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Abstract We propose a new problem called a multi-objective optimal combination problem (MOC ) which finds

out object combinations close to a given objective vector. A combination dominates another combination if it is not

worse than anther one in all attributes and better than another one in one attribute at least. The optimal combi-

nations are the ones which cannot be dominated by any other combinations. We propose an efficient algorithm to

find out optimal combinations based on an R-tree by using a lower bound reduction method and an upper bound

reduction method. Our experimental results show that the proposed algorithm is both effective and efficient.
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1. Introduction

In decision-making problems, we need objects which are

optimal w.r.t. several objectives rather than a single ob-

jective. Such problems are categorized into multi-objective

optimization problems [1] or skyline query problems [2]. In

this paper, we propose a new variation which finds out op-

timal object combinations considering multiple objectives.

We name it a multi-objective optimal combination (MOC )

problem. Let us consider an example of the MOC problem

first.

［Example 1］ Assume we want to synthesize a healthy food

containing appropriate nutrition contents. A food is a mix-

ture of several ingredients. Table 1 lists 25 available ingredi-

ents g1 to g25 with their contents in the nutrition N1 and the

nutrition N2. The nutrition contents in the synthesized food

are aggregations of the nutrition contents in its ingredients.

For example, the synthesized food {g9, g10, g21} has nutrition

contents (45, 13) which is the aggregations of the nutrition

contents in g9 = (13, 3), g10 = (14, 2) and g21 = (18, 8).

Given an ideal nutrition contents (50, 15), let us consider

which food is healthier. Table 1 also shows six synthe-

sized foods f1 to f6 consisting of three ingredients. Food

f3 = (16, 22) is a bad one because it is beyond the require-

ment (50, 15) in N2. The other foods are not bad because

they are within the requirement (50, 15) in both N1 and N2.



Let us pick up the better ones then. Food f4 = (6, 11) is

worse than f1 = (45, 13) because f1 is closer to (50, 15) than

f4 in both N1 and N2. We say that f4 is dominated by f1

and f4 is not an optimal food. The optimal food should

be a combination which cannot be dominated by any other

combinations. Thus, f1, f2, f5 and f6 are optimal ones.

表 1 Ingredients And Synthesized Foods

Ingredients

gi N1 N2 gi N1 N2

g1 2 3 g14 6 13

g2 3 5 g15 2 14

g3 1 3 g16 12 11

g4 4 2 g17 10 14

g5 1 5 g18 15 14

g6 7 3 g19 13 12

g7 9 9 g20 11 16

g8 12 8 g21 18 8

g9 13 3 g22 12 18

g10 14 2 g23 4 17

g11 7 10 g24 15 9

g12 2 9 g25 17 12

g13 4 11

Foods

Food N1 N2

f1{g9, g10, g21} 45 13

f2{g10, g10, g21} 46 12

f3{g5, g9, g15} 16 22

f4{g1, g2, g3} 6 11

f5{g9, g9, g21} 44 14

f6{g9, g9, g24} 41 15

Given an object set G where each object g hasm attributes

(g1, g2, · · · , gm), we focus on combinations consisting of h ob-

jects. The attributes of a combination are attribute aggre-

gations of its h elements. In other words, a combination p =

{g1, g2, · · · , gh} also has m attributes (p1, p2, · · · , pm) where

pj = Σh
i=1g

j
i (j ∈ 1, 2, · · · ,m). A MOC problem is to find

out good combinations which are close to an objective vec-

tor b⃗ = (b1, b2, · · · , bm). A combination p is closer to b⃗ than

another combination p′ if bk −pk < bk −p
′k (k ∈ 1, 2, · · · ,m)

and bj − pj <= bj − p
′j (j ∈ 1, 2, · · · ,m and j |= k) where

pi <= bi and p
′i <= bi. We also say that p⃗ dominates p⃗′. If

a combination cannot be dominated by any other combina-

tions, it is an optimal combination.

In this paper we focus on the h-MOC problem which refers

to combinations consisting of h objects and the h is a fixed

natural number given by a user. It is easy to extend the

h-MOC problem to a general case which is to find out opti-

mal combinations consisting of x objects where x is a natural

number varying in [1, N ]. The h-MOC problem, which we

focus on in this paper, is a sub-problem of the general case.

Obviously, we can obtain the solutions for the general case

by solving sub-problems one by one. In the rest part of this

paper, we simply call the h-MOC problems MOC problems

for short without causing confusions.

A näıve method to find solutions for a MOC problem is

to enumerate all possible combinations consisting of h ob-

jects and then determine whether they are dominated by

any other combinations. The non-dominated combinations

are determined to be the optimal combinations. However,

this method is time-consuming. We propose an efficient al-

gorithm to find out optimal combinations using the facili-

ties of the R-tree index. An R-tree splits space by nested

minimum bounding rectangles (MBR) and indexes them hi-

erarchically [11]. We retrieve promising MBR combinations

tier by tier to generate candidates for optimal combinations

at the leaf tier. We use a reduction method to eliminate

MBR combinations which are unpromising to generate op-

timal combinations. We only expand the promising MBR

combinations using its child nodes. Thus, we can perform

dominance tests on a small number of candidate combina-

tions rather than on a huge number of possible combinations.

The rest of this paper is organized as follows. We first

present some studies related to the proposed MOC problem

in Section 2.. We give a formal definition of the MOC prob-

lem in Section 3.. Next, we talk about algorithms to answer

MOC queries in Section 4.. In Section 5., we present some

experimental results of the proposed algorithm and then con-

clude the paper in Section 6..

2. Related Work

In databases area, multi-objective optimization problems

have received considerable attentions since the first work [2]

proposed a skyline query problem. The skyline query prob-

lem aims at finding out optimal objects which cannot be

dominated by any other objects. One object dominates an-

other object if it is not worse than another one in all at-

tributes and better than another one in one attribute at

least. Many subsequent algorithms are proposed to improve

performances of the skyline query, like BBS [8], SFS [12] and

LESS [13]. Our MOC query problem is different from the

classical skyline query problem because it focuses on object

combinations rather than objects themselves. Though an

object combination can be regarded as an object with aggre-

gation attribute values of its elements, it is time consuming

to use an existing algorithm to solve the MOC problem be-

cause there will be a huge number of object combinations to

be processed.

The research of skyline queries on object combinations is

limited. To the best of our knowledge, the first and only

work on this topic is “top-k combinatorial skyline queries”

[3]. This research was motivated by the investment portfo-

lio which finds out optimal stock combinations considering

profit and risk attributes. The authors studied how to find

out top-k non-dominated combinations which rank from 1 to

k before other non-dominated ones according to a given pref-

erence order in attributes. They constructed non-dominated

combinations incrementally considering the preference order

and terminates as soon as the top-k results have been found.



However, our MOC query problem simply focuses on finding

out non-dominated combinations rather than a top-k query

incorporating with any preference orders.

Our MOC query problem seems alike to the zero-one knap-

sack problem [14] which is in the linear integer programming

category [6]. Suppose each object has a value attribute and a

weight attribute, a knapsack problem is to find out the best

object combination with a maximum total value and within

a total weight limitation. The knapsack problem aims at

optimizing the value attribute within a weight constraint.

However, our MOC problem is to find out trade-offs between

the value attribute and the weight attribute. For example,

let us consider the combinations shown in Table ??. Assume

that N1 is the value attribute and N2 is the weight attribute.

Among the six combinations, f2 with a maximum value 46 is

the best solution for a knapsack problem given a weight lim-

itation 15. However, f2, f5 and f6 are solutions for a MOC

problem given an objective vector (50, 15).

Another interesting work [4] focuses on selecting maximal

combinations which consist of objects with a single attribute

(e.g. price). A valid combination should have a total value

(e.g. total price) within a single constraint (e.g. budget). It

becomes a maximal one if it will be beyond the constraint

by adding any new object to it. The proposed algorithms

present k representative maximal combinations to the user

which can generate the most sub-combinations. While our

MOC query thinks about combinations consisting of objects

with multiple attributes. Our objective vector can be re-

garded as multi-constraints like the single constraint in [4].

We construct optimal combinations which are closer to the

multi-constraints.

In order to solve our MOC query problem, we organize ob-

jects using the R-tree index [11] and retrieve object combina-

tions using a lower bound reduction method ( Section 4. 2).

Our lower bound reduction method employs the basic idea

of the forward checking (FC) algorithm [7] which constructs

combinations incrementally to answer structural queries in

spatial objects databases. A structural query asks for ob-

ject combinations which have a spatial structure similar to a

required structure.

3. Problem Definition

Given an object set G where each object has m attributes

(g1, g2, · · · , gm), a combination p = {g1, g2, · · · , gh} con-

sisting of h objects has attributes (p1, p2, · · · , pm) where

pj = Σh
i=1g

j
i (j ∈ 1, 2, · · · ,m). Given an objective vector

b⃗ = (b1, b2, · · · , bm), the distance from a combination p to b⃗

is (d1, · · · , dm) where dj = bj − Σh
i=1g

j
i . If dj >= 0 for all j,

the combination p is eligible to be an optimal combination.

［Definition 1］（Dominate） Given an objective vector b⃗, one

eligible combination p⃗ dominates another eligible one p⃗′ if

dk < d
′k(k ∈ 1..m) and dj <= d

′j(j ∈ 1..m and j |= k). □
［Definition 2］（Multi-Objective Optimal Combination） If a

h-combination cannot be dominated by any other combina-

tions pi ∈ P − {p} where |pi| = h, it is optimal. □
［Problem 1］（MOC Query Problem） Given an object set

G, an objective vector b⃗ and a combination cardinality h,

a MOC query problem is to find out a combination set

S = {s1, s2, · · · , sl} where si (i ∈ 1, 2, · · · , l) is optimal. □

4. Algorithms

A naive method to solve the MOC query problem is to

enumerate all combinations comprising h objects from the

object set G, retain eligible combinations within a given ob-

jective vector b⃗, and then identify optimal ones which cannot

be dominated any others. Obviously, the process is time-

consuming because there may be a huge number of eligible

combinations generated from G with respect to a moderate

b⃗ and each eligible one needs comparisons with all the others

to determine whether it is optimal or not.

4. 1 Depth-First Combination Construction

Given objects indexed by an R-tree, we construct MBR

combinations tier by tier and terminates at the leaf tier where

the MBRs containing real objects. Each combination at tier

i can be expanded by using its child MBRs and generate new

combinations at tier (i+ 1). In this way, we can retrieve all

possible object combinations using the R-tree structure.

［Example 2］ Fig. 1 shows an R-tree index of objects in Ta-

ble 1. Assume we want to construct combinations consisting

of 3 elements. Starting from the root tier, we get 10 dif-

ferent MBR combinations {v1v2v3|v1, v2, v3 ∈ {A,B,C}}.
Each combination can be expanded to new combinations

at the next tier by using their child MBRs. Let us take

the combination ABC as an example. It can be ex-

panded to 18 different combinations {v1v2v3|v1 ∈ {d, e}, v2 ∈
{f, g, h}, v3 ∈ {i, j, k}} at tier 2. Let us expand one combina-

tion dfi. It can be expanded to {v1v2v3|v1 ∈ {1, 2, 3, 5}, v2 ∈
{14, 15, 23}, v3 ∈ {17, 18, 20, 22}} at tier 3 which is also a leaf

tier. At the leaf tier, the new generated combinations, like

{1, 14, 17}, consist of real objects. At that time, we decide

whether they are optimal or not by dominance tests. In other

words, we have constructed an object combination following

the path {A,B,C} → {d, f, i} → {1, 14, 17} in a depth-first

way. In such a depth-first way, we can construct all object

combinations by retrieving a R-tree index.

Constructing combinations tier by tier on an R-tree pro-

vides us an opportunity to reduce the search space by elimi-

nating unpromising MBR combinations. If we can eliminate

unpromising MBR combinations before they are expanded to

real object combinations, we may obtain fewer combination
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図 1 R-tree of objects in Table 1

candidates which need to be decided optimal or not at the

leaf tier. A lower bound reduction method is proposed to

eliminate the unpromising MBR combinations. The reduc-

tion method considers whether an MBR combination is an

eligible one which should be within the objective vector b⃗.

4. 2 Lower Bound Reduction Method

An MBR combination has a lower bound which is an ag-

gregation on the lower bounds of its elements. For example,

the combination ABC has a lower bound ABC⊢ = (13, 19)

which is an aggregation on the lower bounds of its ele-

ments A, B and C, namely, ABC⊢ = A⊢ + B⊢ + C⊢ =

(1, 2) + (2, 9) + (10, 8) . We define it formally as follows.

［Definition 3］（Lower Bound of An MBR Combination） An

MBR combination p = {e1, e2, · · · , eh} has a lower bound p⊢

which is an aggregation on the lower bounds of its elements,

namely, p⊢ = Σh
i=1e

⊢
i where e⊢i is the lower bound of ei. □

An MBR combination with a lower bound beyond an ob-

jective vector b⃗ cannot be expanded to object combinations

within b⃗. An object combination beyond b⃗ is not eligible to

be an optimal one. We conclude a theorem to eliminate such

MBR combinations as follows.

［Theorem 1］ Given an objective vector b⃗ = (b1, b2, · · · , bm),

an MBR combination p cannot be expanded to optimal ob-

ject combinations, if its lower bound p⊢ beyond the objective

vector b⃗, namely, pi⊢ > bi (i ∈ 1, 2, · · · ,m). □
［Proof 1］ We expand an MBR combination p =

{e1, e2, · · · , eh} using child MBRs of e1 to eh until we reach

the leaf tier. In other words, we select objects enclosed in

ei (i ∈ 1, 2, · · · , h) to construct object combinations. Every

object gi selected from ei has attribute values gji >= ej⊢i (j ∈
1, 2, · · · ,m). An object combination consisting of these ob-

jects has attribute values Σh
i=1g

j
i
>= pj⊢ where pj⊢ = Σh

i=1e
j⊢
i .

If pj⊢ > bj , the combination is not eligible to be an optimal

one because its attribute value Σh
i=1g

j
i > bj . □

Let us consider an MBR combination ABC with a lower

bound (13, 19) as an example. Given an objective vector

(50, 15), we have to eliminate this combination because it is

beyond (50, 15) on the second attribute (19 > 15). In other

words, we will not expand ABC further.

Suppose we have an MBR combination e1e2 · · · eh and we

want to expand it. The new combinations generated are de-

noted as v1v2 · · · vh (v1 ∈ C1, v2 ∈ C2, · · · , vh ∈ Ch) where

Ci is child MBRs of ei. All combinations are enumerated by

instantiating variables v1 to vh w.r.t. C1 to Ch. For exam-

ple, the new combinations generated by expanding AAB are

v1v2v3 (v1 ∈ {d, e}, v2 ∈ {d, e}, v3 ∈ {f, g, h}). According

to Theorem 1, we eliminate the combinations which are not

eligible to generate optimal object combinations. We propose

a method called forward checking [7] to incrementally gener-

ate eligible MBR combinations with lower bounds within b⃗

while expanding a parent MBR combination e1e2 · · · eh.
While expanding a parent MBR combination e1e2 · · · eh,

we instantiate variables v1 to vh using child MBRs C1 to Ch.

After instantiating variables v1v2 · · · vl−1 as c1c2 · · · cl−1, we

say that the process is at the lth instantiation level where

we will instantiate vl. Feasible MBRs for vl should have a

lower bound smaller than a threshold T = b⃗−Σl−1
i=1c

⊢
i . If we

choose an MBR with a lower bound beyond T , the final ob-

tained combination will be not eligible. For example, given

an objective vector b⃗ = (50, 15), let us expand a parent com-

bination AAB. Assume that we have instantiated variables

v1v2 as dd. Now we are at the 3rd instantiation level and

we need to select an MBR from B’s child MBRs {f, g, h} to

instantiate v3. The threshold T of selecting MBR for v3 is

(50, 15) − (1, 3) − (1, 3) = (48, 9). If we select MBR f with

a lower bound (2, 13) beyond (48, 9), we will obtain an ineli-

gible combination ddf (i.e. ddf⊢ = (4, 19)). Thus, we should

use either g or h to instantiate v3 which has lower bounds

within T . Let us use dli to denote the domain for instantiat-

ing vi at an instantiation level l. According to T = (48, 9),

we can decide d33 = {g, h} and avoid generating ddf .

The basic idea of forward checking is to update domains

for an instantiation level l according to a threshold Tl which

is decided by c1c2 · · · cl−1 where ci is an MBR instance for vi.



While expanding e1e2 · · · eh, we initialize d1i (i ∈ 1, 2, · · · , h)
for each variable vi using Ci. At the 1st level, we instantiate

v1 as c1 ∈ d11 and get a threshold T2 = b⃗ − c⊢1 for the next

level. According to T2, we get domains d2i (i ∈ 2, 3 · · · , h) by
eliminating MBRs from d1i. The eliminated ones have lower

bounds beyond T2. Next, at the 2nd level, we instantiate v2

as c2 ∈ d22 and get a threshold T3 = b⃗− Σ2
i=1c

⊢
i . According

to T3, we get domains d3i (i ∈ 3, 4 · · · , h). In this way, we

instantiate variables one by one avoid generating ineligible

MBR combinations.

［Example 3］ Table 2 shows the process of expanding AAB

using the forward checking method. Let us consider step 0

to step 3. At step 0, we instantiating d11, d12 and d13 using

child MBRs {d, e} w.r.t. A and child MBRs {f, g, h} w.r.t.

B. At the 1st instantiation level (step 1), we instantiate v1

using d ∈ d11 and get a threshold T2. According to T2, we

prepare domains d22 and d23 for the next level. We eliminate

f from d23, namely, d23 = d13 − {f}, because f⊢ = (2, 13)

beyond T2. At the 2nd level (step 2), we instantiate v2 us-

ing d ∈ d22 and get a threshold T3. According to T3, we

get domain d33 for the next level which is the same with d23

because no MBR is beyond T3. At the 3rd level (step 3), we

instantiate the last variable v3 using g ∈ d33 and obtain a

complete combination ddg.

表 2 Expand AAB Using Lower Bound Reduction

Step Instantiate Threshold Domains Combination

0 T1 = (50, 15) d11 = {d, e} v1v2v3

d12 = {d, e}
d13 = {f, g, h}

1 v1 ← d ∈ d11 T2 = (49, 12) d22 = {d, e} dv2v3

d23 = {g, h}
2 v2 ← d ∈ d22 T3 = (48, 9) d33 = {g, h} ddv3

3 v3 ← g ∈ d33 ddg

4 v3 ← h ∈ d33 ddh

5 v2 ← e ∈ d22 T3 = (45, 10) d33 = {g, h} dev3

6 v3 ← g ∈ d33 deg

7 v3 ← h ∈ d33 deh

8 v1 ← e ∈ d11 T2 = (46, 13) d22 = {d, e} ev2v3

d23 = {f, g, h}
9 v2 ← d ∈ d22 T3 = (45, 10) d33 = {g, h} edv3

10 v3 ← g ∈ d33 edg

11 v3 ← h ∈ d33 edh

12 v2 ← e ∈ d22 T3 = (42, 11) d33 = {g, h} eev3

13 v3 ← g ∈ d33 eeg

14 v3 ← h ∈ d33 eeh

At the last level hth, we can obtain a complete combina-

tion by instantiating the last variable vh. It is necessary to

backtrack to the partial combination c1c2 · · · ch−1vh to see

whether there exist other MBRs in dhh which can be used

to instantiate vh. If so, we use these MBRs to instantiate

vh and obtain other complete combinations. When MBRs in

dhh have been used up, we backtrack to the partial combina-

tion c1c2 · · · ch−2vh−1vh at the previous level (h − 1)th. We

instantiate vh−1 using the unused MBRs in dh−1,h−1 and re-

peat the forward checking process for variables vh−1vh. The

whole process terminates when MBRs in d11 have been used

up. At that time, we find out all eligible combinations .

［Example 4］ Let us continue with the Example 3 and con-

sider the backtrack process starting from step 4. After ob-

taining ddg at step 3, there exists an unused MBR h in d33.

We can use h to instantiate v3 and obtain another complete

combination ddh. After step 4, all MBRs in d33 have been

used up. We backtrack to the partial combination dv2v3 at

the 2nd level and use another MBR to instantiate v2 instead

of d which we have used before. As step 5 shows, we use

another MBR e ∈ d22 to instantiate v2 and repeat the for-

ward checking process which is preparing a new d33 for v3

according to a new T3. One can follow the rest steps and

obtain all eligible combinations as Table 2 shows.

Note that there are duplicate combinations generated dur-

ing the lower bound reduction process. Two combinations

are duplicates if they have same elements regardless of their

element orders. As Table 2 shows, the finally generated com-

binations are ddg, ddh, deg, deh, edg, edh, eeg and eeh.

Combinations deg with edg and combinations deh with edh

are duplicates. It is easy to remove such duplicates and we

will not talk it too much for the space limitation.

Algorithm 1 concludes the process of MOC queries us-

ing the lower bound reduction method. We start a query

process by calling a function MOC query(p, b⃗, h, S) where

p = {root, root, root} and S = ∅. We first initialize the

threshold T as b⃗, initialize d1i (i ∈ 1, 2, · · · , h) as child MBRs

of ei using a function get children(ei), and initialize the cur-

rent instantiation level identifier l as 1 (from line 3 to 6).

Next, we expand the combination p (line 7 to line 30).

From line 9 to 18, we instantiate the variable vl. We

select an MBR from dll to instantiate vl using a function

get MBR(dll) (line 10). The function get MBR(dll) removes

the selected MBR from dll. If dll is empty, we backtrack to

the level (l− 1) (line 12 to 18). Note that we will not do the

backtrack operation if the current level is 1 (line 12 to 13).

From line 19 to 24, we prepare domains for the next in-

stantiation level (l + 1) using the function forward check().

After updating the threshold T considering the instantiated

variables (line 21), we call a function forward check(T, l, i)

(line 31 to 38). In the function, we initialize domains

dl+1,j (j ∈ i + 1, i + 2, · · · , h) as domains dl,j at the pre-

vious level l. We check each MBR in dl+1,j and remove the

ones which have lower bounds beyond T (line 35 to 37).



In the function MOC query(), if we are not expanding a

combination at the leaf tier, we recursively call the function

MOC query() to expand a newly generated combination p′

(line 29). If not, we update the optimal object combination

set S (line 27). A function update optimal set(p′, S) decides

whether a new object combination p′ can be dominated by

an existing combination in S. We add it into S, if it cannot

be dominated by any combinations in S. We also removes

the combinations in S which is dominated by p′.

5. Experiments

We implemented Algorithm 1 in GNU C++ and conducted

experiments on an Intel Core2 Duo 2.40 GHz PC (2.0 GB

RAM) with a Fedora 12 Linux 2.6.32. The algorithm was

implemented based on a R-tree interface provided by a spa-

tial index library SaIL ( [9], [10]). The R-tree has a block size

8, 192 bytes and a fill factor 70%.

We evaluated performances of Algorithm ?? with three ex-

perimental sets. The first set evaluated the algorithm with

respect to different data distributions, say, independent dis-

tribution, correlated distribution, and anti-correlated distri-

bution. The second set evaluated the algorithm with respect

to different m’s where m is the number of attributes. The

third set evaluated the algorithm with respect to different h’s

where h is the number of objects in a combination. We will

show the experimental results of the three sets in Section 5. 1,

Section 5. 2, and Section 5. 3 respectively.

5. 1 Performances with Different Data Distribu-

tion

When we evaluate algorithm performances with different

data distributions, we use five synthetic data sets D0.6, D0.9,

D−0.6, D−0.9 and D0.0 with different correlation coefficients

0.6, 0.9, −0.6, −0.9 and 0.0. We generated these data sets

using the method in [2]. Each data set has 100 objects with

two attributes ranging from 0 to 1000. We use 15 differ-

ent objective vectors b⃗1 to b⃗15 to evaluate the algorithm.

Each objective vector b⃗i (i ∈ 1, 2, · · · , 15) has attribute val-

ues (b1i , b
2
i ) where b1i = b2i = 400 + 200 × i. Given objective

vectors b⃗1 to b⃗15, we executed MOC queries to find out op-

timal combinations consisting of 3 objects on five data sets

D0.6, D0.9, D−0.6, D−0.9 and D0.0.

Fig. 3 (a), Fig. 4 (a) and Fig. 5 (a) show the number of

optimal combinations found w.r.t. different objective vectors

b⃗1 to b⃗15. The vertical axis represents the number of optimal

combinations and the horizontal axis represents b⃗1 to b⃗15.

Fig. 3 (b), Fig. 4 (b) and Fig. 5 (b) show algorithm perfor-

mances. The left vertical axis is the CPU cost with second

unit in a log scale. The right vertical axis is the number of

checked MBR combinations (CMC) also in a log scale.

Let us consider the number of optimal combinations vary-

Algorithm 1 MOC Query Using Lower Bound Reduction

1: procedure MOC query(p, b⃗, h, S) {p = e1e2 · · · eh
is a combination to be expanded; S contains optimal object

combinations.}
2: p′ := v1v2 · · · vh; {Expand p to p′ which have h variables to

instantiate.}
3: T := b⃗; {Initialize threshold T as b⃗.}
4: for i := 1 to h do

5: d1i := get children(ei); {Initialize domains d1i.}
6: l := 1; {Start from the 1st instantiation level.}
7: while true do

8: begin

9: if dll |= ∅ then {MBRs in dll are not used up.}
10: vl := get MBR(dll); {Select an MBR from dll to

instantiate vl.}
11: else {MBRs in dll are used up.}
12: if l = 1 then

13: return; {Terminate the expansion of p.}
14: else

15: begin

16: l := l− 1;

17: continue; {Backtrack to level (l − 1).}
18: end

19: if l < h then {At a level before the last level h.}
20: begin

21: T := T − v⊢l ; {Update T .}
22: forward check(T, l, i); {Prepare domains for level

(l + 1).}
23: l := l+ 1; {Start the instantiation for level (l + 1)}
24: end

25: else {At the last level h.}
26: if at leaf tier(p) then

27: update optimal set(p′, S); {Update S considering

p′.}
28: else

29: MOC query(p′, b⃗, h, S); {Expand p′.}
30: end

31: procedure forward check(T, l, i)

32: for j := i+ 1 to h do

33: begin

34: dl+1,j = dl,j ; {Initialize domains at level l+ 1.}
35: for k := 1 to n do {dl+1,j = {ck|k ∈ 1, 2, · · · , n}.}
36: if is beyond(c⊢k , T ) then {c⊢k is beyond T .}
37: dl+1,j := dl+1,j − {ck}; {Eliminate ck from

dl+1,j .}
38: end

ing with different objective vector b⃗’s (Fig. 3 (a), Fig. 4 (a)

and Fig. 5 (a)). It increases first, reaches a peak value, and

then falls down. In the beginning, the b⃗i has small attribute

values (e.g. b⃗1 = (600, 600)). Thus, we have to use objects

with small attribute values to construct combinations (e.g.

objects in the area [(0, 0), (600, 600)]). While the b⃗i grows,

we can use more objects in a larger area and more optimal
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図 2 Object Distributions and Objective Vectors

combinations are found. When the b⃗i increases to be moder-

ate (e.g. b⃗6 = (1600, 1600)), we can use objects in the whole

area to construct combinations. At that time, the number

of optimal combinations reaches a peak value. From then

on, the b⃗ continues increasing while the area for selecting

objects does not enlarge. In order to construct an optimal

combination, we have to use objects which are close to the b⃗.

The number of optimal combinations falls down and reach a

constant value at last (e.g. b⃗13 b⃗14 b⃗15).
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図 3 Results and Performances on Correlated Data Set

Let us consider the number of optimal combinations vary-

ing with different correlated degrees. In Fig. 3 (a), the high

correlated data set D0.9 has more optimal combinations than
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図 4 Results and Performances on Anti-Correlated Data Set
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図 5 Results and Performances on Uniform Data Set

the low correlated data set D0.6. Fox example, the objects

in D0.9 are more concentrated along the objective vectors

b⃗1 to b⃗15 than the objects in D0.6. Thus, we can use more

objects to construct optimal combinations when we execute

MOC queries on D0.9. Given the b⃗ as (600, 600), we can

use more objects because there are more objects in the area

[(0, 0), (600, 600)] in D0.9. On the other hand, an object close

to the b⃗i is easier to become an element of an optimal com-

bination. Likewise, we can understand the varying numbers

of optimal combinations on D−0.9 and D−0.6 in Fig. 4 (a).

Fig. 3 (b), Fig. 4 (b) and Fig. 5 (b) show the algorithm per-

formances. The CPU cost depends on how many MBR com-

binations (CMC) we have checked during the MOC queries.

The number of CMCs increases first, reaches a peak value,

and then decreases. More CMCs are generated w.r.t. a rel-

ative larger b⃗i. When we can use objects in the whole area,

fewer CMCs are generated w.r.t. a relative larger b⃗i. The

reasons are the same with what we have stated above for

explaining the number of optimal combinations.

5. 2 Performances with Different Attribute Num-

ber m

When we evaluate algorithm performances with different

attribute number m, we use three data sets D2, D3 and D4

where m = 2, m = 3 and m = 4 respectively. The objects in

the three data sets follow uniform distributions. Each data

set contains 100 objects with attribute values ranging from

0 to 1000. We use 15 objective vectors b⃗i (i ∈ 1, 2, · · · , 15)
where b1i = b2i = · · · = bmi = 400 + 200 × i (m = 2, 3, 4).

Given the objective vector b⃗i, we execute MOC queries on



D2, D3 and D4 in order to find out optimal combinations

consisting of 3 objects.
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Fig. 6 (a) shows the number of optimal combinations on

data sets D2, D3 and D4. The vertical axis represents the

number and the horizontal axis represents objective vectors

b⃗1 to b⃗15. The data set with a larger m (e.g. D4) has more

optimal combinations than the data set with a smaller m

(e.g. D2) because it is difficult for one combination dom-

inates another combination if there are more attributes to

compare.

The Fig. 6 (b) shows the algorithm performances on data

sets D2, D3 and D4. The left vertical axis represents CPU

cost with a second unit in a log scale while the right vertical

axis represents the number of CMCs also in a log scale. The

CPU cost depends on the number of CMCs. The data set

with a larger m (e.g. D4) checks more MBR combinations

than the data set with a smaller m (e.g. D2) because the

R-tree has more MBRs in a high-dimensional space.

5. 3 Performances with Different Cardinality h

When we evaluate algorithm performances with different

number of objects in a combination, say, different h’s, we use

the uniform distribution data set D0.0. Given the objective

vector b⃗ = (500, 500), we execute MOC queries to find out

optimal combinations.
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図 7 Results and Performances on Data Sets D0.0 with h =

1, 2, · · · , 9

Fig. 7 (a) shows the number of optimal combinations with

different h’s. The horizontal axis represents the h from 1 to

9 and the vertical axis represents the number in a log scale.

The number increases while h increases because a same ob-

ject set can generate more object combinations with a larger

cardinality (e.g. h = 9).

Fig. 7 (b) shows the algorithm performances with different

h’s. The left vertical axis represents the CPU cost while the

right vertical axis represents the number of CMCs. The CPU

cost depends on the number of CMCs as well as the number

of candidates. The number of CMC grows with h because

a same R-tree can generate more MBR combinations which

have a larger cardinality (e.g. h = 9). At the leaf tier of the

R-tree, we decide whether a popped candidate object com-

bination is an optimal one. It takes much more time to do

dominance tests for a larger number of candidates due to a

larger cardinality h.

6. Conclusions

In this paper, we propose a new multi-objective optimiza-

tion problem called MOC problem which is to find out opti-

mal combinations w.r.t. an objective vector b⃗. We propose

the lower bound reduction and the upper bound reduction

methods to answer MOC queries efficiently.
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