
DEIM Forum 2011

Application Level Aggregation and Multicast in Peer-to-Peer Systems

Djelloul BOUKHELEF † and Hiroyuki KITAGAWA †‡

† Computer Science Department, University of Tsukuba
‡ Center for Computational Sciences, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki. 305–8573

E-mail:boukhelef@kde.cs.tsukuba.ac.jp, kitagawa@cs.tsukuba.ac.jp

Abstract We propose in this paper the Application-Level Aggregation and Multicast (ALAM) service for fast

information dissemination and aggregation over large-scale peer-to-peer systems. Basic tree-based approach

builds a spanning-tree and uses it to disseminate and aggregate information to and from the network members.

Besides single-point of failure, using the same tree for broadcast and aggregation results in high query latency

and workload imbalance. In this work, we explore a novel dual-tree protocol inspired from the cardiovascular

system. The key idea is to build pairs of interior-node-disjoint overlay trees (A-tree and V-tree) routed at the

same node. Aggregate queries are disseminated via A-tree in top-down manner. Answers are gathered along its

dual V-tree in bottom-up manner. To achieve low query latency and load balance, two dual trees are built such

that nodes that are far from the root in A-tree are placed close to the root in its dual V-tree, and vice-versa. The

dual-tree protocol is flexible and self-adaptive, and inherits its robustness from the self-healing capability of the

underlying overlay. We evaluate our solution in the context of Chord overlays. Simulation results demonstrate

the full scalability and efficiency of our design and confirm its advantage over existing tree-based protocols in

terms of latency, maintenance cost, and workload balance.

Key words Structured P2P, Application-level Aggregation and Multicast, Dual-tree.

1 Introduction

Information dissemination and aggregation are essential

building blocks in a wide range of distributed applications,

such as: resources discovery and monitoring, performance

tuning, network analysis and visualization. Additionally,

aggregation is a key primitive in many, if not all, holistic

operations that require scanning large portion of the stored

data (e.g. queries over non-indexed data, keyword search

and data mining, top-k queries).

Dissemination and aggregation are two essential phases

in the whole aggregation process. Aggregation is the

operation of gathering partial information from various

providers in the system and building concise summaries

(statistics) about some overall properties of the system

and its components. Dissemination is the inverse opera-

tion that delivers messages carrying various instructions

and parameters to all the nodes in the network.

Peer-to-peer (P2P) computing has emerged as a power-

ful and efficient paradigm for building scalable Internet-

wide distributed applications. P2P applications manip-

ulate large amount of data which is increasing at a fast

rate . So far, researches in this field focus mainly on de-

signing efficient and scalable protocols aiming to improve

their query expressiveness and responsiveness. However,

the area of holistic operations (i.e. large-scale aggregate

query) is still not well explored.

Scalable and decentralized monitoring of large-scale P2P

systems, network size estimation, and resources discovery

are examples of services that rely heavily on the aggrega-

tion operation. The implementation of these services often

requires the availability, at each node in the network, of

aggregated information about some overall properties of

the network and its components. Designing scalable man-

agement services that adhere entirely to the decentralized

and dynamic nature of P2P systems is a very challenging.

On one hand the decentralized requirement excludes the

use of global or central knowledge authority. On the other

hand, network dynamism, due to nodes that frequently

join and leave the network at will (phenomenon known as

churn), may compromise the robustness and validity of the

aggregation process.

There exist two major approaches for distributed ag-

gregation processing: probabilistic [1, 2] and determinis-

tic [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Probabilistic approach is proposed primarily for networks

where the topology and resources locations are out of con-

trol (e.g. unstructured P2P). This approach makes use of

gossip to exchange content over a randomly connected net-

— 1 —

work. Due to lack of deterministic query processing mech-

anisms in gossip-based methods, significant amount of du-

plicate messages is exchanged in order to improve the ac-

curacy of answers and increase success rate. This makes

gossip-based methods more robust to communication fail-

ures; however it may limits their scalability and efficiency

in case of large-size networks.

Deterministic approach The idea of this approach is to

shape the network into a loop free sub-graph (i.e. span-

ning tree) that connects a root node to each member of

the network. Tree-shaped overlay is then used to broadcast

and collect information to and from the overlay members.

Tree-based approach is suitable for duplicate-sensitive ag-

gregate functions, such as count and sum.

1.1 Problems with the tree-based approach

Tree-based approaches consider either building one single

tree or multiple trees shared among the overlay members.

In fact, one single-tree is vulnerable to single-point of

failure and risk of bottleneck that may arise at the root

node, since all queries must transit by this node. Moreover,

a single shared tree would not be optimally fair for all

network members, while using multiple trees would be very

costly [7].

In this research we are addressing two other problems

that have not been dealt with previously, namely query

latency and workload imbalance.

Latency issue First, the elapsed time between issuing an

aggregate query and receiving the final answer might be

very long. This is because query messages need to travel

from the root down to leaf nodes and then return back

to the root carrying answers. Typically, the query round-

trip latency corresponds to two time the tree height. In

practice, query latency might be very high, especially in

large-size overlays where the tree happens to very deep.

Load balance issue Second, relatively a small fraction of

interior-nodes undertake all the burden of communication

and processing loads, i.e. propagate queries, and aggregate

answers. The processing load is related to the branching

factor of a node, that is, the number of direct descendants

(children) it forwards the query to and aggregates answers

from. As such, leaf nodes do not participate in any of these

two tasks since they have no children. For example, in a

binary tree, which may be very deep for large networks [6],

approximately half of the nodes are leaves, hence they are

without any additional workload.

In summary, using the same spanning tree to dissemi-

nate queries and collect answers has twice the latency and

processing load compared to a simple broadcast or aggre-

gation.

1.2 Proposed solution

We focus in this research on the problem of aggregation

processing in structured P2P systems. Our aim is to pro-

vide methods for fast and robust aggregation query pro-

cessing while fairly balancing the processing load among

the members of the networked system.

Actually, aggregation and dissemination are comple-

mentary operations and are consequently implemented us-

ing same techniques. However, exiting methods focus, gen-

erally, on the efficiency of one operation at a time, i.e. ei-

ther dissemination or aggregation; but not on the efficiency

of both of them together.

We introduce in this research the Application-Level Ag-

gregation and Multicast (ALAM) service intended for fast

dissemination and aggregation of information over large-

scale dynamic P2P overlay networks. The ALAM ser-

vice is, mainly, targeting new and emerging applications

that require near real-time processing of aggregate queries

over data stored across the overlay network. Examples

of such applications include resources discovery and moni-

toring service, collaborative network security, and Massive

Multi-players Online Games. These applications require

fast and efficient sensing of changes in the networked sys-

tem (e.g. nodes state, available resources, game status and

players locations) in a near real-time fashion.

To address the problems of query latency and workload

imbalance in the tree-based, we are exploring in this re-

search a novel dual-tree protocol inspired from the cardio-

vascular system. The key idea is to build pairs of interior-

node-disjoint overlay trees (i.e. A-tree and V-tree) that

are routed at the same node. Aggregate queries are dis-

seminated along an A-tree in top-down manner. Answers

are gathered along its dual V-tree in bottom-up manner.

To achieve low query latency and good load balance, the

two trees are built such that nodes that are far from the

root inA-tree are placed close to the root in its dual V-tree,

and vice-versa. Trees are built on-the-fly and their shapes

adapt dynamically to changes in the network membership.

Dual-tree design is flexible and easy to deploy. Overlay

trees are built using underlying overlay’s routing links.

Tree maintenance relies solely on the self-healing property

of the overlay and does not incur any additional mainte-

nance overhead.

We sketch an implementation of the dual-tree protocol

on top of the well-known Chord overlay [13]. Analytical

and simulation results demonstrate the full scalability and

efficiency of our dual-tree approach to support fast aggre-

gate queries over large-scale P2P systems. Analysis shows

that the maximum latency is bounded by the network di-

ameter. For instance, the dual-tree protocol is able to

achieve a reduction of approximately 50% in the query la-

tency and achieve better load balance compared to other

tree protocols [4, 8], especially for large network sizes.

— 2 —

2 Dual-tree protocol

In this section, we propose a novel dual-tree protocol to

implement scalable ALAM services over structured P2P

systems as viable solution to the latency and load imbal-

ance issues in the tree approach.

The dual-tree design imitates the circulatory system in

mammals, which plays the important role of distributing

the blood over all the body through blood vessels. In its

very basic design, the pathway of the blood in the body

consists of a circuit of vessels (arteries and veins) centered

at the heart. The heart pumps the oxygenated blood to

body tissue through the arteries vessels. Veins are blood

vessels that carry deoxygenated blood from the tissues

back towards heart (from Wikipedia).

Starting from a given a (root) node, the idea of our dual-

tree design is to build a pair of separate and unidirectional

trees called Artery-tree and Vein-tree (A-tree and V-tree,

for short). Similarly to the heart in the body, the root

node is source and sink at the same time. Each pair of

A-tree and V-tree is rooted at the same root node which

also plays the role of heart in the body. The A-tree is used

to disseminate data and query, and the V-tree to gather

feedbacks and answers.

The quality metrics of our solution are related to per-

formance (query latency), cost (load balance and main-

tenance overhead), and robustness against failures. To

guarantee good performance level on the three metrics, we

are exploring a novel dual-tree design that builds pairs of

complementary trees. We say that an A-tree and its dual

V-tree are complementary if they satisfy the two follow-

ing properties. First, A-tree and V-tree are interior-node

disjoint, that is, interior nodes in one tree are likely to

be leaves in the other tree, and vice-versa. Second, the

root-to-node and node-to-root paths on the two trees are

asymmetric, that is, the path length from the root to any

node on one tree is compensated by the path length from

that node to the root on the other tree, such that their

cumulative path length (i.e. root-to-node-to-root) is very

small, and is quite the same for all the overlay nodes.

Achieving these two properties in a decentralized and

dynamic systems is a very challenging problem. In our

dual-tree model, we build A-tree and V-tree such that

nodes that are far from the root in one tree are placed

closer to root on the other dual tree. In the ideal case,

our tree construction algorithms are able to produce trees

that are interior-nodes-disjoint, except for tiny fraction of

overlay nodes.

To ensure high degree of robustness, our-design makes

use of the underlying overlay’s unicast routing links to

build implicit dynamic self-organizing instances of the

dual-tree infrastructure for dissemination and aggregation.

Additionally, our protocol relies on the self-healing prop-

erty of the underlying overlay and does not incur any addi-

tional maintenance overhead. This feature makes our dual-

tree design very fault-resilient and robust, and therefore

very suitable for highly dynamic overlay systems which

are affected by high rate of nodes churn.

Finally, our new dual-tree design is lightweight and flex-

ible. A dual-tree ALAM infrastructure can be easily de-

ployed on top of existing overlays with reduced cost and

time complexity and without altering their topologies.

In what follows we will describe how to build and main-

tain A-trees and V-trees in the context of ring-based over-

lay topology, namely Chord [13]. We will show how to

process aggregate queries using our new dual-tree mecha-

nism.

2.1 Construction of A− tree

The A-tree serves to propagate (disseminate) an informa-

tion (e.g. aggregate queries, data) all over the networked

system. An A-tree is an overlay tree built implicitly by

merging the shortest routing paths from the source node

(root) to all the other nodes in the system. Shortest paths

are generated using the “greedy” routing algorithm of the

underlying overlay. The broadcast scheme in A-tree is sim-

ilar to the algorithm proposed in [4]. However, our method

construct an A-tree which is unidirectional, thus, does not

maintain explicit parent-children relationship. As such, a

node in the A-tree is only forwarder of the query message

to its children nodes in the overlay.

In general, a broadcast message contains the information

to broadcast (e.g. query). The message is also tagged with

a limit value that restricts the forwarding scope of each

node. Upon receiving the query message, each forwarder

node n propagates the message to all nodes in its finger ta-

ble within the scope delimited by n itself and limit. Actu-

ally, the limit value helps eliminating duplicate messages.

0
1

3

2

15

14

5

6

79

10

11

12

13

4

8

(a) A-tree rooted at 0

4

0

1

3

2

15

14

5 6

7

8

9 10

11

12

13

(b) Broadcast process using A-

tree

Fig. 1: Example of A-tree rooted at node 0.

Starting from any root node n, the construction of A-

tree is the distributed process that recursively splits the

key space into non-overlapping partitions using n’s rout-

ing table. The first node in each partition, which is pointed

by n’s routing table, is delegated to farther propagate the

query message to other nodes within its partition (forward-

ing scope). The distributed query dissemination process

— 3 —

is recursively repeated until nodes that receive the query

message have no other nodes within their scopes to prop-

agate the message to.

More specifically, when a node n receives a query mes-

sage tagged with limit value, it forwards this message to

each node in its routing table (i.e. fingeri) that is located

between n and limit (in the clockwise direction).

Note that, initially, the scope of the root node is the

whole space. Besides a copy of the query, the message

sent to fingeri is piggybacked with a new limiti of the

partition which fingeri will take care of. Generally, each

fingeri is responsible for the partition delimited by the

fingeri itself and the node pointed by the next entry in

n’s routing table, that is, [fingeri, fingeri+1).

Note that the set of children of a node n in the A-tree

contains all the nodes in its routing table that are within

its forwarding scope (i.e. [n, limit)). Generally, the num-

ber of children, which represents also the branching factor

of a node in the tree, is proportional to the size of the

forwarding scope of a node.

2.2 Construction of V − tree

The V-tree serves to aggregate query answers from all over

the network. A V-tree is built in similar way to A-tree

but in bottom-up manner, by merging the shortest rout-

ing paths from each node in the overlay to the root node.

Similarly to the A-tree, V-tree is a dynamic unidirectional

overlay tree with implicit child-parent relationship. Every

internal node in the V-tree combine the received answers

from its children with its own local answer and propagates

it to the parent node until reaching the root. Thus, nodes

in the V-tree play the role of “collector” of answers.

0
1

3

2

15

14

5

6

79

10

11

12

13

4

8

(a) V-tree rooted at 0

4

0

1

3 2

15 14

5

67

8

9

1011

12

13

(b) Aggregation process using V-

tree

Fig. 2: Example of V-tree rooted at node 0.

Note that in our dual-tree protocol, trees are not con-

structed explicitly. They are, however, implicitly built on-

the-fly during query execution time. In opposition to the

basic tree-based approach, our dual-tree approach does not

materialize explicitly the parent-child relationship on the

trees. More specifically, the parent (resp. child) of a node

is implicitly determined by the next routing hop towards

(resp. from) the root of the tree.

Let p and q two nodes in the overlay.

Property 2.1 (Parent-child relationship on A-tree). We

say that node q is a descendent of node p on A-tree, if and

only if p is on the routing path from the root to q. Node q

is a child of node p if it is a direct descendent of p.

Property 2.2 (Child-parent relationship on V-tree). Sim-

ilarly, a node p is an ascendent of node q on V-tree, if and

only if p is on the routing path from q to the root. Node p

is the parent of q if it is a direct ascendent of q.

0
1

3

2

15

14

5

6

79

10

11

12

13

4

8

(a) Forwarding scope

0
1

3

2

15

14

5

6

79

10

11

12

13

4

8

(b) Aggregation scope

Fig. 3: Forwarding scope on A-tree and V-tree.

Figure 2 depicts the V-tree rooted at 0. We can check

that concatenation of tree vertices from any node to node 0

is exactly the routing path from that node to node 0. Note

that node 8 is interior-node in A-tree with 3 children, and

a leaf node in V-tree, and vice-versa for node 15.

2.3 Extension of Chord

Actually, each node in V-tree needs to determine the set

of prospective children from whom it will receive answers,

hence, is should to wait from them. This situation is more

complicated than in the A-tree, as nodes determine their

parents on V-tree at runtime.

To solve this problem we propose to extend Chord pro-

tocol as follow. Each link from a node p to its i-th finger

node q = finger[i] is tagged with the routing scope of that

link on the ring. Node q is called contact of the anti-finger

node p on that portion of the ring (i.e. routing scope).

For example, on figure 3a, 4 is contact of 0 for the interval

[4, 8), 9 is contact of 1 for [9, 1).

Moreover, if the routing path of a query issued by a node

p or is passing by it (i.e. p is intermediate) and targeting

a node t in the routing scope for which a node q is contact

on behalf of node p, this routing path should imperatively

transit by node q. For example, on figure 3a if node 0

wants to route towards nodes 5 to 7, its must forward the

query to node 4, because its the closest finger in node 0’s

routing table to these nodes. Actually, this extension of

Chord protocol is very light and requires only one integer

per link (i.e. entry in the routing table). This can be im-

plemented, for instance, by piggybacking the information

about routing scope to the periodic maintenance messages

exchanges between neighboring nodes in the overlay.

— 4 —

Now, as for the construction of V-tree, the routing scope

of link helps determining if a node p is parent of node q

on the V-tree rooted at node r and, hence, it should wait

for an answer from node q.

Intuitively: a node p is the parent of node q on the V-

tree rooted at node r, if and only if node q has a link

towards node p, and node r is in the scope of that link. In

addition, in a valid routing overlay, the parent of a node

on the V-tree exists and is unique.

2.4 Aggregation processing

Basically, when a node wants to compute an aggregate

function it issues a message that encloses the aggregate

query parameters. Processing the aggregation query con-

sists first of disseminating the query to all the overlay

nodes. Each node, then, processes the query over its local

data and sends the answer directly or indirectly to the is-

suing node. In the later case, the local answer is combined

with the answers from other nodes before it is shipped to

the next node until reaching the issuing node. Finally, the

issuing node compute the final answer using the partial

answers it received from the other overlay nodes.

The aggregation process in our dual-tree follows also the

same execution model. During an aggregation process, the

root node broadcasts the aggregate query using its own

implicit A-tree. Forwarder nodes in the A-tree progres-

sively propagate the query message to all the other nodes

in the overlay. Upon receiving the query message, each

node evaluates the aggregate query over its local data. On

the other hand, and as a collector on the V-tree, each node

determines the set of prospective children to wait answers

from. When all the answers are received, the node com-

piles them with its local answer into one aggregate value,

and forwards this answer to its parent on V-tree. The final

answer is compiled at the root node using partial answers

received from its direct children on V-tree.

3 Experiment

To validate our method, we evaluated the performance of

the dual-tree design on a simulation prototype of Chord

overlay. The quality metrics used in our simulation are

related to performance (query latency and query stay-time

per node) and cost (workload distribution).

We comparison purpose, we run the dual-tree procol

against two tree-based techniques, namely: direct single-

tree [4] and reverse-single-tree [9]. These two methods use

similar tree construction mechanisms, and both of them

were designed in the context of ring-based DHTs.

Settings We simulated Chord overlays with a maximum

size of (2m) nodes, for different values of m (m = 4..16).

For a given value of m, we evaluate the performance for

various effective network sizes (n), with n varying from 4

to 2m. Nodes are uniformly distributed on the Chord ring.

For each network size, thousands of aggregate queries are

issued from randomly chosen nodes, and the average of the

measured values is taken for each experiment.

3.1 Query latency

In this experiment we analyze the efficiency of our design

in terms of total query latency, which measures the cu-

mulative path length from root-to-node on a A-tree and

node-to-root on the V-tree; which correspond to the cu-

mulative number of hops it takes for the query message to

reach a node and the answer to return back to the root.

Figure 4a depicts the maximum query latency as func-

tion of network size (m = 12). As we can see, the max-

imum query latency in our dual-tree protocol is smaller

than in the two other methods. For relatively dense over-

lays (more than 75% of the nodes are present in the over-

lay), the query latency in the dual-tree approach converges

rapidly to logn + 1, while it is constantly increasing to-

wards 2× logn for the two other single-tree approaches.

3.2 Query stay-time

The previous experiment gives insight about the total

query execution time. To understand the flow of messages

in the system, we break down the query execution time to

measure how long does the query stay in each node. The

query stay time refers to the period of time from receiving

the query messages by a given node until it delivers its

answer to its parent node. This time includes the query

processing over local data as well as the waiting time for

children’s answers.

Actually, this measure gives an idea about the internal

resources usage at each node as well as the degree of par-

allelism. In addition, the query stay time measure has a

direct impact on the system performance and robustness.

First, shorter stay time is expected to increase the sys-

tem throughput, that is, the number of queries that can

be executed by each node within the same period of time.

Second, it provides better robustness against node churn

if the query stay time is shorter than the node’s lifetime.

In this experiment we simulated an overlay network con-

sidering different values for the link latency and local query

processing time. Graphs on figure 4b depicts the maximum

query stay time, with the network link latency set to 5 ms,

and local query processing time to 1 ms.

Both the two measures, show that the query stay time

in our dual-tree model is order of magnitude smaller com-

pared to other tree-based methods. We can see also that

the stay time is largely dominated by the query processing

time. This is because, the query message reaches a node at

approximately the same time with the children’s answers.

— 5 —

 0

 5

 10

 15

 20

 25

 0 512 1024 1536 2048 2560 3072 3584 4096

M
ax

. Q
ue

ry
 R

T
L

(#
 o

f h
op

s)

Network size (# of nodes)

dual-tree
single-tree

Reverse single-tree

(a) Query latency

 0

 5

 10

 15

 20

 25

 0 512 1024 1536 2048 2560 3072 3584 4096

M
ax

. Q
ue

ry
 S

ta
y-

tim
e

(m
s)

Network size (# of nodes)

Dual-tree
Direct single-tree

Reverse single-tree

(b) Query stay time

 0

 10

 20

 30

 40

 50

 60

 0 512 1024 1536 2048 2560 3072 3584 4096

A
vg

. L
oa

d
(#

 o
f m

es
sa

ge
s)

Network size (# of nodes)

Dual-tree
Direct single-tree

Reverse single-tree

(c) Workload

Fig. 4: Performance of the dual-tree protocol (worst case).

3.3 Workload distribution

In this experiment we studied the distribution of process-

ing workload among overlay nodes. The workload refers

the cumulative number of query messages propagated and

the answer messages gathered by each node.

Graphs on figure 4c depicts the maximum workload.

In this experiment we consider only nodes with effective

workload, that is, they broadcast the query or collect an-

swers. In this experiment we omitted the local query pro-

cessing load as it is a baseline for all nodes. We excluded

nodes without effective load, i.e. nodes that are leaves in

both A-tree and V-tree for our dual-tree protocol, and leaf

node the single-tree methods.

We can see that the maximum workload is slightly larger

compared to the direct single-tree method for relatively

small overlays. It is however much smaller for highly dense

network.

In summary, simulation results consolidate our theoreti-

cal findings and show that our dual-tree approach reduces

notably the query latency and achieve fair workload dis-

tribution; which makes it suitable for fast and scalable

aggregate query processing in large-scale P2P networks.

4 Conclusion and Future Work

In this research we introduced the Application-Level Ag-

gregation and Multicast (ALAM) service, a comprehen-

sive lightweight framework for scalable processing of holis-

tic aggregation operations over data residing in a large-

scale P2P system. To address the problems of latency and

load imbalance in the tree-based approach, we presented

and evaluated a novel dual-tree protocol inspired from the

mammals’ circulatory system.

The dual-tree protocol is fully decentralized and scal-

able. The proposed schemes allows for fast and robust

information dissemination and aggregation over extremely

large dynamic networks. Experimental and analytical re-

sults demonstrate the performance of the proposed dual-

tree design and confirm its advantage in term of efficiency,

workload balance. For instance, dual-tree design reduces

the total query latency by approximately up to 50% com-

pared to other tree-based methods [4, 9], especially for

large-sized networks.

As future work, plan to study the robustness of the dual-

tree protocol under churn. We plan to deploy the dual-tree

protocol on other P2P schemes. We are also considering

approximate online aggregate query processing.

Acknowledgment This study has been partially sup-

ported by Grant-in-Aid for Scientific Research on Priority

Areas from MEXT (#21013004).

References

[1] P.T. Eugster, R. Guerraoui, S.B. Handurukande,

P. Kouznetsov, and A.M. Kermarrec, “Lightweight

probabilistic broadcast,” ACM Trans. Comput. Syst.,

vol.21, no.4, pp.341–374, 2003.

[2] J. Leitão, J. Pereira, and L. Rodrigues, “Gossip-based

broadcast,” in Handbook of Peer-to-Peer Networking,

pp.831–860, Springer, 2010.

[3] D. Bradler, J. Kangasharju, and M. Mühlhäuser, “Op-

timally efficient multicast in structured P2P networks,”

CCNC, pp.123–127, 2009.

[4] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi, “Ef-

ficient broadcast in structured p2p networks,” IPTPS,

pp.304–314, 2003.

[5] L. Galanis and D.J. DeWitt, “Scalable distributed aggre-

gate computations through collaboration,” DEXA, pp.797–

807, 2005.

[6] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A.I.T.

Rowstron, and A. Singh, “Splitstream: High-bandwidth

content distribution in cooperative environments,” IPTPS,

pp.292–303, 2003.

[7] Z. Zhang, S. Chen, Y. Ling, and R. Chow, “Capacity-aware

multicast algorithms on heterogeneous overlay networks,”

IEEE TPDS, vol.17, no.2, pp.135–147, 2006.

[8] K. Huang and D. Zhang, “DHT-based lightweight broad-

cast algorithms in large-scale computing infrastructures,”

FGCS, vol.26, no.3, pp.291–303, 2010.

[9] M. Cai and K. Hwang, “Distributed aggregation algorithms

with load-balancing for scalable grid resource monitoring,”

IPDPS, pp.1–10, 2007.

[10] J. Li, K.R. Sollins, and D.Y. Lim, “Implementing aggrega-

tion and broadcast over distributed hash tables,” Computer

Communication Review, vol.35, no.1, pp.81–92, 2004.

[11] M. Wählisch, T.C. Schmidt, and G. Wittenburg, “Broad-

casting in prefix space: P2P data dissemination with pre-

dictable performance,” ICIW, pp.74–83, 2009.

[12] P. Yalagandula and M. Dahlin, “A scalable distributed in-

formation management system,” SIGCOMM, pp.379–390,

ACM, 2004.

[13] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Bal-

akrishnan, “Chord: A scalable peer-to-peer lookup protocol

for internet applications,” IEEE/ACM TON, vol.11, no.1,

pp.17–32, 2003.

— 6 —

