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Abstract： 
Document summarization is a technique aimed to automatically extract the main ideas from electronic documents. With the 

fast increase of electronic documents available on the network, techniques for making efficient use of such documents become 
increasingly important. In this paper, we propose a novel algorithm, called TriangleSum for single document summarization 
based on graph theory. The algorithm builds a dependency graph for the document based on syntactic dependency relation 
analysis. The nodes represent words or phrases of high frequency, and edges represent dependency relations between them. 
Then, a modified version of clustering coefficient is used to measure the strength of connection between nodes in a graph. By 
identifying triangles of nodes, a part of the dependency graph can be extracted. At last, a set of key sentences that represent the 
main document information can be extracted. 
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1. Introduction 

With the fast increase of electronic documents available 
on the network, techniques for making efficient use of 
such documents become increasingly important. Document 
summarization is a technique aimed to extract main ideas 
from electronic documents so that it is easy to get gist of 
the underlying document. Document summarization is 
related to the issues of keywords and key-phrases 
extraction, or text decomposition [2][3]. Some of the 
well-known approaches to extractive document 
summarization utilize supervised learning algorithms that 
are trained on collections of “ground truth” summaries 
built for a relatively large number of documents. However, 
they cannot be adapted to new languages or domains 
without training on each new type of data. 

In this paper, we propose a graph theory based novel 
algorithm called TriangleSum for the task of single 
document summarization. Our algorithm extends the 
KeyGraph algorithm [2] for automatic keyword extraction 
in the following ways: Firstly, a dependency graph is built 
based on the extracted words with high frequency, and the 
dependency relationship between words. We introduce 
syntactic dependency relations among words so that key 
sentences instead of individual keywords can be extracted. 
Secondly, we extract heaviest triangles as anchor points of 
key sentences. A smodified version of clustering 
coefficient to measure the importance of each node so that 
partial dependency graph will be extracted. Thirdly, 
strongly connected components of the dependency graph 

will be extracted in terms of triangles based on the 
network’s transitivity. This paper concentrates on the 
algorithmic aspects of computing these indices.  

 

2. Preliminary Definitions 
In this section, we begin with the introduction of some 

important definitions. 

2.1. Word Frequency 
The word frequency or term frequency of a word w in 

document D is the occurrence frequency of w in D, 
denoted by tf(w) .  

Let Stop be the set of stop words. Let HighFreq be 
such a set of words in D that any w∊HighFreq and w∉Stop 
satisfies that tf(w) > δ for some δ> 0 

.  

2.2. Dependency Frequency 
A document is defined as a set of sentences, denoted 

by D = {s1, s2, …,sm}, where  sk (k=1, 2,…, m) is called a 
sentence of D. A word wi is said to be dependent on word 
wj or simply wi depends on wj in sentence sk if wi  is 
syntactically modified by word wj, denoted by wi →  wj. 
For example, in sentence “Tom sent three letters to Jim 
this week” , Tom→ sent, sent→ letters, letters (to) → Jim.  

Let dep(wi, wj, sk) be an indicator function of  
dependency relationship defined as follows:  
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The dependency frequency between wi  and wj in 
document D can be defined as below: 

 
 
 
 

2.3. Dependency Graph 
A dependency graph of a document D is a directed 

graph G = (V, E), where V is a set of nodes and E is a set 
of edges, 

V = HighFreq, 
E = {(wi, wj ) |  df(wi, wj )>λ , for some λ>0} 
In other words, G is a weighted directed graph whose 

nodes represent high frequency words in D and edges 
represent the dependency relations in between a pair of 
words. 

 The dependency weight (df) of graph G=(V, E) can be 
denoted by the following equation:  

 
    

  

2.4. Clustering Coefficient 
Clustering coefficient (or ccf for short) is a measure of 

degree to which nodes in a graph tend to cluster together 
in graph theory. This was proposed by Watts and Strogatz 
in 1998[1] for analyzing the social network in real world. 
There are two versions of this measure: the global and the 
local. The global version was designed to give an overall 
indication of the clustering in the network, whereas the 
local gives an indication of the connectivity of single 
nodes. In this paper, we only consider local clustering 
coefficient.  

Given an undirected graph G = (V, E), where V is a set 
of nodes, and E is a set of directed edges between nodes. 
The eij =(vi, vj) is an edge between node vi and vj. The 
neighborhood N(vi) for a node vi is defined as its 
immediately connected neighbors as follows: 

}),(|{)N( i Evvevv jiijj ∈==  
Let d(vi) be the degree of node v, i.e. d(vi)=|N(vi)|. The 

degree d(vi) of node vi is the number of nodes adjacent 
to vi. The local clustering coefficient measure for 
undirected graphs is defined as the probability that a 
random pair of its neighbors is connected by an edge, i.e.: 
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A complete subgraph of three nodes of G can be 
considered as a triangle. Let λ(vi) be the number of 
triangles including node vi. A triple at a node vi is a 
path of length two for which vi is the center node. Let 
τ(vi) be the number of triples on vi ∊V. In other words, 
τ(vi) is the number of subgraphs (not necessarily induced) 

with 2 edges and 3 nodes, one of which is vi and such that 
vi is adjacent to both edges. We can also define the 
clustering coefficient of node vi as 
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The value of clustering coefficient is a real number 

between 0 and 1. The maximal value is 1 when every 
neighbor connected to vi is also connected to every other 
node within the neighborhood, and the minimal ccf is 0 if 
none of the nodes connected to vi connects to each other. 

 

Fig. 1 Examples of clustering coefficient 
 
Fig. 1 gives some examples for how to calculate the 

clustering coefficient for a single node. The degree of 
node vi (dark) is 3, i.e. it has three neighbors (white).  
The number of edges between the 3 nodes is 3, 2, and 0 
from left to tight. So the ccfs are 1, 1/3 and 0 respectively. 

 

3. Single Document Summarization 
Now we propose algorithms for single document 

summarization. Given a document D and a set of stop 
words. To summarize D, we begin by syntax analysis of D 
and build a dependency graph G for D. Then compute local 
clustering coefficient for each node of G. Delete nodes 
with clustering coefficient less than a threshold and obtain 
graph G’. Indentify all triangle in G’ whose dependency 
weight below a threshold. Suppose these obtained 
triangles form a set T={T1,T2,T3,T4……Ti}. Indentify 
sentences in document D where the extracted triangles are 
anchored. 

 

3.1. Building a Dependency Graph 
Fig. 2 describes the algorithm for building a 

dependency graph for a given document. 
Algorithm buildDepGraph 

Input: 
– D= {s1,s2,s3,s4……sm}, sk： (k=1,2,…,m) is a 

sentence of D; 
– W(sk) ：  words contained in sentence sk ; 
– HighFreq ：  words of high frequency in 

document D;  
– δ： threshold for high frequent dependency 

ccf=1  ccf=1/3 ccf=0 

∑
=

=
m

k
kjiji swwdepwwdf

1
),,(),(

∑
∈

=
Evv

ji
ji

vvdfGdf
),(

),()(



 

 

relations 
Procedure: 

(1) For each sentence sk ∈  D Do 

(2)   For each wi, wj∈W(sk) set df(wi, wj) = 0;

(3)   do dependency structure analysis and 
co-occurrence analysis for sk 

(4)   For each wi, wj∈W(sk) D o 

(5)     If wi is depends on wj, or wi co-occurs 
with wj Then  

(6)      dep(wi,wj,sk)= 1; 

(7)      df(wi,wj)= df(wi,wj)+1; 

(8)   End; 

(9) End; 

(10) For each (wi, wj) Do 

(11)   If df(wi,wj)> δ, Then  

(12)     E=E∪ {(wi,wj)} 

(13) End; 

Fig. 2 Building dependency graph 
 

3.2. Extracting Triangles 
 
We now propose the algorithm for key sentence 

extraction from a given single document. In  Fig. 3, we 
use the following notations. 

- N(vi): neighborhood of node vi 
- d(vi): degree of node vi 
- df(wi, wj): dependency frequency between wi node 

wj   
- tf(wi): word frequency or term frequency of word 

wi  
 

Algorithm TriangleSum 
Input: 

– D: documents to be summarized,  
– S: a set of stop words.  
– δ: threshold for high frequent words 
– λ: threshold for high frequent dependency 

relations 
– μ: threshold of clustering coefficient 
– t: number of triangles to extract 

Output: 
– S: a set of key sentences   

Procedure: 
1） . Process D and construct dependency graph 

G=(V, E),where 
V = getHighFreq(D, δ) - S;  
E = getDependency(D, λ); 

2） . For each e ∊ E, if {e} is a cut, E=E-{e} 
3） . For each v ∊ V, if d(v)=0, V=V-{v} 
4） . For for v ∊ V compute ccf(v)  
5） . If ccf(v) <μ then V=V-{v} 
6） . Do breadth-first search on each connected 

partial graphs of G and extract all triangles T 
7） . For each triangle Ti ∊ T and compute df(Ti), 

dependency weight of Ti 
8） . Extract t triangles {T1, T2, …, Tt} with largest 

dependency weight 
9） . Identify sentences that contain at least one 

triangle  
Fig. 3 Algorithm of key sentence identification 

 
With the extracted triangles, summarization of a 

document can be easily approached in different ways. 
(1) Entrance sentences. Extract sentences on the 

entrance of the paragraphs containing more triangles. 
The rationale behind this approach is that bushy 
paths (or paths connecting highly connected 
paragraphs) are more likely to contain information 
central to the topic of the article. 

(2) Anchored sentences. Extract sentences anchored with 
more triangles. In this approach, triangles are used to 
indicate important sentences.  

For example, given the following document, we can 
construct a TriangleSum as shown inFig. 4. Based on this 
graph, we can extract two triangles. Two triangle are A1 = 
{海軍，空母，派遣}, A2 = {海軍，軍事演習，行う}. Based 
on these triangles, we can extract the first sentence as one 
summarization. 

米海軍は昨年１０月にも韓国海軍との合同軍事演

習を行うため、黄海に空母「ジョージ・ワシントン」

を派遣しているが、偶発的な軍事衝突が起きる危険

性の高まる  中での派遣は初めてだ。オバマ大統領

は２日、韓国関係の会合に向け、「北朝鮮によるい

われのない攻撃に対し、韓国国民に深い哀悼の意を

捧げる」との声明を出した。  

 
Fig. 4 Example of TriangleSum 

 
 To implement the proposed algorithm, we need efficient 
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computation of local clustering coefficient for each node 
in V and extraction of all triangles from each connected 
partial graphs. Both require efficient algorithm for 
triangle identification. Next we will describe a 
breadth-first search based triangle identification 
algorithm. 

A triangle is represented as a triple <u, v, w> where u, v, 
w ∊ V and each node is adjacent to the other two. To 
identify a triangle, we do a breadth-first traversal for the 
given graph, from a starting node. Check nodes in the 
neighborhood to see if any of them are connected to each 
other.  

 
Fig. 5 Example of triangle identification 

 
In Fig. 5, after v is visited, the neighborhood N(v) of v 

will enter the queue. At this time, we can check if there 
are any edges between them. An edge between two 
neighbors indicates a triangle. In this example, there is an 
edge between node u and w. Since both of u and w are 
neighbors of v, <u, v, w> is identified as a triangle. 
 

Algorithm TriangleCheck 
Input: 

– G=(V, E): an undirected connected simple 
graph (at most on edge between any pair of 
nodes) where , 
V: a set of nodes and, 
E: a set of edges  

– N(v): neighborhood of v ∊ V 
– v0 ∊ V: starting point of breadth-first traversal
– q: queue for breadth-first traversal 

Output: 
– T: a set of triangle in G  

Procedure: 
1） . T=∅;  
2） . For each v ∊ V, v.flag = 0;  
3） . q.enqueue(v0);  
4） . While (not q.empty()) { 
5） .   v = q.dequeue(); 

6） .   v.flag=1;  // mark for visited 
7） .   For each u ∊ N(v) { 
8） .     If (u.flag==0) {  
9） .       q.enqueue(u); 
10） .     For each w ∊ N(u) ∩N(v) { 
11） .       T=T∪{<u,v,w>} 
12） . Output T; 
Fig. 6 Identifying triangles from graph 
 
The algorithm shows that from the starting point, all 

child nodes obtained by expanding a node are added to a 
queue which works as first in, first out. It means nodes 
that have not yet been examined for their neighbors are 
placed in some container, such as a queue or linked list 
called "open" and then once examined, the nodes will be 
placed in the container called "closed" until all the nodes 
are visited. It's easy to show if there is no such nodes are 
explored, there are no triangles. 

 

4. Experiment and Evaluation 
For experiment implementation, we use a Japanese 

morphological parser called juman to get the high frequent 
words in a given document at first.  
usage: juman -[b|B|m|p|P] -[f|c|e|E] [-i string] [-r rc_file] 

Options: -b : show best path; -B : show best path 
including homographs (default); -m : show all morphemes; 
-p : show all paths; -P : show all paths by -B style; -f : 
show formatted morpheme data; -c : show coded 
morpheme data; -e : show entire morpheme data; -e2 : -e 
plus semantics data (default) ;-E : -e plus location and 
semantics data; -V : not search voiceless morphemes; -R : 
not recognize adverb automatically; -L : not search 
normalized lowercase; -i : ignore an input line starting 
with 'string'; -r : use 'rc_file' as '.jumanrc'; -v : show 
version.  
  For example, the command shown below processes a 
given document which is named ‘sample’ and saved as .txt 
formation. 

「%% juman -b -e2 < sample.txt > sample.jmn」  
Both ‘sample.txt’ and ‘sample.jmn’ in the command are 

plain text files. The ‘sample.jum’ file contains the entire 
morpheme data. If the content of the file ‘sample.txt’ is a 
sentence 「私は猫です。また名前がないです。」Then, the 
output result is shown in Fig. 7. In this example, the 
symbol ‘EOS’ means “end of sentence”. 
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Fig. 7 Result of morphological analysis 
 

And then is to obtain the words which are frequently 
occurred in the document. A program called getHighFreq() 
is used to count frequency of each word in the document. 
The getHighFreq() program accepts the results of 
morphological analysis output by Juman, checks and 
counts the occurrences of each word one line by another. 
Here, there are two points should be paid attention. First, 
the meaningless words (stop words) should be filtered out. 
Second, a threshold δ  for high frequency words is given 
to determine how many words should be selected as 
members of HighFreq.  

The command can be used as follows: 
「%% juman –b –e2 < sample.txt | perl getHighFreq.pl –」 

In the example given above, the words “は”, “です”, 
and “が” are the stop words, so they should be filter out 
from the counting object. The result looks like below: 

About the threshold δ , the result of getHighFreq is 
empty set if the input value of δ >1. The result of 
getHighFreq is {私 ,猫 ,また ,名前 ,ない} if the input value 
of δ=1 because the occurrence frequency tf(w) of all 
words are 1.   

The second step is to compute the frequency of 
dependency relationship. A Japanese language dependency 
relationship parsing tool called knp is used to analyze the 
dependency relationship among all of the words at this 
step. The command for getting high frequency dependency 
relations by knp is shown as follow: 

「%%juman –e2 –B<sample.txt | knp」  
There are several options for this tool:  

(1) How well:  
-bnst: phrasal units;  
-dpnd: including dependency structure;  
-case: including syntactic information; 

(2) Output format: 
[-tree|-bnsttree|-sexp|-tab|-bnsttab];  

(3) [-normal|detail|debug] [-expand];  
(4) [-C host:port] [-S|F] [-N port]; 
(5) [-timeout second] [-r rcfile]. 

 

Fig. 8 Result of dependency analysis 
 
We use the same example file which mentioned above to 

demonstrate the dependency relation analysis among all of 
the words in the given document. In order to extract 
dependency structure by program automatically, the output 
of knp should be easily handled. The parsing tool knp also 
provide phrasal unit based output.  

There are 3 phrasal units in the output result, denoted 
by ①～③ (annotations are added by the author.) Each 
phrasal unit begins with an asterisked number with a letter 
‘D’. The number (double underlined) indicates the 
phrasal unit it is dependent on. For example, 
phrasal unit ①  ‘私は猫。 ’ (I am a cat.) depends on 
the phrasal unit ③  ‘ない ’ (no). It is straightforward 
to extract the dependency relation as: 

dep(‘私は猫 ’, ‘ない ’)=1 
The performance of the proposed algorithm is 

determined by a number of experiment results. Firstly, 
performance of natural language processing is crucial. 
Currently precision of syntactic structure analysis for 
Japanese documents remains around 80%.  

Secondly, the proposed algorithm uses a stop word list 
to eliminate meaningless words. Thus identifying stop 
words is also important. 

Finally, we have employed a set of parameters to 
control the numbers of nodes and edges for triangle 
finding.  

There are three steps contained in the setup of the 
experiments. Firstly, the document D is analyzed by juman 
and knp so that the high frequent words could be extracted 

# S-ID:1 KNP:3.01-CF1.0 DATE:2011/02/07 SCORE:-42.15779 

  私は──┐      

     猫です。<P>─┐ ………………………………①  

  また──┐   │  

名前が──┤   │ ………………………………②  

   ないです。<P>─ PARA…………………………….③  

EOS 

私  わたし  私  名詞  6 普通名詞  1 * 0 * 0 "代表表記 :私 /わたし  

漢字読み :訓  カテゴリ : 人 " 

は  は  は  助詞  9 副助詞  2 * 0 * 0 NIL 

猫  ねこ  猫  名詞  6 普通名詞  1 * 0 * 0 "代表表記 :猫 /ねこ  漢字

読み :訓  カテゴリ : 動物 " 

です  です  だ  判定詞  4 * 0 判定詞  25 デス列基本形  28 NIL 

。  。  。  特殊  1 句点  1 * 0 * 0 NIL 

また  また  また  副詞  8 * 0 * 0 * 0 "代表表記 :又 /また " 

名前  なまえ  名前  名詞  6 普通名詞  1 * 0 * 0 "代表表記 :名前 /

なまえ  カテゴリ :抽象物 " 

が  が  が  助詞  9 格助詞  1 * 0 * 0 NIL 

ない  ない  ない  形容詞  3 * 0 イ形容詞アウオ段  18 基本形  2 

"代表表記 :無い /ない  反義 :動詞 :有る /ある " 

です  です  です  助動詞  5 * 0 無活用型  26 基本形  2 NIL 

。  。  。  特殊  1 句点  1 * 0 * 0 NIL 

EOS 



 

 

and the dependency relationship among all these words 
could be analyzed. This process is mentioned above, and a 
series of experiment results is demonstrated.  

Then, we need to find out the number of triangles from 
the formed graph manually. What we need to pay attention 
in this step is the set of given parameters, because the 
number of triangles is determined by the set of parameters.  

For example, define the values of δ ,λ , and μ are 1, 
most of the high frequent words can be extracted and 
connected by edges. These procedures are done by 
computer automatically. With the dependency analysis 
result of a given document D, we could find out 62 
triangles in the graph. Next, we are going to locate these 
triangles in each paragraph so that the sentences which 
represent the main points could be extracted. The result 
for each paragraph will be summed up in order to 
demonstrate the average extraction precision.  

At last, the precision of experiment results are 
needed to be evaluated. This process is also done 
manually. The procedure is to compare the correctly 
identified key sentences with the real key sentences 
which are marked by human. This could be denoted 
as below: 

 
humanbysentenceskeyreal
sentenceskeyextractedcorrectlyprecision=  

The data of table 1 shown below demonstrates the 
precision of experiment results for the given 
document D.  

Tab. 1 Experiment Results 
 P.1 P.2 P.3 P.4 P.5 P.6 P.7 P.8

Triangles 5 12 11 13 4 6 6 3 

Precision 100
% 

50
% 

60
% 

40
% 

80
% 

60
% 

50
% 

90
% 

 
In Tab. 1, the alphabet “P” in the first line stands for 

paragraph. The values in the second line stand for the 
number of triangles which contained in one paragraph. In 
the third line, the percentage shows the extraction 
precision of key sentences which represent the viewpoint 
of the document D.  

 

5. Concluding Remarks 
In this paper we proposed a novel algorithm called 

TriangleSum for automatic extraction of key sentences 
from electronic documents. The proposed algorithm 
works on single document without training data so that 
training cost could be removed. TriangleSum is supposed 

to efficiently extract heavy triangles as anchor points of 
key sentences from the input document. These triangles 
can then be used to identify sentences that central to the 
topic of the document.  
   We have described an efficient method to extract 
triangles from connected graph. When running on real 
world documents, we have to tune the some thresholdsλ,

δ andμ. Also the proposed algorithm relies on high 
quality results of morphology parsing and syntactic 
parsing. 
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