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Abstract Encryption is a well-studied technique for protecting the privacy of sensitive data. However, encrypt-

ing relational databases affects the performance during query processing. Multivalued-Partial Order Preserving

Encryption Scheme (MV-POPES) allows privacy-preserving queries over encrypted databases with reasonable over-

head and an improved security level. It divides the plaintext domain into many partitions and randomizes them

in the encrypted domain. Then, one integer value is encrypted to different multiple values to prevent statistical

attacks. At the same time, MV-POPES preserves the order of the integer values within the partitions to allow

comparison operations to be directly applied on encrypted data. However, MV-POPES supports range queries at

a high overhead. In this paper, we present some optimization techniques to reduce the overhead for range queries

in MV-POPES by simplifying the translated condition and controlling the randomness of the encrypted partitions.

The basic idea of our approaches is to classify the partitions into many supersets of partitions, then restrict the

randomization within each superset. The supersets of partitions are created either based on predefined queries or

using binary recursive partition. Experiments show high improvement percentage in performance using the pro-

posed optimization approaches. Also, we study the affect of those optimization techniques on the privacy level of

the encrypted data.
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1. Introduction

Preserving the order of the encrypted values is a useful

technique to perform quires over the encrypted database

with a reasonable overhead. For instance, given three inte-

gers {a,b,c}, such that (a<b<c), then the encrypted values are

(EK(a)<EK(b)<EK(c)). Here, EK(v) denotes ciphertext value

of v with encryption key K. The order preserving encryp-

tion scheme OPES proposed firstly by [1]. The strength and

novelty of OPES is that comparison operations, equality and

range queries as well as aggregation queries involving MIN,

MAX and COUNT can be evaluated directly on encrypted

data, without decryption. Another encryption scheme pro-

posed by [2], [3], where a sequence of polynomial functions

is used to encrypt integer values while preserving the order.

The decryption is made by solving the inverses of each poly-

nomial function in the sequence in reverse order.

Unfortunately, the previous order preserving encryption

(OPE) schemes are not secure against known plaintext at-

tacks and statistical attacks. In those attacks, it is assumed

that the attacker has a prior knowledge about plaintext val-

ues or statistical information on plaintext domain. Here,

the attacker who has access to the encrypted values and has

knowledge about the plaintext can map both the plaintext

and the encrypted values and make use of them to obtain the

key. This is because the OPE schemes preserve the order of

all integers in the domain, so the order of encrypted values is

exactly the order of plaintext values (we called those schemes

as full OPE).

In [4], we proposed a database encryption scheme called

MV-POPES (Multivalued-Partial Order Preserving Encryp-

tion Scheme), which divides the plaintext domain into many

partitions and randomizes them in the encrypted domain. It

allows one integer to be encrypted to many values using the

same encryption key while preserving the order of the inte-

ger values within the partitions. Here, we can still get ben-



efit from the partial order preserving in the encrypted data

to perform queries directly at the server without decrypting

data. At the same time, we can prevent attackers from in-

ferring individual information from the encrypted database

even if they have statistical and special knowledge about the

plaintext database. The reason is that the encrypted values

are totally in different order compared with the plaintext

values. The results from an implementation of MV-POPES

show that security for sensitive data can be achieved with

reasonable overhead in performing different types of queries.

However, MV-POPES supports range queries over encrypted

database at a high overhead compared with the full OPE

schemes. The overhead of range queries in MV-POPES is

mainly dependent on the number of partitions. Large num-

ber of partitions will lead to high overhead on performing

range queries over encrypted database. That is because the

condition in the WHERE clause becomes complex with many

sub conditions connected with boolean connectors (AND and

OR).

In this paper, we present some optimization techniques

to reduce the overhead for range queries in MV-POPES by

simplifying the translated condition and controlling the ran-

domness of the encrypted partitions. The basic idea of our

approaches is to classify the partitions into many supersets

of partitions, then we restrict the randomization within each

superset. The supersets of partitions are created either based

on predefined queries or using Binary Recursive Partition

(BRP). Experiments show high improvement percentage in

performance using the proposed optimization approaches.

Also, we study the affect of those optimization techniques

on privacy level of the encrypted data.

1. 1 Organization of the Paper

The rest of paper is organized as follows. We first discuss

related work in Section 2. Section 3 gives a brief overview

of the MV-POPES. Section 4 describes merging conditions

technique. Section 4 discusses the multilevel partitioning

based on predefined queries and binary recursive partition.

Section 6 reports the experimental results. Section 7 analyzes

the security effects of the optimization techniques. Section 8

introduces the privacy-performance trade-off. We conclude

with a summary and directions for future work in Section 9.

2. Related Work

Many full OPE schemes [1]～[3], [5], [6] have been proposed,

but no work discussed the security of the encryption schemes

against known plaintext attack and statistical attack. The

authors in [7] proposed a new encryption scheme (Chaotic

Order Preserving Encryption (COPE)). COPE [7] hides the

order of the encrypted values by changing the order of buck-

ets in the plaintext domain. It is secure against known plain-

text attack. However, COPE can be used just on trusted

server where the encryption keys are used to perform many

queries such as join and range queries. The overhead of

range queries over encrypted database is much higher than

the overhead of range queries over plaintext database. In

addition, it uses many keys to change the order of buckets

and in some cases that may lead to have duplicated values.

Another drawback in COPE is the encryption and decryp-

tion cost. That is because of the computation complexity to

randomize the buckets and assign the correct order within

each bucket.

The bucketing approach [8]～[12] is closely related to our

scheme in sense of dividing the plaintext domain into many

partitions (buckets). The encrypted database in the bucket-

ing approach is augmented with additional information (the

index of attributes), thereby allowing query processing to

some extent at the server without endangering data privacy.

The encrypted database in the bucketing approach contains

etuples (the encrypted tuples) and corresponding bucket-ids

(where many plaintext values are indexed to same bucket-

id). In this scheme, executing a query over the encrypted

database is based on the index of attributes. The result of

this query is a superset of records containing false positive

tuples. These false hits must be removed in a post filtering

process after etuples returned by the query are decrypted.

Because only the bucket id is used in a join operation, filter-

ing can be complex, especially when random mapping is used

to assign bucket ids rather than order preserving mapping.

The number of false positive records depends on the num-

ber of buckets involved. Using a small number of buckets will

hide the real values within the bucket index, but the filtering

overhead can become excessive. On the other hand, a large

number of buckets will reduce the filtering overhead, but the

scheme will be vulnerable to estimation exposure. In buck-

eting, the projection operation is not implemented over the

encrypted database, because a row level encryption is used.

In addition, updating attributes in the bucketing approach

requires that two attributes be updated, the bucket-id and

the etuple. This means that all attributes in the row must

be re-encrypted, thereby increasing overhead for the update

query.

Many works [13]～[16] studied the challenges in balancing

query efficiency and data secrecy using bucketing based en-

cryption. The basic idea of these researches is to design

a bucketization algorithm based on predefined queries that

minimizes the false positive tuples while ensuring the pri-

vacy of data. It assumed that the data and queries are not

frequently updated. While in real world most databases sys-

tems are frequently uploaded and updated.



PID EPID PREV F L NEXT 
1 3 80 1 20 81 
2 1 - 21 40 61 
3 5 100 41 60 101 
4 2 40 61 80 1 
5 4 20 81 100 41 

Fig. 1 partitioning metadata.

3. Preliminaries

3. 1 An Overview of MV-POPES

We begin with the brief overview of the MV-POPES.

When encrypting plaintext values in a column having values

in the range [Dmin,Dmax], first, we divide the domain into n

partitions and assign for each partition a random number

from 1 to n. This number will be the order of partitions in

the encrypted domain. We change the order of partitions to

hide the original order of plaintext values. Then, boundaries

are generated for all integers in all partitions using an order

preserving function. The order is preserved within the par-

tition to be able to evaluate queries efficiently on encrypted

database. The generated boundaries identify the intervals.

For instance, interval Ii is identified by [Bi,Bi+1). We then

generate the encrypted values for integer i as random values

from the interval Ii, so one plaintext value is encrypted to

many different values. This will change the frequencies of the

plaintext values to prevent the encrypted database against

statistical attack.

3. 2 Partitioning and Metadata

Here, we explain the partitioning function for each at-

tribute’s domain and what is stored in the metadata for

each domain. We first divide the plaintext domain of values

[Dmin,Dmax] into partitions {p1,...,pn}, such that these parti-

tions cover the whole domain and there is no overlap between

them. Then, we assign for each partition a unique random

number in the range of [1,n]. This number is the new order

of partitions in the encrypted domain.

As an example, Figure 1 shows the partitions metadata for

the domain [1,100]. The domain is divided into 5 partitions:

[1,20],[21,40],[41,60],[61,80],[81,100]. (F ), (L) are the first and the

last number in the partition. The partition identifier (PID)

represents the original order of partitions in plaintext do-

main. The encrypted partition identifier (EPID) represents

the order of partition in the encrypted domain. (PREV ) and

(NEXT ) are the previous and the next number in the en-

crypted domain for a partition. For instance, the partition

[61,80] where PID=4, and EPID=2, the (PREV ) will be the last

number for the partition with EPID=1 (which is 40), and

the (NEXT ) will be the first number for the partition with

EPID=3 (which is 1).
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Fig. 2 Range query overhead in MV-POPES.

3. 3 Partition Identification Functions

The partition identification functions will be used to trans-

late conditions that contain comparison operations. Let A

be an attribute, v be a value in the domain and i be a par-

tition identifier. Table 1 shows the partition identification

functions. Using the running example, PID<
A

(50)={1,2} and

PID>
A

(50)={4,5}.

3. 4 Translation of Range Query

In this section, we explain the translation of range query

using the condition Attribute < Value as an example.

Since the MV-POPES preserves the order of the encrypted

values within the partition ( vi<vj→EK(vi)<EK(vj), vi and vj

belong to the same PID), the translation of (A<v) is as fol-

lows:

(AE<Bv ∧ AE>=BF (P IDA(v)))
W

W

i∈P ID<
A

(v)
(AE>=BF (i) ∧ AE>BNEXT (i))

where F (i) is the first integer in the partition i, and NEXT (i) is

the next integer of the partition i. Simply, the result contains

all encrypted values that are less than the left boundary (Bv)

of the interval (Iv) within the partition that contains v. In

addition, all partitions whose PID are less than the partition

of v are included in the result. For example, the translation

for the condition (A<55) is:

(AE<B55∧AE>=B50)∨(AE>=B1∧AE<B81)∨(AE>=B21∧AE<B61)

Figure 2 shows the range query (selectivity=50%) execu-

tion times on MV-POPES over 105 encrypted tuples that

picked randomly from a uniform distribution between 1 and

105. We can clearly see that the overhead is sharply increas-

ing with increasing the number of partitions, because the

condition becomes more complicated. Thus, some optimiza-

tion techniques are needed to reduce the overhead for range

Table 1 Partition Identification Functions.

PIDA set of PID for attribute A

PIDA(v) PID to which value v belongs in the domain of A

PID<
A(v) set of PID for attribute A that are less than the

partition that contains v

PID>
A(v) set of PID for attribute A that are greater than

the partition that contains v

PID<i
A set of PID for attribute A that are less than i

P ID>i
A set of PID for attribute A that are greater than i



 

 

((AE �  a) and (AE < b)) or 
((AE �  c) and (AE < e)) or 
((AE �  g) and (AE < h)) 
 

 
((AE �  a) and (AE < b)) or 
((AE �  c) and (AE < d)) or 
((AE �  d) and (AE < e)) or 
((AE �  g) and (AE < h)) 

 

 2 5 1 3 6 8 4 7 PIDA 

a b c d e f g h i 

PIDA 
< 5 = {1,2,3,4} 

(a) The encrypted domain for attribute A. 

(b) The range query on attribute A. 

(d) Translated condition with merging. 

 

Boundaries 

(c) Translated condition without merging. 

Fig. 3 Example of merging conditions in MV-POPES.

queries in MV-POPES by simplifying the translated condi-

tion.

4. Merging Conditions

The first solution to reduce the overhead of range queries

in MV-POPES is to merge two or more conditions into one

condition. Thus, the query condition in the WHERE clause

will be less complex. This can be done in the query transla-

tion by searching for neighbor encrypted partitions that are

included in the range query. For instance, the original con-

dition shown in Figure 3 (c) over encrypted domain (Figure

3 (a)) consists of 8 sub conditions that specify the first and

the last values for each encrypted partition. Knowing that

partitions with ids 1 and 3 are adjusted to each other in the

encrypted domain, the four sub conditions related to those

partitions are simplified to two sub conditions (Figure 3 (d)).

Using partitioning metadata, the neighbors’ partitions in the

encrypted domain can be discovered easily and then merged

in the translated condition.

The improvement in performance by merging conditions

is based on the number of neighbors’ partitions in the range

query. The experiments show that the maximum improve-

ment percentage by merging conditions is just 5%. That is

because the partitions are randomized over the whole en-

crypted domain. Thus, the probability to have neighbors’

partitions in the encrypted domain close to the order of par-

titions in the plaintext domain is really small.

5. Multilevel Partitioning

Merging conditions is not enough to improve the perfor-

mance of range queries in MV-POPES because it is based on

the randomness of the encrypted partitions. Thus, in order

to reduce the overhead, we need to control the randomness

of the encrypted partitions.

5. 1 Predefined Queries

The first approach to control the randomness of the en-

crypted partitions is based on a set of predefined range

queries. Given a set of range queries Q={q1,...,qk} on an at-

tribute A, such that qi=[l,h] where l<h and l,h∈PIDA. The

supersets of the partitions are created by merging all queries

Q1: PIDA 
< 4 = {1,2,3} Q3: PIDA 

>5 and < 8 = {6,7} 

{5} {1,2,3,4} {8} {6,7} PIDA 

(c) The randomization process for the encrypted domain based on the superset of partitions. 

(a) Range queries on attribute A. 

Q2: PIDA 
>2 and < 5 = {3,4} 

(b) Superset of partitions based on range queries. 

SP1 = Q1 �  Q2 = {1,2,3,4} SP2 = Q3 = {6,7} SP3 = {5} SP4 = {8} 

5 4 3 1 2 8 7 6 PIDA 

First level: Randomizing the superset of partitions. 

Second level: Randomizing the partitions within each superset. 

Fig. 4 Example of randomizing the partitions based on prede-

fined queries.

that have a partition in common. So, for queries qi,qj , such

that qi∩qj |=φ, a superset of partitions SP=qi∪qj is created. A

separate superset is created for each partition that is not

included in any queries. Then, the supersets of partitions

are randomized at a first level of randomization. The sec-

ond level of randomization is done within each superset by

randomizing the set of partition for each query. At the fi-

nal level, the partitions in each set are randomized restrictly

within each set of partitions. Figure 4 shows an example of

controlling the randomness of 8 encrypted partitions based

on 3 range queries. Figure 4 (a) shows the predefined range

queries on attribute A, Figure 4 (b) shows the supersets of

partitions based on the predefined range queries and Figure

4 (c) shows the process of randomizing the partitions in the

encrypted domain.

Using such a technique, we can clearly see that the trans-

lated condition will be approximately as simple as the con-

dition on the plaintext domain. That is because most of the

partitions that are included in a range query qi will be neigh-

bors in the encrypted domain even if they are in a different

order. So, merging conditions technique now is effective. The

overhead of performing range queries over encrypted domain

will be much closer to the overhead on the plaintext domain.

However, this technique is complicated to implement. In ad-

dition, when the set of range queries changes, all the data in

the attribute need to be re-encrypted based on the new su-

persets of partitions. Thus, this technique is not good when

the data and queries are changing frequently.

5. 2 Binary Recursive Partitioning (BRP)

The second approach to control the randomness of the en-

crypted partitions is based on the binary recursive partition-

ing BRP . BRP is an iterative process of splitting the data

into partitions, and then splitting it up further on each of

the branches. Here, BRP is used to control the random-

ness of the encrypted partitions by dividing the partitions

into homogeneous subgroups or subsets of partitions. Using

BRP, the partitions are divided recursively into two subsets

till they reach the predefined level or predefined rules. There

are many types of rules that decide the splitting position. For



{5,6,7,8} {1,2,3,4} PIDA 

First level 

Second level 

{7,8} {5,6} {1,2} {3,4} PIDA 

7 8 6 5 2 1 3 4 PIDA 

Third level 

Fig. 5 Example of randomizing the partitions based on BRP.

simplicity of analysis, we will restrict our attention to split-

ting the subsets of partitions based on equi-width method.

Given a set of partition PIDA={1,...,n} for attribute A and

a predefined level pl to stop the partitioning process. At

each level in the partitioning process, and for each subset of

partitions that consists of [l,h] where l<h and (l,h∈PIDA), the

splitting point is l+h
2 . For each level, the new subsets are

randomized within the superset position. At the last level,

the partitions are randomized within each subset’s position

they belong. For instance, Figure 5 shows an example for 3

levels of binary recursive partition applied on 8 partitions.

6. Experiments

We have conducted experiments to examine the valid-

ity and the effectiveness of the BRP for performing range

queries in MV-POPES. We generated 100,000 records picked

randomly from a uniform distribution using [1,100000] as an

input domain. The evaluations were performed on a vari-

ous number of partitions ({50,100,...,500}) using different BRP

levels ({1,2,3,4}). The queries used in those experiments have

different selectivity {10%,20%,30%,40%,50%}. Figure 6 (a) shows

the execution time for the set of range queries performed on

non-optimized partitions. The overhead is sharply increasing

with increasing the number of partitions. As we discussed

before, that is because the condition in the WHERE clause

becomes more complicated using large number of partitions.

Figure 6 (b, c, d, e) shows the execution time of the same

set of range queries performed on an optimized encrypted do-

main (using different BRP levels). The figures show that the

overhead in the optimized encrypted attribute is less than

the non-optimized domain. Also, we notice from those fig-

ures that the overhead is decreased by increasing the level in

BRP. That is because the translated condition can be sim-

plified more in advance BRP level by merging the sub con-

ditions for neighbor partitions. Figures 6 (b, c, d) show that

the high selectivity queries (50%) take less time than the low

selectivity queries (10%), especially with the large number of

partitions ([400−500]). The reason behind that is that high se-

lectivity queries consist of a large number of partitions, thus

the probability for merging partitions into one condition is

high. On the other hand, in the case of low selectivity queries

such as 10%, the queries consist of small number of partitions;

so the probability for merging neighbor partitions is small.
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(a) Not optimized partitions. 

(b) Optimized partitions, BRP (1 level). (c) Optimized partitions, BRP (2 levels). 

(d) Optimized partitions, BRP (3 levels). (e) Optimized partitions, BRP (4 levels). 

Fig. 6 Range queries on non-optimized and optimized encrypted

partitions (using BRP).

Thus, the overhead becomes higher when large number of

partitions is used to encrypt the plaintext domain. Overall,

in advanced BRP level, the overhead using large number of

partitions (MV-POPES) is slightly more than the overhead

using one partition (full OPE scheme).

Figure 7 shows the improvement percentage in the execu-

tion time for range queries using optimized encrypted par-

titions (different BRP levels) compared with non-optimized

domain. The figure shows that the improvement is increas-

ing with increasing the number of partitions. Also, we can

notice that the improvement percentage is increasing with in-

creasing in level for BRP. The improvement reaches approxi-

mately 92% in case of 50% selectivity with 500 partitions in the

case of 4 BRP levels. The overhead in optimized partitions is

slightly increasing using large number of partitions, while in

non-optimized partitions the overhead is sharply increasing

by using large number of partitions. Thus, the improvement

using large number of partitions such as 500 is higher than

the improvement using smaller number of partitions such as

50.

7. Security Analysis

The techniques proposed above to control the randomness

of the encrypted partitions affect the privacy level of the en-

crypted domain. That is because those techniques restrict

the position probability for a partition in the encrypted do-

main. Without optimization techniques the probability for
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(a) Improvement %, BRP (1 level). (b) Improvement %, BRP (2 levels). 

(c) Improvement %, BRP (3 levels). (d) Improvement %, BRP (4 levels). 

Fig. 7 Improvement percentage in execution time for range

queries using different BRP levels.

a partition to be in a position in the encrypted domain is 1
n

, where n is the number of partitions. On the other hand,

using BRP, the probability for a partition to be in a position

in the encrypted domain just after the first level is 1
(n/2) , this

number becomes smaller in advanced level of BRP. In this

section, we analyze the privacy of the encrypted partitions in

both cases; with optimization technique (BRP) and without

optimization. We study the Entropy (H) and Variance

(V) of the distribution of encrypted partitions as measures

of privacy. We base our choice of entropy and variance on

the security definitions presented in [4]. The basic idea to en-

sure privacy of the encrypted domain is to have as much as

possible the encrypted domain in a different order compared

with the plaintext domain.

7. 1 Entropy

Entropy is a measure of disorder, or more precisely un-

predictability. It is well-known that entropy of a random

variable X is a measure of its uncertainty [17] . Using the

entropy of the encrypted domain we can see how encrypted

partitions spread over the encrypted domain. Generally, en-

tropy of a random variable X taking values xi=1,...,n with

corresponding probabilities pi ,i=1,...,n is given by:

Entropy(X)=H(X)=−
Pn

i=1 pi×log2(pi)

Given the partitions in the plaintext domain PID={1,...,n},

the corresponding partitions in the encrypted domain EPID=

{∀i∈PID,∃!j∈EPID,(1<=j<=n)} and the corresponding probabil-

ities pi , the entropy of the encrypted partitions H(EPID)

without controlling the randomness can be written as:

H(EPID) = −
Pn

i=1 pi×log2(pi)

Since pi for all partitions (pi=
1
n

)

= −
Pn

i=1
1
n
×log2( 1

n
)

= − n× 1
n
×log2( 1

n
)

= log2(n)

The entropy in the encrypted domain without optimization

depends on the number of partitions. A large number of par-

titions has more entropy than a small number of partitions

which means it is more secure. Using multilevel partition-

ing to control the randomness of the encrypted partitions,

the entropy depends on the number of super partitions and

the number of partitions on each super partition. That is be-

cause the entropy for a set of partitions (SPi, i={1,...,m}) is the

summation of entropy in each super partition H(SPi) multi-

plied by the probability pSPi
for each super partition (pSPi

is

the number of elements in each partition divided by the total

number of elements). Given the partitions in the plaintext

domain PID={1,...,n} and super partitions SPi, i=1,...,m, the

entropy of the encrypted partitions H(EPID) can be written

as:

H(EPID) =
Pm

i=1
|SPi|

n
×H(SPi)

in which |SPi| is the number of partitions in SPi. The en-

tropy for the encrypted domain H(EPID) in this case will be

less than the entropy without optimization. As an example,

we analyze the entropy of the optimized encrypted domain

using binary recursive partition. Given the partitions in the

plaintext domain PID={1,...,n}, the level pl of the BRP and

super partitions SPi, i=1,...,2pl , the entropy of the encrypted

partitions H(EPID) using BRP can be written as:

H(EPID) =
P2pl

i=1 pSPi
×H(SPi)

Since SPi has same size (pSPi
= 1

2pl )

=
P2pl

i=1
1

2pl ×H(SPi)

= 2pl × 1
2pl ×H(SPi)

= H(SPi)

= log2( n

2pl )

Here, the entropy is the summation of entropy for each

super partition H(SPi) multiplied by the probability for each

super partition pSPi . Since all super partitions have same

size and same probability, the entropy of the encrypted do-

main with BRP after pl levels is log2( n

2pl ). Thus, the entropy

will be smaller by increasing the level in BRP. The privacy

also decreases in an advanced level of BRP. That is because

the randomness in an advanced level of BRP will be less ef-

fective to hide the order of the encrypted partitions. Figure

8 shows the entropy of the encrypted domain in both cases;

(a) without optimization and (b) optimized domain (BRP)

using different levels.

7. 2 Variance

The variance and the closely-related standard deviation

are measures of how spread out a distribution is. In other

words, they are measures of variability. In this section, we

study two types of variance; Horizontal Variance (HV)
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Fig. 8 Entropy of the encrypted domain.

and Vertical Variance (VV). The horizontal variance used

to measure the difference of orders between plaintext and en-

crypted domain. While vertical variance used to measure the

partial order in the encrypted domain. Given the partitions

in the plaintext domain PID={1,...,n} and the correspond-

ing partitions in the encrypted domain EPID={∀i∈PID,∃!j∈

EPID,(1<=j<=n)}, the horizontal variance HV can be written as:

HV = 1
n

Pn
i=1

ţ

ş

PID(i)−EPID(i)

ť

−HM

ű 2

where HM is the horizontal mean and can be calculated as

follows:

HM= 1
n

Pn
i=1

ş

PID(i)−EPID(i)

ť

Note that the horizontal mean HM will be 0 for all per-

mutation. Thus, the horizontal variance can be rewritten

as:

HV = 1
n

Pn
i=1

ş

PID(i)−EPID(i)

ť 2

The horizontal variance describes how far the order of the

encrypted partitions lies from the order of partitions in the

plaintext domain. The minimum value for HV is 0 when both

PID and EPID have same order. High value for HV means

high difference of order between partitions in plaintext do-

main and partitions in encrypted domain, which leads to high

privacy level. However, horizontal variance dose not measure

the partial order in the encrypted domain. We can have high

HV when encrypted partitions are in descending order which

is not secure at all. Thus, we need another measure to de-

scribe the order in the encrypted domain. Here, we calculate

the variance within the encrypted domain (vertical variance)

by taking the difference between each two sequenced parti-

tions. The vertical variance V V for the encrypted partitions

EPID is given as follows:

V V = 1
n−1

Pn−1
i=1

ţ

ş

EPID(i)−EPID(i+1)

ť

−V M

ű 2

where V M is the vertical mean and can be calculated as fol-

lows:

V M= 1
n−1

Pn−1
i=1

ş

EPID(i)−EPID(i+1)

ť

The vertical variance describes the degree of partial order

in the encrypted domain. The minimum value for V V is 0

when the encrypted partitions are totally ordered either in

ascending or descending order. High value for V V means the

degree of partial ordering in the encrypted domain is low,
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Fig. 9 Horizontal and vertical variance in non-optimized and op-

timized (BRP) encrypted domain.

which leads to high privacy level.

Figure 9 shows the effect of BRP (levels={1,2,3,4}) on hor-

izontal and vertical variance of encrypted partitions in MV-

POPES. The horizontal variance (Figure 9 (a)) using dif-

ferent BRP levels is approximately same as the HV in non-

optimized encrypted domain. That is because the encrypted

partitions can be in different order compared with the orig-

inal order in the plaintext domain, even when we restrict

the randomness options by using different BRP levels. Fig-

ure 9 (b) shows that the vertical variance is reduced because

of BRP. That is because the partial order in the encrypted

domain using BRP is much more than the non-optimized do-

main. Also, we can clearly see from the figure that the ver-

tical variance is decreasing by increasing the level of BRP.

The results are expectable since the process of controlling

the randomness for encrypted partitions in BRP keeps the

encrypted partitions somehow ordered within each superset

of partitions. Thus, increasing the level of BRP will increase

the partial order level in the encrypted domain, and that

helps to perform range queries over the encrypted domain ef-

ficiently. However, increasing the level of BRP will decrease

the privacy level.

8. The Privacy-Performance Trade-off

The optimization techniques proposed in this paper lead

to better performance for range queries in MV-POPES, for a

given number of partitions. However, those techniques also

lead to reducing the level of privacy (that is the encrypted

partitions might not have a large enough entropy and vari-

ance). The research issue here is how to re-randomize the en-

crypted partitions, starting with the optimized performance

for range queries and allowing a bounded amount of perfor-

mance degradation, in order to maximize the two measures

related to the privacy (entropy and variance) simultaneously

(Figure 10). We formalize the problem being addressed be-

low:

Trade-off Problem: Given a domain D=[Dmin,Dmax]

for attribute A, and an initial set of encrypted parti-
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Fig. 10 Privacy-performance trade-off.

tions {EPID1,...,EPIDn} in an optimized order, re-randomize

and/or divide the encrypted partitions into new order

{C EPID1, ..., C EPIDw} such that no more than a factor

T of performance degradation is introduced and the entropy

and vertical variance for the encrypted partitions are simul-

taneously maximized.

This problem required advanced analysis and algorithms

to maximize the entropy and variance within T factor of per-

formance degradation by swapping and subdividing the par-

titions. We will study this problem in future work.

9. Conclusion and Future Work

MV-POPES supports range queries at a high overhead

compared with the full OPE schemes. In this paper, we

presented some optimization techniques to reduce the over-

head for range queries in the MV-POPES by simplifying the

translated condition and controlling the randomness of the

encrypted partitions. The basic idea of our approaches is

to classify the partitions into many supersets of partitions,

then we restrict the randomization of the partitions within

each superset. The supersets of partitions are created either

based on predefined queries or using binary recursive parti-

tion BRP. Experiments show high improvement percentage

in performance using the proposed optimization approaches.

However, those techniques also lead to reducing the level of

privacy. In the future, we will study the privacy-performance

trade-off in the MV-POPES.
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