

DEIM Forum 2011 E1-4

XML Data Allocation in Hard Disks Based on Query Patterns

Xuehua JIANG
†
 Haruo YOKOTA

‡

†, ‡Department of Computer Science, Graduate School of Information Science and Engineering

Tokyo Institute of Technology 2-12-1 Oookayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail: †jiang@de.cs.titech.ac.jp, ‡yokota@cs.titech.ac.jp

Abstract Applications of XML data are becoming more and more active and their volume is increasing

day by day. To save high capacity of XML data, more than one hard disks are used. Decreasing power

cost consumed by multiple hard disks and increasing XML data retrieving performance are important

problems. This paper proposes an allocation algorithm for XML data in multiple hard disks by finding out

XML tree/subtrees which are often issued together during the same transaction and put them into the

same disk in order to reduce power consumption and enhance retrieve performance.

Keyword XML, Query Patterns, Multiple Disks, Data Allocation

1. Introduction

XML has emerged as a standard for data presentation

and exchange on W3C. Data exchange format XML has

been penetrating virtually all areas of internet

application programming. As a result, volume of XML

data is increasing day by day. Due to high capacity of

data, multiple hard disks are used to save data. When

more than one disks are applied, there is a problem for

power consumption.

 Several recent studies have pointed out that data

centers can consume several Mega-watts of power [1].

It has been observed that power densities of data

centers was grow to over 100 watts per square foot and

that the capacity of new data centers for 2005 could

require nearly 40 TWh per year. Recently, decreasing

power consumption is one of hot issues.

In this paper, we propose a data allocation algorithm

for multiple hard disks to save energy consumed by

multiple hard disks by mining patterns from XML

query log. Correct mining result offers good idea for

data allocation in hard disks and suitable data allocation

can lead to reduce consumption by putting disk which

is not accessed frequently to a lower power

consumption mode.

The reminder of this paper is organized as follows.

Section 2 introduces existing common approach of

power saving. Section 3 introduces related work about

XML data caching algorithm and Section 4 provides

XML data mining algorithm. Section 5 introduces

data type and their allocation in disks. Finally,

explanation about simulation environment and

conclusion about the paper and future work is remarked

in section 6 and section 7.

2. Common Approach of Power Saving

There is a common approach to reduce power

consumption in hard disks which is shown in figure 1.

The approach tries to put disk which is not accessed

frequently to a low power consumption mode. There

are 3 types of disk mode due to its disk rotation speed;

active, idle and standby. When there is no read/write

request to a certain disk, the disk enters to idle mode

from active mode; if there is no access during a period

of time, the disk spins down and goes continue to

standby mode. In active mode, disk rotation speed is

highest; as a result, power consumption is highest. In

the Idle mode, power consumption is lower than in

active mode; response cost is lower than in standby

mode. In the standby mode, disk stops rotating.

Therefore, power consumption is lowest. However, the

response cost is highest because the disk should spin up

to idle mode first, then go to active mode to process

requisition. Both spin down and spin up process during

mode transition consume some cost.

 Data allocation in multiple disks tries to put data

which are not issued frequently to a disk with low

power consumption to stay disk in the low power

consumption mode longer. In oppositely, data which are

issued frequently should be put into a disk with active

mode or idle mode in order to reduce spin down and

spin up processes and offer high performance to the

requisition.

Figure 1: Disk Mode

3. Related Work

We should find out which data are issued frequently to

propose a data allocation algorithm based on query

patterns for multiple hard disks. Here we introduce

related work about XML caching algorithm.

There are some works have been done about XML

data mining algorithm so far. [2] and [3] proposed a

XML caching system called XCache which processes

XPath queries using cached XML data and combine

result from cached data and from server in case that not

all result can be retrieved from cache memory. [4], [5]

and [6] proposed XML data mining algorithms based

on query patterns to save data most retrieved frequently

in order to enhance query performance. In paper [7],

the authors proposed a XML cache management taking

ancestor and descendant relationship into account. In

many cases, a parent node contains more than one child

node. When a child node is issued in a query, its parent

nodes are issued together because of characteristic of

XML tree structure. As a result, ancestors are issued

more frequently and they are less likely to be replaced

than descendants in cache memory.

All above studies focused on how to enhance XPath

query performance and proposed mining algorithm for

caching. However, these works have some defects. Fox

example, they did not take attributes of a node, “//” or

“*” into account. Sometimes, attributes contain very

important information, such as id, therefore, we cannot

ignore attributes with important information. Some

queries contain “//” node or “*” to search any

corresponding nodes or these special nodes are

included in queries because not all users understand

XML tree structure well. Another problem with existing

algorithm is that they cannot be applied to data

allocation algorithm directly because size of cache

memory is much smaller than size of hard disk. Data

allocation algorithm does not need to consider disk

space so much because disk size is very big when

compared with cache memory.

Figure 2: System Architecture

Figure3: XML File DTD

4. Mining Algorithm

Figure 2 shows system architecture for data allocation

algorithm we propose. A user issued XPath queries to

retrieve some elements from XML documents stored in

multiple disks. Our system logs queries from users to

apply XML query pattern mining. First, we mine

frequent trees which are frequently issued due to logs

collected from users. Then cluster and associate mining

result find out which part of XML data are issued

frequently in order to propose data allocation algorithm

for multiple disks. Data are allocated into different

disks due to their access rate. Disks with infrequent

data are put into standby mode; disks with frequent data

stay in active or idle mode. When a requisition to a disk

with standby mode is issued, the disk has to go back to

active more to process the requisition and spin down to

standby mode if there is no more requisition during a

period of time. Improvement work about existing XML

data mining algorithm is introduced in this section.

4-1.XPath Mining

XML data have tree structure and we can use XPath to

indicate their ancestor and descendant nodes as well as

their relationship. As Example, we apply XML data

from Benchmark[8] program and file DTD is described

in figure 3.

As special examples which include “//”, “*” or

attributes, I applied below 3 XPath queries.

Case 1: (with “//” node) We assume that a user

issued a a XPath query “site//name”. When we observe

DTD, we can find that there are two different nodes

with the same name “name”; one is a child node of item

node, the other one is a child node of person node. In

this case, we do not know which node does the user

want to search, therefore, we assume that both nodes

are issued at the same time. XPathes of this query is

“site/regions//item/name” and “site/people//name”

respectively.

 Case 2: (with “*”, “//” node) In this case, we assume

that user issued an XPath query to search a node with

different search condition. The first query is

“site/regions//item[name = “John”]”. Node contained

in [] mark is filtering condition. This query searches an

item whose name is John. As a result, the search

traverses only one node “name”. The second query is

“site/regions//item[*=”John”]” to search child node of

“item” node whose child is John. In this case, “*” can

be matched with all child nodes of “item”, including

“description”, “mailbox”, “reserve” and “name”. The

last query is “site/regions//item[// = “John”]”,

searching an item whose child node or itself matches

with “John”. In this case, matching nodes are “item”,

“description”, “mailbox”, “reserve” and “name”. When

Transaction 1 Transaction 2

Q1:site/people/person[@id=”person0”]/name Q6:site/regions//item[name= “John”]

Q2:site/open_auctions/open_auction/bidder[1]/increase Q7:site/regions//item[*=”John”]

Q3:site/people/person/profile/income Q8:site/closed_auctions/closed_auciton/annotation/description

Q4:site/people/person[homepage]/name Q9:site/closed_auctions/closed_auciton/annotation[description]

Q5:site/people/person/profile[income] Q10:site/regions//item[//=”John”]

 Table 1: XPathes

we consider all 3 kinds of search condition, we can

conclude that “//” contain more information than a

certain node or a “*” node. Therefore, we should mine

the query with “//” node when other kind of search

condition appears together with this kind of search

condition.

Case 3: (with attribute of a node) In this case, we

assume that there is a query “site/people/person[@id =

“01”]” issued. Here, filtering condition is id, which is

an attribute of the “person” node and contains unique

information about “person” node. In this case, attribute

value should be mined as well.

As example, we apply 10 queries and 2 transactions,

5 XPathes in each transaction. Detail of queries and

transactions are described in table 1 and XPathes

explained in tree format are shown in figure 4.

At first, we calculate frequency of each XPath. Every

XPath is expressed as tree structure in figure 3 from

which we can calculate frequency of each XPath. We

use freq(XPath) to indicate frequency of a certain

XPath. For example, freq(site/regions) indicates

frequency of site/regions issued in a certain transaction.

freq(site/closed_auctions/closed_auction/annotation/de

scription) = 2, issued in Q7 and Q8 respectively.

freq(site/people/person/”? ”) indicates an XPath

whose child node of “person” is not always the same

one, or sometimes, there is even no child node for

“person” node at all. Furthermore, we calculate support

of each XPath, which is defined as

Figure 4: XTree

Support of each XPath can be simply calculated by

definition above.

supp(site/people/person/”?”) = 0.4

supp(site/open_auctions/open_auction/bidder[1]/increa

se) = 0.1

supp(site/regions//item/”?”) = 0.3

supp(site/closed_auctions/closed_auction/annotation/d

escription) = 0.2

Here “?” indicates actual data appears in queries. For

the XPath site/people/person/”?”, “?” is “name” and

“id” in Q1; “profile/income” in Q3 and Q5; “homepage”

and “name” in Q4. To pick out XPathes which are

issued frequently, we propose a minimum support (we

use min_supp to indicate minimum support below.) to

decide whether an XPath is a frequently issued one or

not. XPath whose support is greater or equal to

min_supp is considered as frequently issued XPath;

others are not. In this paper, we apply min_supp as 0.2.

Then all XPath except Q2 are considered as frequently

issued XPathes.

4-2. XTree Clustering

Subsequently, we explain how to cluster XPath mined

in above section. Clustering is process of combining

XPathes with the same ancestor/parent nodes.

Clustering Rule: cluster tree should contain all nodes

appeared in mined trees.

For the XPath site/people/person/”?”, site/people/

person issued for four times over all, therefore Q1, Q3,

Q4 and Q5 should be combined to produce a cluster

tree. Similarly, clustering result for XPath

site/regions//item/”?” and site/closed_auctions/closed_

auction/annotation/description are shown in figure 5.

In other word, {Q1 Q3, Q4, Q5} can retrieve result

from cluster tree 1, {Q6, Q7, Q10} and {Q8, Q9} from

cluster tree 2 and cluster tree 3 respectively, as well.

Figure 5: Clustering Tree

4-3. Association Rule

Association is process of making data sets from cluster

trees in transaction unit. Association process should be

done within a transaction because we try to find out

which nodes are retrieved together frequently. Table 2

shows query information for per transaction in cluster

tree unit.

We apply an association rate to calculate their

relationship. In the definition, we only consider

Transaction 1 Transaction 2

CT1 CT2

NULL CT2

CT1 CT3

CT1 CT3

CT1 CT2

Table 2: Transaction with Cluster Trees

combination of cluster trees, while existing caching

algorithm consider correlation of cluster trees because

we have enough space to save some duplicated nodes in

disks. In the definition, is a cluster tree from

clustering result, m indicates number of cluster trees in

the same transaction.

In transaction 1,

Similarly in transaction 2, association rate for CT2 is

0.6, for CT3 is 0.4, for CT2 and CT3 is 0.6. When we

apply minimum association rate as 0.4, all cluster trees

can be selected and we get 2 association trees, AT1 and

AT2 respectively, which are shown in figure 6. There is

an association rule which indicates that association tree

should contain all nodes regardless keywords, “*” or “//”

nodes. AT1 just equals to CT1 because transaction 1

contains only one cluster tree; AT2 is combination of

CT2 and CT3 because data contained in both CT2 and

CT3 are issued during transaction 2.

Figure 6: Association Tree

* “NULL”

means

corresponded

query is not

contained in

cluster tree.

5. Data Allocation

We classify data into three types: cache data,

association data and remain data. Cache data is cluster

trees, which are most like to be reissued. As a result,

cache data is saved in cache memory to enhance query

performance. Association data is aggregation of cluster

trees due to association rule. In other word, it is

combination of cluster trees which appear together

frequently. Remain data is the data not contained in

association tree. Therefore, original data should be

aggregation of association tree and remain data.

Association data and remain data are saved in

different hard disks respectively in order to reduce

unnecessary actuation of disk for only a small part of its

data. We assume that there are 50 transactions, each

transaction contains 5 queries. XML data are separated

into2 disks, disk 1 and disk 2, each holds frequent data

and infrequent data respectively. Figure 7 shows

assumption in our paper. In other words, association

tree are saved in disk 1, and remain data are saved in

disk 2.

In the first transaction, there is one query which is

not contained in association tree, so result of this query

should be retrieved from disk 2 which save remain data.

Other queries are all contained in association trees;

therefore, they can retrieve result from disk 1. Now we

can put disk2 to a low power consumption mode after it

is accessed in transaction 1, in other words, disk2 can

be put into standby mode during transaction 2 ~

transaction 50.

6. Simulation

“auction.xml” from XMarkBench program is a file

which will be used to do simulation. Size of this file is

about 25M. Test data(query) are the same data set

applied in a paper named “”which were applied to

evaluate cache memory efficiency for XML. The data

Figure 7: Data Allocation

set contain 100 queries, 96% of queries are frequent

queries, and else 4 % are infrequent queries. Among

frequent queries, there are 6 different queries, each

appears 16% in the log.

Among the data set, we know which queries are

issued frequently and which queries are not. There are

only 6 different frequent queries, mining result are just

the same 6 queries in the data set.

Clustering process is the process of combining

queries with same ancestors. Association is a further

process of combining cluster trees in transaction unit.

Nodes contained in the association trees are marked as

1, others are marked as 2. Here, we assume that apply 2

disks, disk1 holds frequent data, disk2 holds infrequent

data.

Data allocation affectivity is evaluated by disk_id

and count value. If nodes with high count value are

allocated in the disk1, in other word, the disk_id is 1,

we can conclude that the algorithm is good.

When we evaluate power consumption, we should

compare two cases; first case applies our data allocation

algorithm, the other case does not apply our algorithm.

In the first case, when a node in the disk1 is issued, the

power cost is parameter1; when a node in the disk2 is

issued, the power cost is sum of spin up + process

request.

Total power cost during a period of time

= power cost in disk1 + power cost in disk2

In the case2, power cost can be calculated as below:

Total power cost = nodes issued during in a period of

time * power for each node search + power consumed

in active mode * period of time

If power cost in the first case is little than power cost

in the second case, we can conclude that our algorithm

can save power consumption.

7. Conclusion and Future Work

In this paper, we improved an existing XML data

caching algorithm to apply it in multiple hard disks

case and proposed data allocation algorithm due to

association result in order to reduce power

consumption.

In the future, we plan to do a simulation to evaluate

data allocation efficiency and power consumption

efficiency. We also try to propose suitable parameters

due to evaluation result, such as minimum support for

mining algorithm and minimum association rate for

association process.

Acknowledgment

This research was supported in part by MEXT

Grant-in-Aid for Scientific Research on Priority Areas

(#201013017) and JSPS Grant-in-Aid for Scientific

Research (A) (#22240005).

Reference

[1] J.Chase and R. Doyle. Balance of Power: Energy
Management for Server Clusters. Proc. 8th HotOS,
2001.

[2] L. Chen, E.A.Rundensteiner and S. Wang,
“XCache – A Semantic Caching System for XML
Queries”, Proc. ACM SIGMOD, 2002.

[3] L.Chen and E.A.Rundensteiner, “ACE-XQ: A
CacheE-aware XQuery Answering System”, Proc.
WebDB , pp 31-36, 2002

[4] L.Chen, S.S.Bhowmick and L.T.Chia, “Mining
Positive and Negative Association Rules from
XML Query Patterns for Caching”,
Proc.DASFAA, pp736-747, 2005

[5] L.H.Yang, M.L.Lww and W.Hsu, “Efficient
Mining of XML Query Patterns for Caching”,

Proc.VLDB, 2003

[6] C.Hua, “Frequent Query Patterns Guided XML
Caching and Materialization”, Proc.WiCom, 2007

[7] D.Park and M.Toyama, “XML Cache
Management Based On XPath Containment
Relationship”, Proc. ICDE, 2005

[8] A.Schmidt, F.Waas, M.Kersten, M.J.Carey,
I.Manolescu and R.Busse, “XMark: A Benchmark
for XML Data Management”, Proc. VLDB, 2002

