

DEIM Forum 2011 E2-5

An Evaluation on Dynamic Access-Skew Balancing Performance of

Compound Parallel Btree for Chained Declustering Parallel Systems

Min LUO† Haruo YOKOTA‡

†Department of Computer Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku,

Tokyo 152-8552, Japan

E-mail: †luomin@de.cs.titech.ac.jp, ‡yokota@cs.titech.ac.jp

Abstract Access skew is the most important challenge for scalable parallel systems, especially when data are in range

partitioned schema. To realize scalability, many dynamic accesses skew balancing methods with data reorganization and

parallel index structures on shared-nothing parallel infrastructure have been proposed. Data migration with range-partitioned

placement using a parallel Btree is one solution. The combination of range partitioning and chained declustered replicas

provides the dynamic skew balancing abilities for high scalability. However, no previous study has provided any practical

implementation of this capability. In addition, independent treatment of the primary and backup data in each node results

inefficient skew balancing. We propose a novel compound parallel index, termed Fat-Btree, to provide access paths to both

primary and backup data across a chained declustering system for efficient dynamic skew balancing with low maintain cost.

Experiments using PostgreSQL on a 160-node PC cluster demonstrate the effects.

Keyword Fat-Btree，Skew Balancing，Scalability, Parallel Database

1. Introduction

The explosive growth of digital information together

with the demand for its 24H on-line availability have

generated interest in research on databases with high

scalability (HS) and high availability (HA), both of which

are improved by the replication on a shared-nothing

parallel infrastructure. Efficient accessing methods with

skew-balancing ability and data replication strategies are

very important for achieving HS and HA, respectively [1].

It has been argued that system with strong consistency

have unstable behavior when scaled up [3], therefore,

research interest has become focused on consistency and

availability, leaving the scalability issue seldom addressed

[4]. Recently, well-known massive data centers for

cloud-based applications, such as PNUTS, Dynamo and

BigTable, have adopted the strategy of sacrificing strong

consistency for availability and scalability. This strategy

benefits scalability, but the advantage of replication in

gaining higher throughput is lost . Because the replicas are

not ready to be queried most of the time, client queries

requiring high data consistency cannot be balanced with

replicas, and system availability may also be lost in the

long run if strong consistency cannot be ensured [4].

Therefore, sacrificing consistency for scalability does not

have a dependable effect, and this has long been an

obstacle to developing efficient replication techniques.

To address this problem, efficient data access methods

with strong consistency guarantees play an important role.

Basically, there are two main methods of efficient data

accessing in distributed systems: distributed -hash-table

(DHT)-based [5] and B-tree-based [8] methods. DHT

based methods efficiently support point queries, but

destroy the semantics and locality of data and incur a high

cost in range queries. Btree-based methods for value-range

partitioning schema efficiently support point and range

queries, but suffer limited access-skew balancing ability.

To provide fast and scalable data accessing for range

partitioning, many B-tree-based parallel index structures

have been introduced to shared-nothing environment [3].

However, they do not provide the dynamical access-skew

balancing ability required for high scalability. To balance

the skew, high-cost data migration or index reconstruction

processes are always required in these systems to prepare

parallel data access paths to the replicas on other nodes

for load balancing. In addition, current parallel B-tree

indexes do not consider index management on replica data

for higher system scalability and availability.

In this paper, we propose a database infrastructure for

indexing range-partitioned data on chained declustering

parallel systems by a novel compound parallel B-tree

structure with dynamical access-skew-balancing ability. In

this infrastructure, data consistency is guaranteed by

eagerly synchronization with low cost due to the minimum

replication degree in chained declustering. Our proposed

compound parallel B-tree structure on these consistent

data copies supports immediate load balancing, by

transferring the load between primary and replica copies

without data migration cost or index reconstruction cost.

Thus, the skew problem in range partition schema is

solved by this dynamic skew balancing ability, and it

makes range-partition schema superior to existing

hash-based methods because the efficient range query

ability it preserves. We evaluate the dynamic access-skew

balancing ability in this infrastructure by using a

prototype system we developed. Experimental results on a

160-nodes machine will demonstrate the efficiency of our

proposed compound parallel B-tree index.

2. Background

We briefly review two existing technologies for

constructing scalable and available shared-nothing

parallel databases: data placement strategies and parallel

indexing structures.

2.1 Data Placement Strategies

The shared-nothing configuration is generally used to

achieve high performance in parallel database systems.

This is because it consists of a set of independent PEs that

does not share memory or disks so that the computational

and I/O resources can be maximized. It is simple to speed

and scale the system up to hundreds of PEs [9].

Chained declustering [6] is a technique that offers high

availability and good load balancing on shared-nothing

parallel systems, which has higher reliability than other

declustering schemes, such as mirrored/interleaved

declusterings [13]. In chained declustering schema, PEs in

one relation-cluster maintains two physical copies of the

relation, a primary copy and a backup copy. These two

copies are declustered across the cluster by the same

partitioning strategy. Because the corresponding

fragments of primary and backup copies are stored on

different PEs, no data is lost after a failure. In addition,

chained declustering is suitable for range partitioned data

placement on both primary and backup data copies , which

is able to provide efficient range query performance than

all the other declustering schemes.

As mentioned in Section 1, the selection of the

data-partitioning strategy determines the availability and

throughput of chained declustering schema. Although each

partitioning strategy has at least one significant limitation,

overcoming the current shortages in one of them will make

it outperform the other. In this paper, we will provide the

solution to improve the inefficient skew balancing

performance of range partitioning scheme based on

chained declutering systems.

 2.2 Parallel Indexing Structures

As mentioned in Section 1, there are two main methods

of distributed data accessing. DHT-based methods

uniformly map nodes and data objects into a single ID

space, and each node is responsible for a specific range of

the ID space. Considerable effort has been devoted to

supporting range-query applications in DHT-based

systems [10] ， [11]. However, their efficiency is still

limited as all systems require additional structures, which

introduce an extra overhead. On the other hand,

B-tree-based parallel indexing with efficient range-query

capability has been proposed for high throughput and

efficient data skew handling via index node migration.

However, it suffers from a high index update cost and

limited access-skew-balancing ability. Because both

strategies have their advantages and disadvantages, the

disadvantage of the B-tree-based parallel index can be

reduced if its shortcomings can be overcome.

To reduce the update cost in parallel B-tree indexing, an

update-conscious parallel B-tree structure, a Fat-Btree,

has been proposed [2]. An example of a four-PE Fat-Btree

is given in Fig. 1, where multiple copies of index nodes

close to the root node with relatively low update

frequency are replicated on several PEs, while leaf nodes

with relatively high update frequency are distributed

across the PEs. Thus, the maintenance cost of the

Fat-Btree is much lower than that of other parallel Btree

structures. In addition, Fat-Btree has a higher cache hit

rate [2] and more efficient concurrency control protocols

than other methods [7].

Fig.1 Fat-Btree

3. Compound Treatment Infrastructure

Here, we propose our method for high scalability in

parallel database by supporting dynamic load balancing.

Because replicas in existing parallel databases cannot

be directly accessed in parallel, system performance can

be improved if the backup are managed by one parallel

index together with the primary. Because chained

declustering scheme places continuous fragments in range

partition way, data are coupled and indexed in the

compound Fat-Btree structure without any intersection.

Thus, there are two subFat-Btrees to manage the primary

Fig.2 Infrastructure of CompIndexCDR

and backup data on each PE. Because the compound

subFat-Btree on one PE also has the overlapping

intermediate paths to its neighboring subFat-Btrees,

similar to the original Fat-Btree, it provides an access path

from the root node to all primary and backup data located

in any PEs. We name this infrastructure as compound

index chained declustered replication or CompIndexCDR.

Figure 3 shows an example of this infrastructure. The

upper part shows a global view of the intermediate nodes

in the B-tree index for all the data over the range 1–60,

which are evenly stored by four PEs. Using the original

Fat-Btree, some of the intermediate nodes are replicated in

several PEs because they are overlapped. Note that

intermediate nodes may have pointers to copies of their

leaf nodes located in other PEs. For example, the copy of

node “1, 10” in PE2 has a pointer to the leaf nodes “1, 7”

and “10, 16” in PE1 and the leaf node “10, 16” in PE2.

These overlapped intermediate paths allow any data to be

traced in the system from the root index.

As shown in the lower part of Fig. 3, each PE has two

subFat-Btrees, for its backup and primary data. Due to the

same copy of data, they have a similar index structure and

intermediate nodes in the primary and replica. Each parent

index node has pointers to its child index nodes that are

multiply replicated in near PEs. We mark these paths with

different flags value („P/B‟) to identify what kind of child

index nodes they lead to. These paths are kept available

during SMOs [7]. Transactions are carried out only

following the paths that are marked with flag „P‟ to access

the primary data. Flag of the paths to primary and backup

data will be exchanged when skew happens. The skewed

access will follow the changed paths to replicas, thus

balance the skew without data migration or index

reconstruction cost.

3.1 Index Maintenance in Compound Fat-Btree

In CompIndexCDR, index consistency between primary

Fig.3 A Compound Fat-Btree Model

and backup is important. Compared to original Fat-Btree,

there are more overlapped intermediate index nodes and

paths requiring the consistency maintenance between

neighboring PEs. This task can been divided into two

phases. Phase-a: potentially conflicting transactions on

primary and backup modification of the same replicas of

intermediate index nodes are avoided. Phase-b:

modifications on overlapped index nodes are propagated

and synchronized in all related PEs.

For phase-a: IX/X-latch-requiring process only in

primary subFat-Btree will avoid conflicts transactions for

both primary and backup data. Because the backup‟s

intermediate index nodes contain the same data and

structures as the primary. Any conflicting transactions on

the primary index also conflict on the backup when

synchronizing backup. Therefore, the original concurrency

control method [7] is still effective in CompIndexCDR.

For phase-b: when a transaction successfully obtains all

the X latches required at a host PE, all the participating

PEs split their specified node and send back the pointer of

the newly created node to the host PE. The host PE

manages the sets of pointers received and propagates new

pointer information to update them in the participating

PEs. Because the high synchronization cost may occurs if

all levels of intermediate paths are maintained between the

primary and backup indexes, we maintain two levels of

them with the index fanout number equal to 16. In this

case, the smallest transformable load unit of each index

Flag modification is up to 1/4 of the average load, even

when N is as large as 64, thus provides a precise skew

balancing ability. Experimental results in Section 4 will

show the efficiency of our index maintenance method in

dynamic skew balancing with high system throughput.

3.2 Dynamic Skew Balancing Algorithms

Because of the limitation to the length of this paper, we

provide the pseudo-code for the load-balancing here.

A load-balancing algorithm for CompIndexCDR is

shown in Fig. 4. A primitive method is used to find the

skews in the system first. This method continuously

forwards a list that contains the volume of recent queries

in every PE. Each PE places its recent query volume into

its corresponding entry in the list and forwards the list to

the next PE. If a PE founds its volume exceeds some

threshold above the average amount of queries in the list,

it will start a load balancing process automatically.

Dynamic Load Balancing

Let op, and be the target, left and right PE, respectively;

 Let [] be the amount of primary data on node ;

Receive a list of loads from ;

 Update []

lp rp

pdm i i

ll lp

ll op

begin

 to reflect the current workload of the PE;

 Calculate the average load from ;

 [] >

 // if this skew can be balanced without data migration

 Calculate the new

al ll

ll op al Thresholdif then

 primary placement [] ([]) / 4;

 (i = 0; i < n; i++) // n is the number of PEs

 {

 broadcast the modification msg to [] to change primary;

 [] >

pp i ll op al

node i

pdm i pp

for

if []

 {

 Demote_Primary(the leftmost data page in [], [] - []);

 set the 'Flag' for the new 'backup' at [] - [];

 broadcast the modific

i

pdm i pdm i pp i

pdm i pp i

then

ation msg to [1]{or [0] if = n}to change backup there;

 Promote_Backup(the leftmost data page in [1], [] - []);

 set the 'Flag' for the new 'primary' at

node i node i

pdm i pdm i pp i

[] - [];

 }

 {

 Promote_Backup(the rightmost data page in [], [] - []);

 set the 'Flag' for the new 'primary' at [] - [];

pdm i pp i

pdm i pp i pdm i

pp i pdm i

else

 broadcast the modification msg to [1] {or node[n] if i = 0}to change primary there;

 Demote_Primary(the rightmost data page in [], [] - []);

 set the 'F

node i

pdm i pp i pdm i

lag' for the new 'backup' at [] - [];

 }

 }

 Reset list ;

 is the rightmost PE

 Send to the leftmost PE;

 Send to ;

pp i pdm i

ll

op

ll

ll rp

if then

else

end

Fig. 4 Dynamic Load Balancing

By using the above algorithm, each PE is able to transfer

up to its primary‟s entire access load to its replica data at a

neighbor PE. The replica PE is able to further transfer a

proper amount of its own primary‟s access load to its

replica PE. This process will be carried across the PE

clusters to achieve an evenly balanced result that each PE

has the same load. However, this evenly skew balancing

ability depends on the skew degree in the chained

declustering system.

Fig.5 Experimental Enviroment

Fig. 6 Skew Balancing Performance Comparison

In particular, assume a skewed PE has load of β and

all the other PEs have a same load of δ. The skewβ that

could be evenly balanced is up to 2(n-1) /(n-2) times of δ

in this CompIndexCDR infrustructure . This is because the

skewed PE_S may have half ofβ at the maximum to be

transferred to its replica PE_R (otherwise, PE_R will have

more load than PE_S even if PE_R‟s own primary workload

is transferred to other PEs). Thus, the evenly balanced

results of (β + (n-1)* δ)/n should be larger than the

minimum of β /2 load that a skewed PE could be

remained, otherwise, skewed PE will have more load than

the average load of other PEs.

4. Experiments

To evaluate the proposed compound treatment index

structure, we implement a Compound Fat-Btree with open

source PostgreSQL DBMS. Details of this implementation

are introduced in [1]. Other configurations of the cluster

system used in our experiments are shown in Fig. 5.

In this paper, we focus on the skew balancing

performance evaluation in the Compound Fat-Btree based

system. For simplicity we assumed the following items:

• each request occurs individually, according to the

probability density function, and is not affected by the

state of any other request.

• both primary copies and backup copies are balanced

on all disks as the initial state.

• every disk has a sufficiently large queue for storing

requests.

Firstly, we examine a constant skew balancing

efficiency in the system. In this experiment, we use a

four-PE cluster. Each PE has 10,000 tuples and serves 32

users. 40% of the requests are accessing the data in one PE

and the other three PEs share the remaining 60%. Thus

workload on the hot node is two times of that on the other

nodes, which generates a two times skew in the system.

Fig. 6 shows that this skew decreases the throughput in

“all-read” and “all-update” by 25% and 15%, respectively.

After using the balancing methods in Sec. 3.2, the

throughput in “all-read” is almost the same as that in

“no-skew”, and the “all-update” is also much improved,

which verifies the effectiveness of load-balancing as

argued in Sec. 3.

Fig.7 Access patterns

Secondly, we generate access frequency (heat) based on

a Zipf() distribution function [12]. For example, the data

stored in above four-PE cluster will be queried by

randomly selected key values of [
1

120000(1)x]. x

∈ (0,1) and is chosen randomly when generating each

query; is the parameter in Zipf() which determines the

skew degree in the created access pattern. In Fig. 7, the

horizontal axis stands for the data „x‟ ranged from (0,

40,000) that are stored in our cluster system, the vertical

axis stands for the number of queries that will be

generated to query a data „x‟ based on the Zipf() function.

As it shows, when = 0.2, there is about 1.5 times

skew; when = 0.3, there is about 2 times skew; and

when = 0.5, the skew will be over three times.

We first observe the system throughput which changes

during the whole skewed period and the corresponding

dynamic skew balancing process.

The threshold is set to 0.05 in this experiment.

Experimental results are shown in Fig. 8.

Fig. 8 Zipf distribution skews balancing (threshold=0.05)

As it shows, the skew of each access pattern results

throughput decreasing at about 20%, 27% and 33%,

respectively. About 40 seconds later, skew detection

algorithm (Fig. 4) found the skew and starts load

balancing. This is because in our algorithm, the ll[n] list

stores the recent 10 workload records of each node and is

transferred around the cluster one by one every second.

The load balancing process is able to recovery system

throughput with only 0.5%, 2.2%, and 7.5% decrease.

However, if the threshold is set to 0.03, the load

balancing performance of = 0.5 will be better. Because

the first balanced results in Fig.8 generates a new

skewed node (1.16 times) for = 0.5, when transfer

the first hot node ’s load to the other nodes. When

setting threshold = 0.05, this new skewed node will not be

discovered. As shown in Fig. 9, the skew will be

further balanced when a small threshold is chosen.

In addition, the hottest point in the access pattern may

change periodically. This dynamic changing skew can be

simulated by modifying value in the randomly selected

key values function Zipf()= {[
1

120000(1)x +] mod

40000}, ∈ (0,10000,20000,30000). Thus, the hottest PE

in the cluster may also change dynamically. Based on the

skew detection method in Fig. 4, this dynamic changing

skewed node will also be discovered when its access

pattern is found exceed the threshold.

Fig. 9 Zipf distribution skews balancing (threshold=0.03)

Note that skew is balanced by changing the

primary/backup roles of some portion of data in each node;

therefore, these data should be turned back as their

original roles before resign new roles for them to balance

a secondary skew. For example, a secondary skew happens

on a fake primary of node(i), it should not be balanced by

demoting current primary and promoting the backup data

on node(i+1), as described in Fig. 4, because the backup

data of the fake primary is on node(i -1).

Fig. 10 Dynamic skew balancing

Fig. 10 shows the dynamic load balancing performance.

Each secondary skew in the access pattern is able to be

balanced within two phases. Phase 1 shows the throughput

after the secondary skew happens in system. Phase 2

shows the throughput after the roles of data is turned as

usual. Because the role of primary/backup data is changed

at first skew balancing process (before Phase 1), access to

the fake primary/backup under new access patterns results

the difference between Phase 2. However, after Phase 2,

system skew is still able to be balanced in our system.

We provide a skew balancing comparison result

between our proposed system and original chained

declustering system to illustrate the efficiency of the

proposed CompIndexCDR more clearly. In this experiment,

the original chained declustering system has a Fat -Btree

index on the primary data for efficient parallel processing

of user requests. However, the backup data are indexed by

independent local B-tree index on each PE, thus the

backup data on one PE are not able to be accessed from

other PEs in the system. To provide load balancing ability

in the original chained declustering, we have to construct

parallel index for the backup data whose primary copy is

having skewed workload. In this experiment, the parallel

index construction process is done by physically dumping

the backup data into the primary parts on each node, thus

it will take much longer time than the „Flag‟ modification

process in CompIndexCDR, and system throughput during

this process will also be greatly reduced, which is shown

by the red dot lines in Fig. 11. On the other hand,

CompIndexCDR immediately balanced the system skew

once the skew happens, and system throughput are

almost as same as original in most of time.

Fig. 11 Comparison of CompIndexCDR and original CD

5. Conclusions

In this paper, we provide the evaluation results for the

dynamic skew balancing ability in a compound parallel

B-tree index we proposed on chained declustering scheme

CompIndexCDR. As far as we know, this is the first

treatment to support dynamic skew handling by the

compound management of primary and backup data in the

replication system. System throughput is able to be

recovered within our system. We will provide more

efficient skew detecting and balancing algorithms for the

proposed system in our future work.

6. Acknowledgements

This research was supported in part by MEXT

Grant-in-Aid for Scientific Research on Priority Areas

(#201013017) and JSPS Grant-in-Aid for Scientific

Research (A) (#22240005).

Referencs
[1] M. Luo, A. Watanabe, and H. Yokota, “Compound

treatment of chained declustered replicas using a
parallel Btree for high scalability and availability,”
in DEXA‟10, LNCS, Vol. 6262/2010, pp.49-63, 2010.

[2] H. Yokota, Y. Kanemasa, and J. Miyazaki,
“Fat-Btree: an update conscious parallel directory
structure,” in ICDE‟99., p.448.

[3] J. Gray, P. Helland, and P. O‟Neil, “The dangers of
replication and a solution,” Proc. ACM SIGMOD,
pp.172-182, 1996.

[4] H. Yu and A. Vahdat, “The costs and limits of
availability for replicated services,” ACM Trans.
Compt. Syst, vol.24, no.1, pp.70-113, 2006.

[5] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz,
“Handling churn in a DHT.” Proc. the annual Conf.
on USENIX Annual Tech. Conf. (ATEC ‟04).
USENIX Association, Berkeley, CA, USA, 2004.

[6] H. Hsiao and D. J. DeWitt, “Chained declustering: a
new availability strategy for multiprocessor database
machines,” Proc. ICDE‟90, pp.456-465.

[7] T. Yoshihara, D. Kobayashi, and H. Yokota,
“Mark-opt: A concurrency control protocol for
parallel B-tree structures to reduce the cost of SMOs,”
IEICE Trans. Inf. Syst., vol.90, no.8, pp.1213-1224,
2007.

[8] R. Bayer, E. McCreight, “Organization and
Maintenance of Large Ordered Indices,”
Mathematical and Information Sciences Report No.
20, Boeing Scientific Research Laboratories, 1970.

[9] D. Dewitt and J. Gray, “Parallel database systems:
the future of high performance database systems,”
Commun. ACM, vol.35, no.6, pp.85-98, 1992.

[10] A. Gupta, D. Agrawal, and A. El Abbadi,
“Approximate range selection queries in
peer-to-peer,” Proc. Conf. Innovative Data Systems
Research (CIDR), 2002.

[11] J. Gao and P. Steenkiste, “An adaptive protocol for
efficient support of range queries in DHT-based
systems,” in ICNP 04: Proc. 12 t h IEEE Int. Conf.
Network Protocols. Washington, DC, USA: IEEE
Comput. Soc., pp.239-250, 2004.

[12] D. E. Knuth. Sorting and Searching. Addison-Wesley
Publishing Company, 1973.

[13] Bruce Jacob, Spencer Ng, David Wang, Memory
systems: cache, DRAM, disk, Morgan Kaufmann
Publishing Company, 2007.

