dependency Graph
A dependency graph of a document D is a directed

graph G = (V, E), where V is a set of nodes and E is a set
of edges,

V = HighFreq,
E = {(wi, wj) | df(wi, wj)>λ , for some λ>0}
In other words, G is a weighted directed graph whose

nodes represent high frequency words in D and edges
represent the dependency relations in between a pair of
words.

 The dependency weight (df) of graph G=(V, E) can be
denoted by the following equation:

2.4. Clustering Coefficient
Clustering coefficient (or ccf for short) is a measure of

degree to which nodes in a graph tend to cluster together
in graph theory. This was proposed by Watts and Strogatz
in 1998[1] for analyzing the social network in real world.
There are two versions of this measure: the global and the
local. The global version was designed to give an overall
indication of the clustering in the network, whereas the
local gives an indication of the connectivity of single
nodes. In this paper, we only consider local clustering
coefficient.

Given an undirected graph G = (V, E), where V is a set
of nodes, and E is a set of directed edges between nodes.
The eij =(vi, vj) is an edge between node vi and vj. The
neighborhood N(vi) for a node vi is defined as its
immediately connected neighbors as follows:

}),(|{)N(i Evvevv jiijj ∈==
Let d(vi) be the degree of node v, i.e. d(vi)=|N(vi)|. The

degree d(vi) of node vi is the number of nodes adjacent
to vi. The local clustering coefficient measure for
undirected graphs is defined as the probability that a
random pair of its neighbors is connected by an edge, i.e.:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∈∈=
2

|)(|
|}),(,|{|)(

i

jkikjjk

vN
EevNvve

ivccf

A complete subgraph of three nodes of G can be
considered as a triangle. Let λ(vi) be the number of
triangles including node vi. A triple at a node vi is a
path of length two for which vi is the center node. Let
τ(vi) be the number of triples on vi ∊V. In other words,
τ(vi) is the number of subgraphs (not necessarily induced)

with 2 edges and 3 nodes, one of which is vi and such that
vi is adjacent to both edges. We can also define the
clustering coefficient of node vi as

.)(
)()(

i

i
v
v

ivccf τ
λ=

The value of clustering coefficient is a real number

between 0 and 1. The maximal value is 1 when every
neighbor connected to vi is also connected to every other
node within the neighborhood, and the minimal ccf is 0 if
none of the nodes connected to vi connects to each other.

Fig. 1 Examples of clustering coefficient

Fig. 1 gives some examples for how to calculate the

clustering coefficient for a single node. The degree of
node vi (dark) is 3, i.e. it has three neighbors (white).
The number of edges between the 3 nodes is 3, 2, and 0
from left to tight. So the ccfs are 1, 1/3 and 0 respectively.

3. Single Document Summarization
Now we propose algorithms for single document

summarization. Given a document D and a set of stop
words. To summarize D, we begin by syntax analysis of D
and build a dependency graph G for D. Then compute local
clustering coefficient for each node of G. Delete nodes
with clustering coefficient less than a threshold and obtain
graph G’. Indentify all triangle in G’ whose dependency
weight below a threshold. Suppose these obtained
triangles form a set T={T1,T2,T3,T4……Ti}. Indentify
sentences in document D where the extracted triangles are
anchored.

3.1. Building a Dependency Graph
Fig. 2 describes the algorithm for building a

dependency graph for a given document.
Algorithm buildDepGraph

Input:
– D= {s1,s2,s3,s4……sm}, sk： (k=1,2,…,m) is a

sentence of D;
– W(sk) ： words contained in sentence sk ;
– HighFreq ： words of high frequency in

document D;
– δ： threshold for high frequent dependency

ccf=1 ccf=1/3 ccf=0

∑
=

=
m

k
kjiji swwdepwwdf

1
),,(),(

∑
∈

=
Evv

ji
ji

vvdfGdf
),(

),()(

relations
Procedure:

(1) For each sentence sk ∈ D Do

(2) For each wi, wj∈W(sk) set df(wi, wj) = 0;

(3) do dependency structure analysis and
co-occurrence analysis for sk

(4) For each wi, wj∈W(sk) D o

(5) If wi is depends on wj, or wi co-occurs
with wj Then

(6) dep(wi,wj,sk)= 1;

(7) df(wi,wj)= df(wi,wj)+1;

(8) End;

(9) End;

(10) For each (wi, wj) Do

(11) If df(wi,wj)> δ, Then

(12) E=E∪ {(wi,wj)}

(13) End;

Fig. 2 Building dependency graph

3.2. Extracting Triangles

We now propose the algorithm for key sentence

extraction from a given single document. In Fig. 3, we
use the following notations.

- N(vi): neighborhood of node vi
- d(vi): degree of node vi
- df(wi, wj): dependency frequency between wi node

wj
- tf(wi): word frequency or term frequency of word

wi

Algorithm TriangleSum
Input:

– D: documents to be summarized,
– S: a set of stop words.
– δ: threshold for high frequent words
– λ: threshold for high frequent dependency

relations
– μ: threshold of clustering coefficient
– t: number of triangles to extract

Output:
– S: a set of key sentences

Procedure:
1） . Process D and construct dependency graph

G=(V, E),where
V = getHighFreq(D, δ) - S;
E = getDependency(D, λ);

2） . For each e ∊ E, if {e} is a cut, E=E-{e}
3） . For each v ∊ V, if d(v)=0, V=V-{v}
4） . For for v ∊ V compute ccf(v)
5） . If ccf(v) <μ then V=V-{v}
6） . Do breadth-first search on each connected

partial graphs of G and extract all triangles T
7） . For each triangle Ti ∊ T and compute df(Ti),

dependency weight of Ti
8） . Extract t triangles {T1, T2, …, Tt} with largest

dependency weight
9） . Identify sentences that contain at least one

triangle
Fig. 3 Algorithm of key sentence identification

With the extracted triangles, summarization of a

document can be easily approached in different ways.
(1) Entrance sentences. Extract sentences on the

entrance of the paragraphs containing more triangles.
The rationale behind this approach is that bushy
paths (or paths connecting highly connected
paragraphs) are more likely to contain information
central to the topic of the article.

(2) Anchored sentences. Extract sentences anchored with
more triangles. In this approach, triangles are used to
indicate important sentences.

For example, given the following document, we can
construct a TriangleSum as shown inFig. 4. Based on this
graph, we can extract two triangles. Two triangle are A1 =
{海軍，空母，派遣}, A2 = {海軍，軍事演習，行う}. Based
on these triangles, we can extract the first sentence as one
summarization.

米海軍は昨年１０月にも韓国海軍との合同軍事演

習を行うため、黄海に空母「ジョージ・ワシントン」

を派遣しているが、偶発的な軍事衝突が起きる危険

性の高まる 中での派遣は初めてだ。オバマ大統領

は２日、韓国関係の会合に向け、「北朝鮮によるい

われのない攻撃に対し、韓国国民に深い哀悼の意を

捧げる」との声明を出した。

Fig. 4 Example of TriangleSum

 To implement the proposed algorithm, we need efficient

米
海軍

空母

派遣

韓国

軍事演習

行う

computation of local clustering coefficient for each node
in V and extraction of all triangles from each connected
partial graphs. Both require efficient algorithm for
triangle identification. Next we will describe a
breadth-first search based triangle identification
algorithm.

A triangle is represented as a triple <u, v, w> where u, v,
w ∊ V and each node is adjacent to the other two. To
identify a triangle, we do a breadth-first traversal for the
given graph, from a starting node. Check nodes in the
neighborhood to see if any of them are connected to each
other.

Fig. 5 Example of triangle identification

In Fig. 5, after v is visited, the neighborhood N(v) of v

will enter the queue. At this time, we can check if there
are any edges between them. An edge between two
neighbors indicates a triangle. In this example, there is an
edge between node u and w. Since both of u and w are
neighbors of v, <u, v, w> is identified as a triangle.

Algorithm TriangleCheck
Input:

– G=(V, E): an undirected connected simple
graph (at most on edge between any pair of
nodes) where ,
V: a set of nodes and,
E: a set of edges

– N(v): neighborhood of v ∊ V
– v0 ∊ V: starting point of breadth-first traversal
– q: queue for breadth-first traversal

Output:
– T: a set of triangle in G

Procedure:
1） . T=∅;
2） . For each v ∊ V, v.flag = 0;
3） . q.enqueue(v0);
4） . While (not q.empty()) {
5） . v = q.dequeue();

6） . v.flag=1; // mark for visited
7） . For each u ∊ N(v) {
8） . If (u.flag==0) {
9） . q.enqueue(u);
10） . For each w ∊ N(u) ∩N(v) {
11） . T=T∪{<u,v,w>}
12） . Output T;
Fig. 6 Identifying triangles from graph

The algorithm shows that from the starting point, all

child nodes obtained by expanding a node are added to a
queue which works as first in, first out. It means nodes
that have not yet been examined for their neighbors are
placed in some container, such as a queue or linked list
called "open" and then once examined, the nodes will be
placed in the container called "closed" until all the nodes
are visited. It's easy to show if there is no such nodes are
explored, there are no triangles.

4. Experiment and Evaluation
For experiment implementation, we use a Japanese

morphological parser called juman to get the high frequent
words in a given document at first.
usage: juman -[b|B|m|p|P] -[f|c|e|E] [-i string] [-r rc_file]

Options: -b : show best path; -B : show best path
including homographs (default); -m : show all morphemes;
-p : show all paths; -P : show all paths by -B style; -f :
show formatted morpheme data; -c : show coded
morpheme data; -e : show entire morpheme data; -e2 : -e
plus semantics data (default) ;-E : -e plus location and
semantics data; -V : not search voiceless morphemes; -R :
not recognize adverb automatically; -L : not search
normalized lowercase; -i : ignore an input line starting
with 'string'; -r : use 'rc_file' as '.jumanrc'; -v : show
version.
 For example, the command shown below processes a
given document which is named ‘sample’ and saved as .txt
formation.

「%% juman -b -e2 < sample.txt > sample.jmn」
Both ‘sample.txt’ and ‘sample.jmn’ in the command are

plain text files. The ‘sample.jum’ file contains the entire
morpheme data. If the content of the file ‘sample.txt’ is a
sentence 「私は猫です。また名前がないです。」Then, the
output result is shown in Fig. 7. In this example, the
symbol ‘EOS’ means “end of sentence”.

v

u

w

Fig. 7 Result of morphological analysis

And then is to obtain the words which are frequently
occurred in the document. A program called getHighFreq()
is used to count frequency of each word in the document.
The getHighFreq() program accepts the results of
morphological analysis output by Juman, checks and
counts the occurrences of each word one line by another.
Here, there are two points should be paid attention. First,
the meaningless words (stop words) should be filtered out.
Second, a threshold δ for high frequency words is given
to determine how many words should be selected as
members of HighFreq.

The command can be used as follows:
「%% juman –b –e2 < sample.txt | perl getHighFreq.pl –」

In the example given above, the words “は”, “です”,
and “が” are the stop words, so they should be filter out
from the counting object. The result looks like below:

About the threshold δ , the result of getHighFreq is
empty set if the input value of δ >1. The result of
getHighFreq is {私 ,猫 ,また ,名前 ,ない} if the input value
of δ=1 because the occurrence frequency tf(w) of all
words are 1.

The second step is to compute the frequency of
dependency relationship. A Japanese language dependency
relationship parsing tool called knp is used to analyze the
dependency relationship among all of the words at this
step. The command for getting high frequency dependency
relations by knp is shown as follow:

「%%juman –e2 –B<sample.txt | knp」
There are several options for this tool:

(1) How well:
-bnst: phrasal units;
-dpnd: including dependency structure;
-case: including syntactic information;

(2) Output format:
[-tree|-bnsttree|-sexp|-tab|-bnsttab];

(3) [-normal|detail|debug] [-expand];
(4) [-C host:port] [-S|F] [-N port];
(5) [-timeout second] [-r rcfile].

Fig. 8 Result of dependency analysis

We use the same example file which mentioned above to

demonstrate the dependency relation analysis among all of
the words in the given document. In order to extract
dependency structure by program automatically, the output
of knp should be easily handled. The parsing tool knp also
provide phrasal unit based output.

There are 3 phrasal units in the output result, denoted
by ①～③ (annotations are added by the author.) Each
phrasal unit begins with an asterisked number with a letter
‘D’. The number (double underlined) indicates the
phrasal unit it is dependent on. For example,
phrasal unit ① ‘私は猫。 ’ (I am a cat.) depends on
the phrasal unit ③ ‘ない ’ (no). It is straightforward
to extract the dependency relation as:

dep(‘私は猫 ’, ‘ない ’)=1
The performance of the proposed algorithm is

determined by a number of experiment results. Firstly,
performance of natural language processing is crucial.
Currently precision of syntactic structure analysis for
Japanese documents remains around 80%.

Secondly, the proposed algorithm uses a stop word list
to eliminate meaningless words. Thus identifying stop
words is also important.

Finally, we have employed a set of parameters to
control the numbers of nodes and edges for triangle
finding.

There are three steps contained in the setup of the
experiments. Firstly, the document D is analyzed by juman
and knp so that the high frequent words could be extracted

S-ID:1 KNP:3.01-CF1.0 DATE:2011/02/07 SCORE:-42.15779

 私は──┐

 猫です。<P>─┐ ………………………………①

 また──┐ │

名前が──┤ │ ………………………………②

 ないです。<P>─ PARA…………………………….③

EOS

私 わたし 私 名詞 6 普通名詞 1 * 0 * 0 "代表表記 :私 /わたし

漢字読み :訓 カテゴリ : 人 "

は は は 助詞 9 副助詞 2 * 0 * 0 NIL

猫 ねこ 猫 名詞 6 普通名詞 1 * 0 * 0 "代表表記 :猫 /ねこ 漢字

読み :訓 カテゴリ : 動物 "

です です だ 判定詞 4 * 0 判定詞 25 デス列基本形 28 NIL

。 。 。 特殊 1 句点 1 * 0 * 0 NIL

また また また 副詞 8 * 0 * 0 * 0 "代表表記 :又 /また "

名前 なまえ 名前 名詞 6 普通名詞 1 * 0 * 0 "代表表記 :名前 /

なまえ カテゴリ :抽象物 "

が が が 助詞 9 格助詞 1 * 0 * 0 NIL

ない ない ない 形容詞 3 * 0 イ形容詞アウオ段 18 基本形 2

"代表表記 :無い /ない 反義 :動詞 :有る /ある "

です です です 助動詞 5 * 0 無活用型 26 基本形 2 NIL

。 。 。 特殊 1 句点 1 * 0 * 0 NIL

EOS

and the dependency relationship among all these words
could be analyzed. This process is mentioned above, and a
series of experiment results is demonstrated.

Then, we need to find out the number of triangles from
the formed graph manually. What we need to pay attention
in this step is the set of given parameters, because the
number of triangles is determined by the set of parameters.

For example, define the values of δ ,λ , and μ are 1,
most of the high frequent words can be extracted and
connected by edges. These procedures are done by
computer automatically. With the dependency analysis
result of a given document D, we could find out 62
triangles in the graph. Next, we are going to locate these
triangles in each paragraph so that the sentences which
represent the main points could be extracted. The result
for each paragraph will be summed up in order to
demonstrate the average extraction precision.

At last, the precision of experiment results are
needed to be evaluated. This process is also done
manually. The procedure is to compare the correctly
identified key sentences with the real key sentences
which are marked by human. This could be denoted
as below:

humanbysentenceskeyreal
sentenceskeyextractedcorrectlyprecision=

The data of table 1 shown below demonstrates the
precision of experiment results for the given
document D.

Tab. 1 Experiment Results
 P.1 P.2 P.3 P.4 P.5 P.6 P.7 P.8

Triangles 5 12 11 13 4 6 6 3

Precision 100
%

50
%

60
%

40
%

80
%

60
%

50
%

90
%

In Tab. 1, the alphabet “P” in the first line stands for

paragraph. The values in the second line stand for the
number of triangles which contained in one paragraph. In
the third line, the percentage shows the extraction
precision of key sentences which represent the viewpoint
of the document D.

5. Concluding Remarks
In this paper we proposed a novel algorithm called

TriangleSum for automatic extraction of key sentences
from electronic documents. The proposed algorithm
works on single document without training data so that
training cost could be removed. TriangleSum is supposed

to efficiently extract heavy triangles as anchor points of
key sentences from the input document. These triangles
can then be used to identify sentences that central to the
topic of the document.
 We have described an efficient method to extract
triangles from connected graph. When running on real
world documents, we have to tune the some thresholdsλ,

δ andμ. Also the proposed algorithm relies on high
quality results of morphology parsing and syntactic
parsing.

References
[1] D. J. Watts and Steven Strogatz. Collective
dynamics of 'small-world' networks. Nature
393(1998): pp440–442.
[2] Y. Ohsawa, N. E. Benson and M. Yachida.
KeyGraph: Automatic indexing by co-occurrence
graph based on building construction metaphor, IEEE
ADL'98, pp.12-18. 1998
[3] G. Salton, J. Allan, C. Buckley, and A. Singhal.
Automatic analysis, theme generation, and
summarization of machine readable texts. Science
264(5164):1421-6, June 1994.
[4] J. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering documents
and producing summaries. In Proceedings of the 21st
annual international ACM SIGIR conference on
Research and development in information retrieval
(SIGIR '98). pp. 335-336. 1998

[5] C.-Y. Lin (1999). Training a selection function for
extraction. In Proceedings of CIKM ’99, pages 55–62,
New York, NY, USA

[6] J. M. Conroy and D. P. O’Leary. Text summarization
via hidden markov models. In Proceedings of
SIGIR ’01, pages 406–407, New York, 2001

