
   

DEIM Forum 2011 E2-5 

 

 

An Evaluation on Dynamic Access-Skew Balancing Performance of 

Compound Parallel Btree for Chained Declustering Parallel Systems 

Min LUO†   Haruo YOKOTA‡
 

†Department of Computer Science, Tokyo Institute of Technology  2-12-1 Ookayama, Meguro-ku,             

Tokyo 152-8552, Japan 

E-mail:  †luomin@de.cs.titech.ac.jp,  ‡yokota@cs.titech.ac.jp 

 

Abstract Access skew is the most important challenge for scalable parallel systems, especially when data are in range 

partitioned schema. To realize scalability, many dynamic accesses skew balancing methods with data reorganization and 

parallel index structures on shared-nothing parallel infrastructure have been proposed. Data migration with range-partitioned 

placement using a parallel Btree is one solution. The combination of range partitioning and chained declustered replicas 

provides the dynamic skew balancing abilities for high scalability. However, no previous study has provided any practical 

implementation of this capability. In addition, independent treatment of the primary and backup data in each node results 

inefficient skew balancing. We propose a novel compound parallel index, termed Fat-Btree, to provide access paths to both 

primary and backup data across a chained declustering system for efficient dynamic skew balancing with low maintain cost. 

Experiments using PostgreSQL on a 160-node PC cluster demonstrate the effects. 
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1. Introduction 

The explosive growth of digital information together 

with the demand for its 24H on-line availability have 

generated interest in research on databases with high 

scalability (HS) and high availability (HA), both of which 

are improved by the replication on a shared-nothing 

parallel infrastructure. Efficient accessing methods with 

skew-balancing ability and data replication strategies are 

very important for achieving HS and HA, respectively [1]. 

It has been argued that system with strong consistency 

have unstable behavior when scaled  up [3], therefore, 

research interest has become focused on consistency and  

availability, leaving the scalability issue seldom addressed  

[4]. Recently, well-known massive data centers for 

cloud-based applications, such as PNUTS, Dynamo and 

BigTable, have adopted the strategy of sacrificing strong 

consistency for availability and scalability. This strategy 

benefits scalability, but the advantage of replication in 

gaining higher throughput is lost . Because the replicas are 

not ready to be queried most of the time, client queries 

requiring high data consistency cannot be balanced with 

replicas, and system availability may also be lost in the 

long run if strong consistency cannot be ensured [4]. 

Therefore, sacrificing consistency for scalability does not 

have a dependable effect, and this has long been an 

obstacle to developing efficient replication  techniques. 

To address this problem, efficient data access methods 

with strong consistency guarantees play an important role. 

Basically, there are two main methods of efficient  data 

accessing in distributed systems: distributed -hash-table 

(DHT)-based [5] and B-tree-based [8] methods. DHT 

based methods efficiently support point queries, but 

destroy the semantics and locality of data and incur a high 

cost in range queries. Btree-based methods for value-range 

partitioning schema efficiently support point and range 

queries, but suffer limited access-skew balancing ability. 

To provide fast and scalable data accessing for range  

partitioning, many B-tree-based parallel index structures  

have been introduced to shared-nothing environment [3]. 

However, they do not provide the dynamical access-skew 

balancing ability required for high scalability. To balance 

the skew, high-cost data migration or index reconstruction 

processes are always required in these systems to prepare 

parallel data access paths to the replicas on other nodes 

for load balancing. In addition, current parallel B-tree 

indexes do not consider index management on replica data 

for higher system scalability and availability.  

In this paper, we propose a database infrastructure for  

indexing range-partitioned data on chained declustering 

parallel systems by a novel compound parallel B-tree 

structure with dynamical access-skew-balancing ability. In 

this infrastructure, data consistency is guaranteed by 

eagerly synchronization with low cost due to the minimum 

replication degree in chained declustering. Our proposed 



 

 

compound parallel B-tree structure on these consistent 

data copies supports immediate load balancing, by 

transferring the load between primary and replica copies 

without data migration cost or index reconstruction cost.  

Thus, the skew problem in range partition schema is 

solved by this dynamic skew balancing ability, and it 

makes range-partition schema superior to existing 

hash-based methods because the efficient range query 

ability it preserves. We evaluate the dynamic access-skew 

balancing ability in this infrastructure by using a 

prototype system we developed. Experimental results on a 

160-nodes machine will demonstrate the efficiency of our 

proposed compound parallel B-tree index. 

 

2. Background 

We briefly review two existing technologies for 

constructing scalable and available shared-nothing 

parallel databases: data placement strategies and parallel 

indexing structures.  

 

2.1 Data Placement Strategies 

The shared-nothing configuration is generally used to  

achieve high performance in parallel database systems. 

This is because it consists of a set of independent PEs that 

does not share memory or disks so that the computational 

and I/O resources can be maximized. It is simple to speed 

and scale the system up to hundreds of PEs [9]. 

Chained declustering [6] is a technique that offers  high 

availability and good load balancing on shared-nothing 

parallel systems, which has higher reliability than other 

declustering schemes, such as mirrored/interleaved 

declusterings [13]. In chained declustering schema, PEs in 

one relation-cluster maintains two physical copies of the 

relation, a primary copy and a backup copy. These two 

copies are declustered across the cluster by the same 

partitioning strategy. Because the corresponding 

fragments of primary and backup copies are  stored on 

different PEs, no data is lost after a failure.  In addition, 

chained declustering is suitable for range partitioned data 

placement on both primary and backup data copies , which 

is able to provide efficient range query performance than 

all the other declustering schemes.   

As mentioned in Section 1, the selection of the 

data-partitioning strategy determines the availability and 

throughput of chained declustering schema. Although each 

partitioning strategy has at least one significant limitation, 

overcoming the current shortages in one of them will make 

it outperform the other. In this paper, we will provide the 

solution to improve the inefficient skew balancing 

performance of range partitioning scheme based on 

chained declutering systems. 

 

 2.2 Parallel Indexing Structures  

As mentioned in Section 1, there are two main methods 

of distributed data accessing. DHT-based methods 

uniformly map nodes and data objects into a single ID 

space, and each node is responsible for a specific range of 

the ID space. Considerable effort has been devoted  to 

supporting range-query applications in DHT-based 

systems [10] ， [11]. However, their efficiency is still 

limited as all systems require additional structures, which 

introduce an extra overhead. On the other hand, 

B-tree-based parallel indexing with efficient range-query 

capability has been proposed for high throughput and 

efficient data skew handling via index node migration. 

However, it suffers from a high  index update cost and 

limited access-skew-balancing ability. Because both 

strategies have their advantages and disadvantages,  the 

disadvantage of the B-tree-based parallel index can be 

reduced if its shortcomings can be overcome.  

To reduce the update cost in parallel B-tree indexing, an 

update-conscious parallel B-tree structure, a Fat-Btree, 

has been proposed [2]. An example of a four-PE Fat-Btree 

is given in Fig. 1, where multiple copies of index nodes 

close to the root node with relatively low update 

frequency are replicated on several PEs, while leaf nodes 

with relatively high update frequency are distributed 

across the PEs. Thus, the maintenance cost of the 

Fat-Btree is much lower than that of other parallel Btree 

structures. In addition, Fat-Btree has a higher cache hit 

rate [2] and more efficient concurrency control protocols 

than other methods [7]. 

 

Fig.1 Fat-Btree 

 

3. Compound Treatment Infrastructure 

Here, we propose our method for high scalability in 

parallel database by supporting dynamic load balancing. 



 

 

Because replicas in existing parallel databases cannot 

be directly accessed in parallel,  system performance can 

be improved if the backup are managed by one parallel 

index together with the primary. Because chained 

declustering scheme places continuous fragments in range 

partition way, data are coupled and indexed in the 

compound Fat-Btree structure without any intersection.  

Thus, there are two subFat-Btrees to manage the primary 

 

Fig.2 Infrastructure of CompIndexCDR 

 

and backup data on each PE. Because the compound 

subFat-Btree on one PE also has the overlapping 

intermediate paths to its neighboring subFat-Btrees, 

similar to the original Fat-Btree, it provides an access path 

from the root node to all primary and backup data  located 

in any PEs. We name this infrastructure as compound 

index chained declustered replication or  CompIndexCDR. 

Figure 3 shows an example of this infrastructure. The 

upper part shows a global view of the intermediate nodes 

in the B-tree index for all the data over the range 1–60, 

which are evenly stored by four PEs. Using the original  

Fat-Btree, some of the intermediate nodes are replicated in 

several PEs because they are overlapped. Note that 

intermediate nodes may have pointers to copies of their 

leaf nodes located in other PEs. For example, the copy of 

node “1, 10”  in PE2 has a pointer to the leaf nodes “1, 7” 

and “10, 16”  in PE1 and the leaf node “10, 16” in PE2. 

These overlapped intermediate paths allow any data to be 

traced in the system from the root index. 

As shown in the lower part of Fig. 3, each PE has two 

subFat-Btrees, for its backup and primary data. Due to the 

same copy of data, they have a similar index structure and 

intermediate nodes in the primary and replica. Each parent 

index node has pointers to its child index nodes that are 

multiply replicated in near PEs. We mark these paths with 

different flags value („P/B‟) to identify what kind of child 

index nodes they lead to. These paths are kept available 

during SMOs [7]. Transactions are carried out only 

following the paths that are marked with flag „P‟ to access 

the primary data. Flag of the paths to primary and backup 

data will be exchanged when skew happens. The skewed 

access will follow the changed paths to replicas, thus 

balance the skew without data migration or index 

reconstruction cost.  

 

3.1 Index Maintenance in Compound Fat-Btree 

In CompIndexCDR, index consistency between  primary 

 

Fig.3 A Compound Fat-Btree Model 

 

and backup is important. Compared to original Fat-Btree, 

there are more overlapped intermediate index nodes and 

paths requiring the consistency maintenance between 

neighboring PEs. This task can been divided into two 

phases. Phase-a: potentially conflicting transactions on 

primary and backup modification of the same replicas of 

intermediate index nodes are avoided. Phase-b: 

modifications on overlapped index nodes are propagated  

and synchronized in all related PEs. 

For phase-a: IX/X-latch-requiring process only in 

primary subFat-Btree will avoid conflicts transactions for 

both primary and backup data. Because the backup‟s 

intermediate index nodes contain  the same data and 

structures as the primary. Any conflicting transactions on 

the primary index also conflict  on the backup when 

synchronizing backup. Therefore, the original concurrency 

control method [7] is still effective in CompIndexCDR.  

For phase-b: when a transaction successfully obtains all 

the X latches required at a host PE, all the participating 

PEs split their specified node and send back the pointer of 

the newly created node to the host PE. The host PE 

manages the sets of pointers received  and propagates new 

pointer information to update them in the participating 

PEs. Because the high synchronization cost may occurs if  

all levels of intermediate paths are maintained between the 



 

 

primary and backup indexes, we maintain two levels of 

them with the index fanout number equal to 16. In this 

case, the smallest transformable load unit of each index 

Flag  modification is up to 1/4 of the average load, even 

when N is as large as 64, thus provides a precise skew 

balancing ability. Experimental results in Section 4 will 

show the efficiency of our index maintenance method in 

dynamic skew balancing with high  system throughput.  

 

3.2 Dynamic Skew Balancing Algorithms  

Because of the limitation to the length of this paper, we 

provide the pseudo-code for the load-balancing here.  

A load-balancing algorithm for CompIndexCDR is 

shown in Fig. 4. A primitive method is used to find the 

skews in the system first. This method continuously 

forwards a list that contains the volume of recent queries 

in every PE. Each PE places its recent query volume into 

its corresponding entry in the list and forwards the list to 

the next PE. If a PE founds its volume exceeds some 

threshold above the average amount of queries in the list, 

it will start a load balancing process automatically. 

Dynamic Load Balancing

Let op,   and  be the target, left and right PE, respectively;

  Let [ ] be the amount of primary data on node ; 

Receive a list of loads  from ;

 Update [ ]

lp rp

pdm i i

ll lp

ll op



 





begin

 to reflect the current workload of the PE;

  Calculate the average load  from ;

    [ ] >    

      // if this skew can be balanced without data migration 

     Calculate the new

al ll

ll op al Thresholdif then

 primary placement [ ] ( [ ] ) / 4;   

      (i = 0; i < n; i++)         // n is the number of PEs

     {

        broadcast the modification msg to [ ] to change primary;

         [ ] > 

pp i ll op al

node i

pdm i pp

  

for

if [ ] 

        {  

             Demote_Primary(the leftmost data page in [ ],  [ ] -  [ ]);

             set the  'Flag' for the new 'backup' at [ ] -   [ ];

             broadcast the modific

i

pdm i pdm i pp i

pdm i pp i

then

ation msg to [ 1]{or [0] if  = n}to change backup there;

             Promote_Backup(the leftmost data page in [ 1],  [ ] -  [ ]);

             set the  'Flag' for the new 'primary' at 

node i node i

pdm i pdm i pp i





[ ] -   [ ];

        }

        

        {

             Promote_Backup(the rightmost data page in [ ],   [ ] - [ ]);

             set the  'Flag' for the new 'primary' at  [ ] - [ ];

    

pdm i pp i

pdm i pp i pdm i

pp i pdm i

else

         broadcast the modification msg to [ 1] {or node[n] if i = 0}to change primary there;

             Demote_Primary(the rightmost data page in [ ],  [ ] -  [ ]);

             set the 'F

node i

pdm i pp i pdm i



lag' for the new 'backup' at  [ ] - [ ];

        }

       }

       Reset list  ; 

    is the rightmost PE 

     Send  to the leftmost PE;

  

     Send  to ;

    

pp i pdm i

ll

op

ll

ll rp

if then

else

end

Fig. 4 Dynamic Load Balancing 

By using the above algorithm, each PE is able to transfer 

up to its primary‟s entire  access load to its replica data at a 

neighbor PE. The replica PE is able to further transfer a 

proper amount of its own primary‟s access load to its 

replica PE. This process will  be carried across the PE 

clusters to achieve an evenly balanced result that each PE 

has the same load. However, this evenly skew balancing 

ability depends on the skew degree in the chained 

declustering system.  

 

Fig.5 Experimental Enviroment  

 

   

Fig. 6 Skew Balancing Performance Comparison 

 

In particular, assume a skewed PE has load of β  and 

all the other PEs have a same load of δ. The skewβ that 

could be evenly balanced is up to 2(n-1) /(n-2) times of δ 

in this CompIndexCDR infrustructure . This is because the 

skewed PE_S may have half ofβ at the maximum to be 

transferred to its replica PE_R (otherwise, PE_R will have 

more load than PE_S even if PE_R‟s own primary workload 

is transferred to other PEs). Thus, the evenly balanced 

results of (β + (n-1)* δ)/n should be larger than the 

minimum of β /2 load that a skewed PE could be 

remained, otherwise, skewed PE will have more load than 

the average load of other PEs. 

 

4. Experiments 

To evaluate the proposed compound treatment index 

structure, we implement a Compound Fat-Btree with open 

source PostgreSQL DBMS. Details of this implementation 

are introduced in [1]. Other configurations of the cluster 



 

 

system used in our experiments are shown in Fig. 5.  

In this paper, we focus on the skew balancing 

performance evaluation in the Compound Fat-Btree based 

system. For simplicity we assumed the following items:  

•  each request occurs individually, according to the  

probability density function, and is not affected by the  

state of any other request.  

• both primary copies and backup copies  are balanced 

on all disks as the initial state.  

• every disk has a sufficiently large queue for storing 

requests. 

Firstly, we examine a constant skew balancing 

efficiency in the system. In this experiment, we use a 

four-PE cluster. Each PE has 10,000 tuples and serves 32 

users. 40% of the requests are accessing the data in one PE 

and the other three PEs share the remaining 60%. Thus 

workload on the hot node is two times of that on the other  

nodes, which generates a two times skew in the system.  

Fig. 6 shows that this skew decreases the throughput in 

“all-read” and “all-update” by 25% and 15%, respectively. 

After using the balancing methods in Sec. 3.2, the 

throughput in “all-read” is almost the same as that in 

“no-skew”, and the “all-update” is also much improved, 

which verifies the effectiveness of load-balancing as 

argued in Sec. 3.  

 

Fig.7 Access patterns 

 

Secondly, we generate access frequency (heat) based on 

a Zipf() distribution function [12]. For example, the data 

stored in above four-PE cluster will be queried by 

randomly selected key values of [
1

120000(1 )x  ]. x 

∈ (0,1) and is chosen randomly when generating each 

query;  is the parameter in Zipf() which determines the 

skew degree in the created access pattern.  In Fig. 7, the 

horizontal axis stands for the data „x‟ ranged from (0, 

40,000) that are stored in our cluster system, the vertical 

axis stands for the number of queries that will be 

generated to query a data „x‟ based on the Zipf() function. 

As it shows, when  = 0.2, there is about 1.5 times 

skew; when  = 0.3, there is about 2 times skew; and 

when  = 0.5, the skew will be over three times.  

We first observe the system throughput which changes 

during the whole skewed period and the corresponding 

dynamic skew balancing process.  

The threshold is set to 0.05 in this experiment. 

Experimental results are shown in Fig. 8.  

Fig. 8 Zipf distribution skews balancing (threshold=0.05) 

 

As it shows, the skew of each access pattern results 

throughput decreasing at about 20%, 27% and 33%, 

respectively. About 40 seconds later, skew detection 

algorithm (Fig. 4) found the skew and starts load 

balancing. This is because in our algorithm, the ll[n] list 

stores the recent 10 workload records of each node and is 

transferred around the cluster one by one every second. 

The load balancing process is able to recovery system 

throughput with only 0.5%, 2.2%, and 7.5% decrease. 

However, if the threshold is set to 0.03, the load 

balancing performance of  = 0.5 will be better. Because 

the first balanced results in Fig.8 generates a new 

skewed node (1.16 times) for  = 0.5, when transfer 

the first hot node ’s load to the other nodes. When 

setting threshold = 0.05, this new skewed node will not be 

discovered. As shown in Fig. 9, the skew will be 

further balanced when a small threshold is chosen.  

In addition, the hottest point in the access pattern may 

change periodically. This dynamic changing skew can be 

simulated by modifying value  in the randomly selected 

key values function Zipf( )= {[
1

120000(1 )x  + ] mod 



 

 

40000},  ∈ (0,10000,20000,30000). Thus, the hottest PE 

in the cluster may also change dynamically.  Based on the 

skew detection method in Fig. 4, this dynamic changing  

skewed node will also be discovered when its access 

pattern is found exceed the threshold.  

Fig. 9 Zipf distribution skews balancing (threshold=0.03) 

 

Note that skew is balanced by changing the 

primary/backup roles of some portion of data in each node; 

therefore, these data should be turned back as their 

original roles before resign new roles for them to balance 

a secondary skew. For example, a secondary skew happens 

on a fake primary of node(i), it should not be balanced by 

demoting current primary and promoting the backup data 

on node(i+1), as described in Fig. 4, because the backup 

data of the fake primary is on node(i -1).  

Fig. 10 Dynamic skew balancing  

 

Fig. 10 shows the dynamic load balancing performance. 

Each secondary skew in the access pattern is able to be 

balanced within two phases. Phase 1 shows the throughput 

after the secondary skew happens in system. Phase 2 

shows the throughput after the roles of data is turned as 

usual. Because the role of primary/backup data is changed 

at first skew balancing process (before Phase 1), access to 

the fake primary/backup under new access patterns results 

the difference between Phase 2. However, after Phase 2, 

system skew is still able to be balanced in our system.   

We provide a skew balancing comparison result 

between our proposed system and original chained 

declustering system to illustrate the efficiency of the 

proposed CompIndexCDR more clearly. In this experiment, 

the original chained declustering system has a Fat -Btree 

index on the primary data for efficient parallel processing 

of user requests. However, the backup data are indexed by 

independent local B-tree index on each PE, thus the 

backup data on one PE are not able to be accessed from 

other PEs in the system. To provide load balancing ability 

in the original chained declustering, we have to construct 

parallel index for the backup data whose primary copy is 

having skewed workload. In this experiment, the parallel 

index construction process is done by physically dumping 

the backup data into the primary parts on each node, thus 

it will take much longer time than the „Flag‟ modification 

process in CompIndexCDR, and system throughput during 

this process will also be greatly reduced, which is shown 

by the red dot lines in Fig. 11. On the other hand, 

CompIndexCDR immediately balanced the system skew 

once the skew happens, and system throughput are  

almost as same as original in most of time.  

Fig. 11 Comparison of CompIndexCDR and original CD 

 

5. Conclusions 

In this paper, we provide the evaluation results for the 

dynamic skew balancing ability in a compound parallel 

B-tree index we proposed on chained declustering scheme 

CompIndexCDR. As far as we know, this  is the first 

treatment to support dynamic skew handling by the 

compound management of primary and backup data in the 

replication system. System throughput is able to be 

recovered within our system. We will provide more 

efficient skew detecting and balancing algorithms for the 

proposed system in our future work.  



 

 

6. Acknowledgements 

This research was supported in part by MEXT 

Grant-in-Aid for Scientific Research on Priority Areas 

(#201013017) and JSPS Grant-in-Aid for Scientific 

Research (A) (#22240005).  

 

Referencs 
[1] M. Luo, A. Watanabe, and H. Yokota, “Compound 

treatment of chained declustered replicas using a 
parallel Btree for high scalability and availability,” 
in DEXA‟10, LNCS, Vol. 6262/2010, pp.49-63, 2010. 

[2] H. Yokota, Y. Kanemasa, and J. Miyazaki, 
“Fat-Btree: an update conscious parallel directory 
structure,” in ICDE‟99., p.448. 

[3] J. Gray, P. Helland, and P. O‟Neil, “The dangers of 
replication and a solution,” Proc. ACM SIGMOD, 
pp.172-182, 1996. 

[4] H. Yu and A. Vahdat, “The costs and limits of 
availability for replicated services,” ACM Trans. 
Compt. Syst, vol.24, no.1, pp.70-113, 2006. 

[5] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, 
“Handling churn  in a DHT.” Proc. the annual Conf. 
on USENIX Annual Tech. Conf.  (ATEC ‟04). 
USENIX Association, Berkeley, CA, USA, 2004.  

[6] H. Hsiao and D. J. DeWitt, “Chained declustering: a 
new availability strategy for multiprocessor database 
machines,” Proc. ICDE‟90, pp.456-465. 

[7] T. Yoshihara, D. Kobayashi, and H. Yokota, 
“Mark-opt: A concurrency control protocol for 
parallel B-tree structures to reduce the cost of SMOs,” 
IEICE Trans. Inf. Syst., vol.90, no.8, pp.1213-1224, 
2007. 

[8] R. Bayer, E. McCreight, “Organization and 
Maintenance of Large Ordered Indices,” 
Mathematical and Information Sciences Report  No. 
20, Boeing Scientific Research Laboratories, 1970.  

[9] D. Dewitt and J. Gray, “Parallel database  systems: 
the future of high performance database systems,” 
Commun. ACM, vol.35, no.6, pp.85-98, 1992. 

[10]  A. Gupta, D. Agrawal, and A. El Abbadi, 
“Approximate range selection  queries in 
peer-to-peer,” Proc. Conf. Innovative Data Systems  
Research (CIDR), 2002. 

[11]  J. Gao and P. Steenkiste, “An adaptive protocol for 
efficient support of range queries in DHT-based 
systems,” in ICNP 04: Proc. 12 t h IEEE Int. Conf. 
Network Protocols. Washington, DC, USA: IEEE 
Comput. Soc., pp.239-250, 2004. 

[12]  D. E. Knuth. Sorting and Searching. Addison-Wesley 
Publishing Company, 1973. 

[13]  Bruce Jacob, Spencer Ng, David Wang, Memory 
systems: cache, DRAM, disk, Morgan Kaufmann 
Publishing Company, 2007.  

 


