
DEIM Forum 2011 C10-5

Power-Proportionalityの概念に基づく
ストレージシステムの実機実験による性能評価

レーヒェウハン† 引田 諭之† 横田 治夫†

† 〒 152-8552　東京都目黒区大岡山 2–12–1，
東京工業大学大学院 情報理工学研究科 計算工学専攻

E-mail: †{hanhlh,hikida}@de.cs.titech.ac.jp, ††yokota@cs.titech.ac.jp

あらまし 近年，Power-proportionalityという概念がストレージシステムの重要な評価指標の一つとして認識されて

いる．この概念に基づき，Power-proportionality を満たすためのデータ配置や負荷分散などの研究が盛んに行われて

おり，システムにいい影響を与えると評価されてるが，直接に同様な環境における評価実験はまだ行われていない．

そこで，本稿では二つの代表的な手法を選択し実機実験による性能評価を行い，実験結果を報告する．

キーワード 電力性能比，ストレージシステム，省電力，実機実験，PARAID，RABBIT，HDFS

Performance Comparison of Power-Proportional Approaches in

Storage Systems through Empirical Experiment

Hieu Hanh LE†, Satoshi HIKIDA†, and Haruo YOKOTA†

† Department of Computer Science, Graduate School of Information Science and Engineering,

Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro, Tokyo, 152–8552 Japan

E-mail: †{hanhlh,hikida}@de.cs.titech.ac.jp, ††yokota@cs.titech.ac.jp

Abstract Nowadays, the concept of power-proportionality has been recognized as one of important metrics in

storage systems. Based on this idea, a number of proposals focusing on data placement, load balancing and so on

have been proposed and evaluated to be successful in providing such characteristic to storage system. In this paper,

the empirical experimental evaluation on performances of representative data placement proposals in this area is

reported.

Key words power-proportionality, storage system, power-aware, empirical experiment, PARAID, RABBIT,

HDFS

1. Introduction

Recently, power savings in datacenters has gained a lot

of interest due to the increase in power delivery. As indi-

cated in [1], the electricity used in all datacenters in the US

in 2006 has more than doubled since 2000. Furthermore, of

all end-use components, such as site infrastructure, network

equipment, servers, etc., disk storages have been recognized

as the greatest growth at a compound annual growth rate

(20%). This trend will continue as data intensive applica-

tions demand fast and reliable to online data resources.

Until now, almost all of disk-based power-aware storage

systems have tried to save energy by leveraging the differ-

ence in power consumption among different operation modes

of disks [2], [3]. In these approaches, the system is able to

decide to spin down disks from their usual high energy con-

sumption mode (active/spin-up) into a low energy mode (in-

active/standby) after observing an idle period when no re-

quest comes. However, this technique is implemented at the

trade off performance (response time) penalty. Disks can

only serve requests while they are in active mode. Once the

request arrives into the inactive disk, it should be wait for a

certain penalty time for the disk to be waked up before being

served.

As the results, rather than simple power saving, achiev-

ing power-proportionality in datacenters has been gained

more and more attention and considered as an important

design factor [4]. The basic concept in power-proportionality

is that computing equipment, such as storages, servers, net-

works should consume energy in proportion to the amount of



work performed. Specially for storage, power-proportionality

can be achieved through data placement method by control-

ling the total number of active disks (or nodes) in the sys-

tem. Taking this concept into consideration, a number of

data placement policies have been proposed in order to pro-

vide this metric to disk-based storage systems [5], [6], [7], [8].

These approaches are common in the way of managing en-

ergy in a group of disks instead of controlling a single disk

individually. The technique that supports these approaches

is data replication, which is currently very useful in datacen-

ters for good availability, fault tolerance and load balancing.

In power-aware systems, replication also benefits the pos-

sibility of selecting a replica in current active disks rather

than choosing another replica stored in a disk which is in

sleep mode. In order to achieve this idea, at first the sys-

tems divide all their storage disks into certain small groups.

And each group, which contains different number of disks,

is ensured to store all necessary data for guaranteeing the

availability of systems. By controlling power management

in the granularity of group, those approaches are considered

to be success in providing the power-proportional metric to

storage systems.

Although a number of proposals, introduced like above,

are evaluated to be success at certain circumstances, how-

ever they have been still not compared with each other in

the same environment yet. Hence, in order to identify the

characteristics of each proposal, the performance compari-

son of so called methods is needed. In this paper, we de-

cide to choose two representative proposals, i.e. PARAID [5]

and RABBIT [8] and perform empirical experiment on ac-

tual machines to compare their performance in the context of

power-proportionality. While PARAID inspires many other

researches by its idea of controlling system’s power over small

groups, RABBIT is the novel work adapted to implement on

HDFS which is very popular in distributed computing area.

Furthermore, taking availability and scalability into con-

sideration, we perform the experiments over HDFS (Hadoop

Distributed File System) [9], a popular distributed file system

for high scalability and availability. In our knowledge, in the

current time, the idea of PARAID is just implemented in

simulation or under the small scale of several RAID disks [5].

From the experiment results, it is found out that both

two methods can provide power-proportionality to system

in distributed environment where distributed I/O is needed.

Moreover, because of gaining better-balanced data distribu-

tion, RABBIT is measured to achieve better performance

than PARAID in our experiment.

The paper is organized as follow. Section 2 gives a detail

description of PARAID, RABBIT, and a brief review of other

approaches in power-proportional storage systems. Section

3 is planned to describe and report the experiment results

on actual machines. The conclusion and future works will be

summarized in Section 4.

2. Power-Proportional Storage System

Approaches

In this section, the data placement and power management

to implement power-aware storage systems used in PARAID

and RABBIT are described. And then, some other proposals

in this approach are also introduced briefly.

Although not like RABBIT, PARAID was originally de-

signed inside a RAID unit, the idea can be expanded to dis-

tributed environment that contains a large number of nodes

connected through network. In this context, a node is de-

fined as an array of disks managed together with respect to

energy control. Thus, a node is a collection of disks and there

is no disk sharing between nodes. In this part, we describe

the modified skewed data placement in PARAID in order to

apply in distributed environment.

Both of these proposals are based from the idea of dividing

the total number of disks in the system into small groups.

Consequently, the system then contains a certain number of

gears that include number of groups. A low gear with small

number of powered disks is supposed to consume low power

and vice versa.

Given a dataset D with total B blocks, a total number of

nodes N are divided into G groups. Each group contains a

different number of nodes. In detail, each node is symbolized

as n(g,i), where g (1 <= g <= G) , i (1 <= i <= N) indicate i-th of

node at g-th group. For example, nodes n(1,1), n(1,2) belong

to Group 1, while nodes n(2,3), n(2,4) and n(2,5) belong to

Group 2. Note that, to normally operation, the system need

at least all disks in Group 1 are powered.

2. 1 PARAID

PARAID is the first work to introduce the concept of gear-

shifting based on load of system within a RAID unit. It

utilized the idea of skewed striping pattern to adapt to the

system load by varying the number of powered disks.

2. 1. 1 Data Placement

PARAID takes advantage of unused storage in disks to

replicate and stripe data blocks in a skewed fashion. Then,

disks could be organized into a number of sets of RAIDs.

Each set defining as gear, contains a different number of

disks and can serve all requests via either its primary blocks

or replicated block.

In PARAID, at first, all data D of B blocks are allocated

evenly to all nodes. We denote by Bi(
1
m
) an 1

m
fraction of

Bi. After replication, each node will hold a certain replica

in addition to its original data as follows: (a) Each node

in Group 1 nodes gets an equal fraction of the replicated



Table 1 PARAID data placement

Group 1 nodes Group 2 nodes

Node n(1,1) n(1,2) n(2,3) n(2,4) n(2,5) n(2,6) n(2,7)

Original B1 B2 B3 B4 B5 B6 B7

Replica B3(
1
2
) B3(

1
2
)

B4(
1
2
) B4(

1
2
) B4(

1
3
)

B5(
1
2
) B5(

1
2
) B5(

1
4
) B5(

1
4
)

B6(
1
2
) B6(

1
2
) B6(

1
5
) B6(

1
5
) B6(

1
5
)

B7(
1
2
) B7(

1
2
) B7(

1
6
) B7(

1
6
) B7(

1
6
) B7(

1
6
)

data from each node of other groups; (b) Remaining nodes

keep replicas of original data from specific other non-Group

1 nodes in skewed way. Specifically, the original data Bi

of a non-Group 1 node n(g,i)(g > 2) are replicated equally

to other non-Group 1 nodes. This is done by selecting 1
i−1

blocks of Bi for each node n(g,j) (j < i). Table 1 indicates

a simple example of placing data through a storage cluster

with 7 nodes and two groups. Here, the system is able to

operate in two gears. Gear 1 contains only active disks in

Group 1 while Gear 2 needs all disks in both Group 1 and

Group 2 to be spin-up.

Through the above techniques, PARAID is considered to

be able to provide the power-proportional characteristic that

performance is proportional with the power consumption of

the system.

2. 1. 2 Power Management

In PARAID, there exists a Monitor to decide when a gear

shift is needed based on the current system load.

a ) Up-shifts:

In order to decide when to up-shift, the Monitor must know

whether the current gear has reached a predetermined uti-

lization threshold, in the meaning of busy RAID period (mil-

liseconds) within a certain time window. An active disk is

marked busy from the point when a request enters the disk

queue to when the completion callback function is invoked.

Since multiple requests can overlap, a request that be com-

pleted in t milliseconds then the device serve that request is

mark prior t milliseconds busy.

The Monitor keeps a moving average of utilization 0 <=

U <= 1 and a moving standard deviation S for each gear to

track the system load. If the utilization plus its standard de-

viation is greater than the threshold 0 <= T <= 1, an up-shift

is performed.

U + S > T (1)

b ) Down-shifts:

To decide when to down-shift, the utilization of the lower

gear 0 <= U ′ <= 1 needs to be computed, with also the asso-

ciated moving standard deviation S′. If their sum is below

Table 2 RABBIT data placement

Group 1 nodes Group 2 nodes

Node n(1,1) n(1,2) n(2,3) n(2,4) n(2,5) n(2,6) n(2,7)

Data B
2

B
2

B
3

B
4

B
5

B
6

B
7

the threshold T , the lower gear can now handle the current

load.

U ′ + S′ < T (2)

2. 2 RABBIT

RABBIT is a power-proportional distributed file system

(PPDFS) that uses a cluster-based storage data placement

to provide power-proportional factor.

2. 2. 1 Data Placement

Supposedly r replicas of B blocks of dataset D are desired

to be stored to n nodes with G gears. At first, one replica

of all B blocks are evenly stored in first primary p nodes

at Group 1 (also called primary group). Consequently, each

node in Group 1 contains B
p

blocks. The remaining (r − 1)

replicas are distributed to (N − p) nodes in the way that the

node n(g,i), where g > 2 and p < i <= N , stores B
i
blocks.

Here, in the constrain of keeping number of replica r small

with fixed number of nodes RABBIT can guarantee that the

number of blocks stored by i-th node must not be less than
B
N

for all i <= N when N nodes are active. Obeying this

constrain makes it possible for the load to be shared equally

among active nodes. Thus, the performance of the system

is suggested to be linear with the number of powered nodes,

i.e. implicitly corresponds to the power consumption of the

system.

Table 2 shows an example of data placement in RABBIT

for a 7-node cluster with two primary nodes and 2-replica. It

is well recognized that 5 nodes in Group 2 store are enough

for storing the necessary data of second replication. Like

PARAID, the system in RABBIT can operate in two gears.

The first gear includes active disks in Group 1 and the second

gear needs the disks in Group 2 joining the systems.

2. 2. 2 Power Management

In [8], the authors have not proposed the mechanism of au-

tomatic control the gear shifting yet. However, the idea in

PARAID, i.e. based on utilization of system is considerable.

2. 3 Others

Like PARAID, GRAID [6] is a green storage architecture

aiming for improving energy efficiency and reliability within

RAID unit. In this proposal, the data mirroring redundancy

of RAID10 is extended by incorporating a dedicated log disk.

The function of this log disk is to store all updates since last

mirror-disk update. Using these information for log disk, the

system only needs to update the mirroring disks only peri-



Client
Workload

Generation

Storing 

Node

Storing 

Node

Storing 

Node

Storage

Server

Name 

System

Throughput,

Power consumption

Namenode

Multimeter

A

A

Switch

Figure 1 An overview of system framework

odically, thus being able to spin down all the mirroring disks

to lower power mode most of the time to save energy.

Also designed as a power-proportional, distributed file sys-

tem as RABBIT, SIERRA [7] is a replicated object store that

allows storage servers to be put into low power states when

load is low. This allows servers hosting inactive replicas to be

powered down. For example, in three-way replicated system

like in normal HDFS or Google File System, SIERRA allows

up to 2
3
of the storage servers to be in standby. Comparing

with RABBIT, SIERRA’s data placement is simpler as all

storage servers keep the same amount of data.

3. Experiments

The purpose of the experiments is to compare the perfor-

mance of PARAID and RABBIT in the context of power-

proportionality. Because RABBIT is still not implemented

write function yet so in the cover of this paper, we focused

on read performance only. Furthermore, as PARAID was

originally designed within RAID unit, in this experiment,

in order to be comparable with RABBIT, the idea of data

placement in PARAID was extended to be implemented on

HDFS like in RABBIT.

At first, two methods are compared in the context of

power-proportional by using a short synthetic workload

started from one client node. And then, an comparative eval-

uation’s result of these two methods when applying bench-

mark that utilizes distributed I/O over storage system is dis-

cussed. In this part, the module of automatic gear shift dis-

cussed at Sec. 2. 1. 2 is still not implemented yet and left

as future work. Memory at each node is deleted after each

running in this experiments.

3. 1 Synthetic Workload Experiment

3. 1. 1 Experiment Environment

An overview of the experiment framework is shown in

Fig. 1. There are four main elements in our framework.

Firstly, in storage, we use a number of Storing nodes which

play a role of Datanode as in HDFS. Each Storing nodes is

an autonomous disk designed for low power consumption.

Next, in order to implement data placement and to manage

information about data location such as which Storing node

is containing what data, a Namenode is used. At this Namen-

ode, the source codes relating to data placement of normal

HDFS are touched to make it available to implement the lay-

out policy of RABBIT and PARAID. Furthermore, storing

data is mounted to this Namenode based on the Filesystem

in Userspace project FUSE [10]. Over this system, a web

server service is set up to serve requests from clients.

To generate requiring data requests to server, one Client

node is used. At this node, some other tasks such as logging

to extract each request’s response time are also implemented.

Finally, to measure the power of Storing nodes, we used

Hioki 3334 digital multimeter. This multimeter is made con-

nect with another Windows XP node for saving measurement

results.

The interconnect between Client node and Namenode is

Extreme Network Summit 16101 Gigabit Ethernet switch.

Client and Namenode, the switch and Storing node is con-

nected directly through CAT-5e cable.

In this system, at first, the Namenode needs to write whole

dataset into the storages and after that, the server is ready to

serve requests. As presented in Fig. 1, supposing that there

is a request requiring data A is started from Client. When

it arrives at server, the server service makes a request to

Namespace a service of HDFS to get the information about

which Storing nodes is containing data A. In next step, the

server directly connects to the responsible Storing node to

download data A, and send back to Client.

The specification of Client, Namenode and Storing nodes

are summarized in Tab. 3.

3. 1. 2 Experiment Results

In this part, the effective of each system relating to the

ratio between each request’s throughput and system’s power

consumption is presented. At first, the power consumption

of one Storing node is measured. And then an experiments

on system’s performance and the power consuming in that

serving period with given synthetic workload is discussed.

a ) Power consumption of one Storing node

To investigate the system’s power performance, the infor-

mation about power consumption of a single Storing node is

needed. Table 4 summaries the result for the Storing node

using in this experiment.

As noted in previous section, the model Storing node using

in this experiments are designed for low power consumption

so, comparing to other normal system, its power consump-



Table 3 Nodes specification

Client Namenode Storing node

CPU Intel Core 2 Quad 2.40GHz Intel Pentium 4 3.00GHz Transmeta Efficeon TM8600 1.0GHz

Memory SDRAM 2048MB SDRAM 1024MB DRAM 512MB

HDD SATA 320GB SATA 250GB IDE 100GB

Network Interface Card 1000Mb/s 1000Mb/s 100Mb/s

OS Linux 2.6.18 Linux 2.6.18 Linux 2.6.18

Java JDK-1.6.0 JDK-1.6.0 JDK-1.6.0

HDFS - 0.20.2 0.20.2

Table 4 Power consumption for a single Storing nodes

Node status Power consumption [Watt]

Normal 10.35

Standby 9.45

(hard disk’s spindle motor is off)

Sleep 9.30

(hard disk is shut down)

Hibernation 3.36

(only hard disk is on)

Table 5 Workload Parameters

Workload Parameters Value

Experiment duration 30 minutes

Read:Write 1:0

File size 1000 [MB]

Number of files 1000

Total amount of data 1 [GB]

Data access distribution Zipf

Access time distribution Poisson

Zipf parameter 1.2

Average arrival period (request/s) λ 5

Number of requests 9000 (λ× 60× 30)

tion was quite small. Also, from this result, the hard disk in

our model is discovered to consume just about 1[W] in prac-

tice. As the result, it is very difficult to evaluate PARAID

and RABBIT in the context of power-proportional if only

powering off the hard disk in low gear, i.e. small number of

active Storing nodes. So, we decided to hibernate all inactive

Storing nodes in low gear because at that status they use up

to 3.4[W] (30% of total node).

b ) Power-proportional characteristic of whole system

The parameters of synthetic workload using in this experi-

ment are shown in Tab. 5. For each RABBIT and PARAID,

we run two kinds of scenario. The first one is running the

system with total 7 Storing nodes. The second scenario is

running with 2 active Storing nodes while 5 others were man-

ually set to hibernate. Each scenario was run twice and we

measure the average power consumption also extract the av-

erage throughput from log files at Namenode.

Figures 2 show a relationship between average throughput

and average power consumption results at storage system for

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40 74.5

A
v

e
ra

g
e

 t
h

ro
u

g
h

p
u

t 
[M

b
/

s]
Average power consumption [W]

RABBIT

PARAID

Figure 2 System performance

cases of 2, 7 active Storing nodes.

X-axis of this figure shows the different power consump-

tion between two scenarios, i.e, running 2 and 7 active Stor-

ing nodes. The latter consumed about 35[W] more than the

former. That is because there were 5 Storing nodes is hi-

bernated, and each nodes at hibernate status saved approx-

imately 7[W], as in Tab. 4.

Also it is seen from y-axis that the throughput of system

in both methods (RABBIT and PARAID) were not much

improved comparing to the case only 2 active Storing nodes

were active (8% at maximum). However, the power con-

sumption was increased about 86%. Consequently, it can be

concluded that in this scenario both 2 methods were failed

to provide power-proportionality.

Overall, it is hard to identify the difference between two

methods. The considerable main reason is due to there is

no big difference in performance between two methods when

the setting configuration of system changes from low mode to

high mode (2 to 7 active Storing nodes). This is because in

this scenario read requests were initialized by a single client,

and the load to system was not high enough to fully take

advantage of parallel processing which is one of important

feature in distributed environment. In next part, the per-

formance of two methods is evaluated by using a benchmark

that uses HDFS to perform distributed I/O over storage.

3. 2 Distributed I/O Experiment

In this part, the comparative evaluation result of two meth-

ods in distributed I/O manner is reported.



0

0.5

1

1.5

2

2.5

3

3.5

4

45.8 63.3 89.4

A
v

e
ra

g
e

 t
h

ro
g

h
p

u
t 

[M
b

/
s]

Average power consumption [W]

RABBIT

PARAID

Figure 3 Performance vs. Power Consumption

3. 2. 1 Experiment Environments

The performance of two methods is tested using TestDF-

SIO, a bechmark requiring distributed I/O over HDFS, with

2 GB dataset containing 20 files and each file’s size was 100

MB. Here, the block size of HDFS was changed to 4 MB for

guaranteeing one file’s data was allocated over all Storing

nodes in storage. During the experiment, the corresponding

power consumption of storage partition were measured by

using multimeter Hioki 3340. In this experiment, the same

type of Namenode and Storing nodes used in previous ex-

periment were used and the number of active Storing nodes

was fixed at 2, 4 and 7 nodes. Inactive nodes were set to

hibernation.

3. 2. 2 Experiment Results

The relationship between system’s throughput and power

consumption is shown in Fig. 3. In this figure, the x-axis

shows the average power consumption when the number of

active nodes was set to 2, 4 and 7 accordingly. The y-axis

shows the average throughput in [MB/s] taken from bench-

mark TestDFSIO.

From this figure, it can be seen that the performance of

system was quite linearly increased when changing the con-

figuration of storage system by raising the number of active

nodes. In both methods, the average throughput was im-

proved at least 1.65 times. This result shows the effective

of two data placement policies in order to provide power-

proportionality in distributed environment.

Comparing two methods, it is observed that RABBIT

slightly overcame PARAID at most 8% when all Storing

nodes were active. Further investigation was performed to

find out the reason behind this result.

Figures 4 and 5 show the average storing blocks at each

Storing nodes and the standard deviation when the number

of active Storing nodes was changed. From this result, in this

experiment, it is seen that RABBIT obtained better distri-

bution of total blocks to active Storing nodes than PARAID

due to smaller values at both cases. It shows the importance

0

50

100

150

200

250

300

350

2 4 7

A
v

e
ra

g
e

 n
u

m
b

e
r 

o
f 

b
lo

ck
s

Number of active storing nodes

PARAID

RABBIT

Figure 4 Average number of blocks storing at each Storing nodes

0

20

40

60

80

100

120

2 4 7

A
v

e
ra

g
e

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Number of active storing nodes

PARAID

RABBIT

Figure 5 Average standard deviation

of well balancing data distribution over Storing nodes in data

placement in order to provide high performance.

4. Conclusions and Future Work

The power-proportionality has been found out to be an im-

portant design metric in power-aware storage systems. Cur-

rently, almost all of researches focused on dividing total num-

ber of disks to small groups by leveraging replication tech-

niques. By managing energy in granularity of small group,

the systems can achieve power-proportionality.

This paper described two most representative efforts focus-

ing on data placement and energy control. Here in this exper-

iments, the idea of PARAID which was originally design for

RAID unit has been extended to be applicable in distributed

environment like HDFS for the first time. In order to com-

paratively evaluate these two methods in the context of

power-proportionality, the experiment on read performance

was performed. From the experiment results, for application

requiring distributed I/O over storage system, both meth-

ods were seen to succeed in providing power-proportional

metric as average throughput raised when approving higher

power consumption. Because of smaller deviation in dis-

tributing data over Storing node, RABBIT was confirmed to

have higher, at most 8%, throughput than PARAID.

In the future, we would like to perform other comparative



evaluation between these two methods, such as write perfor-

mance with larger data set. Furthermore, note that in our

experiment, the model of Storing node was design for low

energy consumption, as the result, in the future work, the

other models closed to models using in normal datacenters.

Acknowledgements

This work is partly supported by Grants-in-Aid for Scien-

tific Research from Japan Science and Technology Agency

(A) (#22240005) and MEXT (#21013017).

References

[1] U.S. Environment Protection Agency ENERGY STAR Pro-

gram, “Report to Congress on Server and Data Cen-

ter Energy Efficiency,” http://www.energystar.gov/ia/

partners/prod development/downloads/EPA Datacenter Report

Congress Final1.pdf, 2007.

[2] D. Colarelli, and D. Grunwald, “Massive Arrays of Idle

Disks for Storage Archives,” in the Proceeding of the 2002

ACM/IEEE conference on Supercomputing, pp. 1–11, Los

Alamitos, CA, USA, 2002, IEEE Computer Society Press.

[3] E. Pinheiro, and R. Bianchini, “Energy Conservation Tech-

niques for Disk Array-Based Servers,” in the Proceedings of

the 18th Annual International Conference on Supercomput-

ing, pp. 68–78, New York, NY, USA, 2004, ACM.

[4] B.L. Andre, and H. Urs, “The Case for Energy-Proportional

Computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[5] W. Charles, O. Mathew, Q. Jin, W.A.I. Andy, R. Peter, and

K. Geoff, “PARAID: A Gear-Shifting Power-Aware RAID,”

Transaction on Storage, vol. 3, October 2007.

[6] B. Mao, D. Feng, H. Jiang, S. Wu, J. Chen, and L. Zeng,

“GRAID: A Green RAID Storage Architecture with Im-

proved Energy Efficiency and Reliability,” in the Proceed-

ing of IEEE International Symposium on Modeling, Anal-

ysis and Simulation of Computers and Telecommunication

Systems, 2008. MASCOTS 2008., pp. 1–8, September 2008.

[7] E. Thereska, A. Donnelly, and D. Narayanan, “SIERRA: a

Power-Proportional, Distributed Storage System,” , 2009.

[8] A. Hrishikesh, C. James, G. Varun, G. Gregory R.,

K. Michael A., and S. Karsten, “Robust and Flexible Power-

Proportional Storage,” in the Proceeding of the 1st ACM

Symposium on Cloud Computing, pp. 217–228, New York,

NY, USA, 2010, ACM.

[9] “Hadoop,” http://hadoop.apache.org.

[10] “Fuse: File system in userspace,” http://fuse.sourceforge.

net.


