

DEIM Forum 2011 E1-1

Estimating XML version trees through maximum weight branching

曹 哲† 岩井原 瑞穂†

早稲田大学大学院情報生産システム研究科 〒808-0135 福岡県北九州市若松区ひびきの 2-7

E-mail: †asulahzala@gmail.com, †iwaihara@waseda.jp

ABSTRACT

XML is the de facto standard format for data exchange and manipulation of structured documents. Meanwhile, structured documents

having past versions are rapidly growing, especially among the field of wiki contents and office documents. Even though there is an edit

history for these user-generated contents, it is still hard to show how a document evolved by only comparing old versions with the latest

version. To overcome this problem, we propose a version tree reconstruction mechanism scheme for XML documents. A version tree can

explain how a document has evolved though collaborative editing, as well as illuminate dependencies among documents. This paper

concentrates on reconstruction of XML version trees, and we also present an experiment on synthetic data to show how the reconstruction

performs.

Keyword XML，maximum weight branching，similarity value，version tree

1. INTRODUCTION

Version is a description of an object during a period of

time or under a certain point of view, whose recording is

notable for the considered application. As the

widespread diffusion of semi-structured data in XML

format, structured documents having past versions are

rapidly growing. Shared or interactive contents such as

office documents and wiki contents are often provided

with both the latest version and

all past versions. Therefore, in order to check changed

parts, old versions are compared with the latest version.

Early works on XML documents mainly concentrate on

similarity calculation for the purpose of grouping them

into clusters. Deise et al. [1] proposed a version detection

mechanism based on classification techniques. According

to the similarity value between two files, their version

detection mechanism seeks to verify whether these two

files are versions of the same document. However, their

work still does not cover the relationships of these

versions, which means the proposed mechanism cannot

clearly show the edit history of a document. In our

proposal, this problem can be solved by the reconstruction

of version trees.

A version tree is a directed tree in which each node

represents one version, and its structure reflects edit

history of the document. The structure of a version tree is

shown in Fig. 1. Here, it should be noted that a version

history sometimes becomes a DAG (directed acyclic

graph) rather than a tree. This occurs when two versions

are merged into a new version. In this paper, we don’t

consider this merging structure. By reconstructing

XML version trees, we can explain how a document

evolved by collaborative editing. In this process, firstly,

we compute similarity values between each two versions

using defined similarity measures. Secondly, we build a

directed graph in which each node represents

one version and each the edge weight represents the

similarity value between two versions. Thirdly, we

simplify the directed graph by removing arcs

having small weights. At last we can obtain an

XML version tree by using the maximum weight branching

[3].

Fig.1 XML version tree

versions

v1

v2 v3

v4 v5 v6

v7

vi

We can evaluate the accuracy of the proposed

version tree reconstruction mechanism scheme by

comparing the generated estimated version tree with the

true version tree.

The main contributions of this paper are:

 We show a method for reconstructing a version

tree about a document with multiple versions. By

the version tree we can see how a document has

evolved clearly rather than compare two versions

frequently.

 We utilize the maximum weight branching to

compute the version tree.

The paper is organized as follows. In Section 2, we will

define the main issues about the problem. Section 3

describes the version tree reconstruction algorithm. Our

experiment result is shown in Section 4. Finally,

concluding remarks are discussed in Section 5.

2. PROBLEM DEFINITION

In this section, before discussing how to reconstruct

version trees in detail, we first give several definitions

regarding our problem.

Definition 1. (XML Document). We model an XML

document as a rooted ordered tree where nodes are labeled

as either element, text or attribute, and only element nodes

can have a child node.

One element consists of element name, attribute list and

a text value. In this paper we consider that the content

consists both attribute and value of an element.

 In this paper, an XML document may have various

versions and all versions are managed as separate files.

Definition 2. (Matched, Changed, Removed, Added and

Totalnum). We define two elements as matched if both

their structure and content are the same, changed if their

structure remains the same while their content changes.

An element is removed if it is deleted from one version, an

elements is added if it is a new element. We define that

Totalnum is the sum of matched, changed, removed and

added elements.

Definition 3. (Similarity Value).We define the similarity

value between two versions V1 and V2 as:

C=changed elements/Totalnum

M=matched elements/Totalnum

R=removed elements/Totalnum

A= added elements/Totalnum .

Here, M is the percentage of matched elements , C is the

percentage of changed elements, R is the percentage of

removed elements and A is the percentage of added

elements, the sum M, C, R and A is 1. Therefore, we use

 to reduce variables.

We can also easily see from the function that the

interval of variables M, C, R and A is from 0 to 1 .

Analyzing the ranges of M, R and A, we can obtain the

fact that ranges from min[to . In

order to uniformly distribute these similarity values, we

can map these values to by using the

normalized formula which is defined as follows.

Definition 4. (normalized similarity value). We define

normalized similarity value between two versions as:

Later, we will use this normalized formula to calculate

the similarity value in experiments in order to set these

values from 0 to 1. The function in Definition 3 is similar

to the idea presented in [1], which uses content similarity

value and the percentage of added and deleted elements to

calculate structure similarity value. Below, we give a

simple example to show how the function works.

Fig.2 Two sample versions

Fig.2 shows two versions of a document, where the left

part is version1 and the right part is version2 . First, we

use the XML diff tool of [2] to detect the number of

matched, changed, added and removed elements so as to

compute M, C, A and R. The diff result is shown in Fig.3.

Fig.3 Diff result of Fig.2

From Fig 3, we can see that <name>movie1</name> is

changed elements, while <FirstName>Mike<FirstName>

is changed elements. According to Definition 3, the total

number of elements is 8, C and R equals to 1/8=0.125, A

equals 0, . If we set the weight factors

 as 0.8, -0.2, -0.2, -0.2, the similarity value

between two versions is , the normalized

similarity value is 0.75.

Definition 5. (Version Graph).A version graph, denoted as

 , is a directed weighted graph , where: V is

the set of all versions, E is the set of version edges and

w(e) is the a function that gives a similarity value to

every edge e .

Definition 6. (Maximum Weight Branching). Given a

directed graph G, a branching B is a subgraph of G such

that B is a directed forest. The maximum weight branching

is a branching of maximum weight in G

Definition 7. (Version Tree). A version tree , denoted as ,

is a directed, rooted tree in which all edges originate from

the root R where R refers to the initial version of a

document.

Basically, there are three types of version tree

estimation:

1. With timestamps. This situation mainly occurs in

wiki contents where all the timestamps are available

for each version of a document. The tree structure is

embedded in the linear structure of the timestamp

ordering.

2. Without timestamps . This situation occurs when

dealing with documents that lost their timestamps, due

to actions like copying.

3. Timestamps partially available . This situation

occurs when a subset of versions retain their

timestamps. Surviving timestamps can be a

constraint on version trees.

In this paper, we mainly discuss version tree estimation

without timestamps.

3. PROPOSED METHOD

Our proposed method for reconstructing XML version

trees performs three processes. The first process is

similarity calculation , which is responsible for building

the version graph. The second process is called graph

simplification and it mainly deals with deleting redundant

edges by setting an appropriate threshold. Finally,

maximum weight branching is applied to construct the

version tree during the algorithm application process. The

whole process is depicted in Fig.4.

Various Versions

Version Graph

Similarity value

Simplified Version GraphThreshold value

Version Tree

Maximum weight branching

Fig.4 Process of proposed method

3.1 Similarity Calculation

In this paper, we use similarity values to indicate the

similarity between two versions both in structure and

content. The function of similarity value has been given in

Definition 4. The factors () are defined based

on the importance of the four features in different

situations.

The weights for C, R and A () are negative

values because the smaller these values the more similar

versions. Also, it should be noted that M, C, R, A are not

uniquely determined and their values vary depending on

the diff algorithm.

3.2 Graph Simplification

Because a version graph is a complete graph,

decreasing the number of edges is necessary to reduce

computation cost.

In this phase, we remove edges which have small

weights. A threshold is given to achieve the purpose of

graph simplification. The edges with weight higher than

the threshold remain, while the lower ones are removed.

The threshold will be empirically determined.

3.3 Algorithm Application

Here, we first give several definitions in order to

explain how to find the maximum weight branching.

Definition 8. (Critical Arc). Given a directed graph

G=(V,E), suppose that e is an arc from i to j, the source of

e s(e) is i and the terminal of e t(e) is j. Then e is a critical

arc if the weight of e is not less than the weight of any

other arc whose terminal is also vertex j.

Definition 9. (Critical Graph). Given a directed graph G,

a subgraph is a critical graph of G if the subgraph consists

of the set of all critical arcs chosen in G.

Let H be a critical graph in G with weight function w,

and let the cycles in H be Ci(i=1,2,…,k). Let W be the set

of vertices in G that do not belong to any of the cycles in

H. Replace each cycle C i in H by a single vertex X i. Let

V1={X1,X2,…,Xk} W. If e is an arc in G that is not an arc of

C i and t(e) is a vertex of C i, define w1(e)=w(e)-w(f)+w(e i),

where f is the unique arc in Ci that t(e)=t(f) and e i is an arc

of minimum weight among all arcs in that cycle. If t(e) is

not a vertex of these k cycles, w1(e)=w(e) .

Definition 10. (Condensed Graph). Given a directed graph

G, the condensed graph of G is the weighted multigraph

G1 that is constructed with V1 as the set of vertices with

the revised weight function w1.

Here, we will show a small example to explain these

definitions in Fig. 5. The numbers represent seven

versions of a document.

(a) Version Graph

(b) Critical Graph

(c) Condensed Graph

(d) Maximum Weight Branching

Fig. 5 (a)(b)(c)(d) Maximum branching computation

Basically, the maximum weight branching algorithm

can be divided into two phases: condensation phase and

unraveling phase. In the condensation phase, the input is

the weighted digraph G=G0. Construct G1 from G i -1 by

condensing the cycles in its critical digraph. Gk is the first

digraph in the sequence for which the critical graph Hk is

acyclic. In the unraveling phase, the graph Hk is a

maximum weight branching in Gk. Let Bk=Hk. Construct

B i-1 from B i by expanding the condensed cycles. B i is a

maximum weight branching in G i for i=k,k-1,k-2,…,1,0 .

The output is B=B0.

Definition 11. (Arborescence). A branching is

an arborescence if there is exactly one vertex (the root of

the arborescence) with indegree equal to zero.

We can see from Definition 10, a spanning arborescence

is nothing other than a rooted tree. A digraph is called

quasi-strongly connected if for every pair of vertices u and

v in the digraph there exists a vertex w such that there are

directed paths from w to u and from w to v. It has been

shown that a digraph has an arborescence if and only if it

is quasi-strongly connected. In this situation, we can use

Edmonds’s Algorithm to construct the version tree. Tarjan

described an efficient implementation of Edmonds's

algorithm in [4]. The algorithm can be implemented to run

in time O(mlog n), where n is the number of vertices of the

graph and m is the number of edges. With a slight

modification, the implementation can be made to run in

time O(n2), which is preferable when dealing with dense

graphs. In [5], Gabow et al. give an time

implementation of Edmonds's algorithm for finding an

optimum spanning arborescence. We also note that a better

time complexity cannot be achieved by any

9

1

2 3 6

5 7 4

8

7
7

9

7

6

7

X1 7

6

9

1

2 3 6

5 7 4

8

7

4 9

8

7

X1

9

1

2 3 6

5 7 4

8

6

6

7 7

4 9

8 8 8
7

5

implementation of Edmonds’s algorithm since Edmonds’s

algorithm can be used to sort n numbers (sorting n

numbers by comparison requires time, and

since we always have to look at every edge of the graph,

we cannot achieve a better time complexity for Edmonds’s

algorithm than .

4. EXPERIMENTS AND EVALUATION

In our experiments we use synthetic data and the

experiments are carried out as follows:

(1) Data Acquisition

This phase is responsible for acquiring different

versions of a document. In order to obtain these versions,

for one document d, we generate a random sequence Q of

updating operations (insert, delete and modify) . Then a

true version tree can be obtained by applying Q to d. in

our experiment, we generate six versions for one

document. The structure of the true version tree used in

the experiment is shown in Fig.6.

Fig.6 the true version tree of our experiment

(2) Data Processing

In this phase, we apply the three processes presented in

Fig.4 to deal with these different versions. First, we use

Microsoft XML diff tool to detect the number of matched,

changed, added and removed elements so as to compute C,

A and R. Then we apply the normalized similarity

calculation formula to obtain the similarity values

between each two versions. Table.1 shows the normalized

similarity values between each two versions of one

document with different weight factors. Here, symmetric

matrix will obtained if we set which is

shown in Table.1 (a).

The next step is to check whether there are similarity

values that are far smaller than average value. We delete

these edges for the purpose of simplifying the version

graph. Based on the version graph, we construct various

version trees using Edmonds's algorithm. Fig.7 shows all

the estimated version trees generated from Table.1.

After constructing estimated trees, we compare them

with the true version tree to calculate the precision and

recall. In this paper, we use ancestor-descendant

relationships to do precision and recall calculation .

 V1 V2 V3 V4 V5 V6

V1 — 0.91 0.84 0.78 0.84 0.78

V2 0.91 — 0.92 0.85 0.92 0.85

V3 0.84 0.92 — 0.93 0.85 0.79

V4 0.78 0.85 0.93 — 0.79 0.74

V5 0.84 0.92 0.85 0.79 — 0.93

V6 0.78 0.85 0.79 0.74 0.93 —

(a) (equals (0.8, -0.2, -0.2, -0.2)

 V1 V2 V3 V4 V5 V6

V1 — 0.93 0.87 0.82 0.87 0.82

V2 0.91 — 0.94 0.88 0.94 0.88

V3 0.84 0.92 — 0.94 0.87 0.82

V4 0.78 0.85 0.93 — 0.81 0.77

V5 0.84 0.92 0.87 0.82 — 0.94

V6 0.78 0.85 0.81 0.77 0.93 —

(b) () equals (0.8, -0.2, -0.2, 0)

 V1 V2 V3 V4 V5 V6

V1 — 0.91 0.84 0.78 0.84 0.78

V2 0.93 — 0.92 0.85 0.92 0.85

V3 0.87 0.94 — 0.93 0.87 0.81

V4 0.82 0.88 0.94 — 0.82 0.77

V5 0.87 0.94 0.87 0.81 — 0.93

V6 0.82 0.88 0.82 0.77 0.94 —

 (c) () equals (0.8, -0.2, 0, -0.2)

Tab.1 (a)(b)(c) Similarity values with different weight factors

(a) (equals (0.8, -0.2, -0.2, -0.2)

insert

insert

insert， modify

insert， modify

insert

v3 v5

v4 v6

v1

v2

(b) (equals (0.8, -0.2, -0.2, 0)

(c) (equals (0.8, -0.2, 0,0.2)

Fig.7 (a)(b)(c) Version trees with different weight factors

Definition 12. (Precision). Given an estimated version

tree and a true version tree , let

 ,

 be the set of all descendant-ancestor

relationships, define Precision

 .

Definition 13. (Recall). Given an estimated version tree

 and a true version tree , let
 ,

 be the set of all descendant-ancestor relationships,

define Recall

 .

Using Definition 12 and 13, we list all the accuracy and

recall values of the estimated version trees in Table. 2 .

(3) Data Analysis

From Tab.2, we can conclude that with weight factors

(0.8, -0.2, -0.2, 0), better accuracy is achieved (we even

obtain the true version tree with root node 1).Here, setting

 to 0 means that we give more weight on the insert

operation and in fact, we generate the six versions mainly

Fig.5 (a) (b) (c)

Root

node
2 5 6 1 2 5 2 5 6

Precision 0.9 0.4 0.2 1 0.9 0.4 0.9 0.4 0.2

Recall 0.5 0.4 0.3 1 0.5 0.4 0.5 0.4 0.3

 Tab.2 Accuracy of estimated version trees

by insert operations. Through the above analysis , we can

see that setting appropriate weight factors is quite

important to obtain better estimated version trees. In our

future work, SVM can be applied to determine these

weight factors.

It is also easy to note that we cannot necessarily obtain

spanning tree structures in a directed graph with a fixed

root node, which indicates that in some situations we can

only obtain distributed branching rather than a tree

structure.

5. CONCLUSION

This paper focuses on a version tree reconstruction

method for XML documents. The importance of the

problem is increasing under the background that

structured documents having past versions are rapidly

growing. In this paper, we define a similarity calculation

function in order to detect the similarity of two versions.

Moreover, version trees with different root nodes are also

constructed so as to show how a document has evolved.

As future work, we are going to app ly the version tree

reconstruction method to Wikipedia contents and develop

a weight factor selection system in order to obtain

estimated version trees with higher accuracy. Also, we

will try to optimize the similarity function and the

maximum weight branching algorithm in order to make the

method applicable in different domains.

6. REFERENCES

[1] Deise de Brum Saccol, Nina Edelweiss, Renata
de Matos Galante and Carlo Zaniolo, “XML Version
Detection”, DocEng’07, August 28–31, 2007,
Winnipeg, Manitoba, Canada.

[2] http://msdn.microsoft.com/en-us/library/aa3022
94.aspx

[3] J.Edmonds, “Optimum branching”, Journal of
Research of the National Bureau of Standards, 71B,
1967, p.233-240

[4] R. E. Tarjan, “Finding optimum branching”,
Networks, 7(1):25-35, 1977.

[5] H.N. Gabow, Z. Galil, T. Spencer, and R.E.
Tarjan, “Efficient algorithms for _finding minimum
spanning trees in undirected and directed graphs”,
Combinatorica, 6(2):109-122, 1986.

http://msdn.microsoft.com/en-us/library/aa302294.aspx
http://msdn.microsoft.com/en-us/library/aa302294.aspx

