
DEIM Forum 2011 E9-1

スパース表現分類のための典型事例選択手法
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あらまし 画像中の顔認識はパターン認識分野において長く研究されてきたが，既存手法の多くはロバスト性が不足し
ていたり計算量が高いという課題があった．近年，圧縮センシング理論に基づいたスパース表現分類法 (SRC: Sparse
Representation-based Classification) [12] と呼ばれる新しい手法が, ノイズを含む画像の顔認識に有効との研究例が報
告されている．SRC では，未知データは訓練データ中の全てのアイテムの線形結合で表現されると考える．その表現
がスパース性を満たすという仮定のもと，圧縮センシング理論に基づき未知データのスパース信号を効率的に復元し，
復元信号が所属するクラスを求めることによって，顔認識を行う．しかしながら，SRC では訓練データを用いて作成
するセンシング行列の大きさに比例して分類に時間がかかるため，現実的な問題に適用するのは困難であった．そこで
本研究では，訓練データ中の典型例を選択するための基準を提案する．これにより，正解分類により貢献するアイテ
ム集合のみでセンシング行列を構築することで，認識精度の低下少なく時間・空間的に効率的な顔認識が可能となる．
キーワード スパース表現分類 (SRC)，スパース表現， クラス分類，パターン認識，顔認識，効率
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Abstract Face recognition has been a popular topic in pattern recognition due to the different applications it
can be applied to. Traditional methods for face recognition have suffered from the lack of robustness as well as
high computational cost. Recently, SRC (Sparse Representation-based Classification) [12], a new approach based
on concept from compressive sensing theory, has been shown to be more efficient and effective in dealing with noisy
images. In SRC, each sample is represented as a linear combination of all the items in the training set; such rep-
resentation is sparse, therefore can be recovered using reasonably efficient methods. However, speed performance
generally degrades as the size of training set increases. In this paper, we propose a technique that can automatically
select a subset of representative items from the training set based on a set of validated samples, and is able to
improve the time and space efficiency of the recognition task without losing accuracy significantly.
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1. Introduction and Motivation

A typical face recognition (FR) system is composed of

three main tasks, namely 1) face detection, 2) feature extrac-

tion and 3) classification. Although face detection and seg-

mentation are difficult problems, they have been well stud-

ied and numerous tools can be used to perform the tasks.

Traditionally, the dominant approach for the extraction pro-

cess is via Eigenfaces [11] based on the Principle Compo-

nent Analysis (PCA) technique; and once the feature space



is constructed, an input sample can be identified using a

classifier such as NN (Nearest Neighbors) or SVM (Sup-

port Vector Machine). Newly developed methods such as

SIFT [8]/SURF [1] feature extraction have been shown to be

more robust against varying poses and illumination. How-

ever, all these methods essentially rely on extracting specific

information from the individual faces. As a result, it is crit-

ical to have the correct features and enough of them. This

dependency greatly restricts the scalability and practicabil-

ity of a FR system. For instance, a typical SURF feature

point is a vector of length 128 and each face is composed

of 200 to 2000 such features [8]. The computation becomes

increasingly inefficient as the size of the database increases.

Furthermore, high resolution is usually needed to obtain rel-

evant information from a face image. Besides the problems

stated, due to the countless possibilities of varying viewing

angles and expressions of human faces, accurate recognition

is usually limited to faces with frontal views with little or no

occlusion using the current FR technology.

These challenges have motivated the development of a

new technique for face recognition termed SRC (Sparse

Representation-based Classification) [12], which has several

benefits over the traditional approach. In contrast to tradi-

tional feature extraction methods, in SRC, the role of fea-

ture is no longer deterministic as long as the feature space

is large enough with sufficient randomness to construct the

sparse signals [13]. Due to the sparsity property, it has also

been shown that SRC is able to handle noisy images or faces

with varying expressions and poses significantly better than

other methods [4] [10]. In addition, even data with relatively

low resolution can perform reasonably well [12], which makes

SRC a more practical model for robust face recognition.

Despite the promising advantages of SRC, the speed per-

formance may still not be satisfactory for many modern face

recognition systems, mainly due to the large amount of train-

ing data required. In this paper, we will show that by select-

ing a subset of representative items in the training set, we

can greatly improve both time and space efficiency without

losing the original accuracy significantly.

2. Background and Related Work

2. 1 Compressive Sensing

In signal processing, compressive sensing is the process of

reconstructing a signal with the prior knowledge that it is

sparse. Mathematically, given an unknown S-sparse signal

x ∈ Rn for which ‖x‖0 < S, compressive sensing tries to

recover the signal from its measured data y ∈ Rm by find-

ing the most sparse solution to the underdetermined linear

system y = Ax, where A = [a1, a2..., an] ∈ Rm×n is the sens-

ing matrix with m < n. This sparse representation can be

recovered by solving the following l1-minimization problem:

min‖x‖1 subject to Ax = y

In reality, data are usually noisy, so it may not be possible

to express a recovered signal exactly, so the problem can be

modified to be:

min‖x‖1 subject to ‖Ax − y‖2 < ε

where ε gives a bound to the amount of noise we allow in the

data [3] [5] [12].

2. 2 SRC

In the case of SRC for face recognition, each image is rep-

resented by a column vector composed of the pixel values

from the image. The number of pixels to extract from the

individual image m corresponds to the dimension of the vec-

tor. As described in [12], the sensing matrix A is then con-

structed by concatenating n of these column vectors, each

of which belongs to one of the k classes in the training set.

Thus, A = [A1, A2, . . . , Ak] ∈ Rm×n for class 1 . . . k, with

Ai = [a1
i , a

2
i , . . . , a

ni
i ], where ni is the number of items in

class i.

Geometrically, each image can be thought of as a point in

a high dimensional space, and all the training and testing

samples lie in this feature space. Then, given a test sam-

ple y ∈ Rm from one of the classes in the training set, we

first use l1-minimization to compute its sparse representa-

tion x ∈ Rn, which is a vector of coefficients. Ideally, the

nonzero entries in x will all be the coefficients corresponding

to the items from a single class; in that case, we can identify

the class y belongs to directly. However, with the presence of

noise, such method may not always lead to the correct class

assignment.

Alternatively, we can classify y based on how well the coef-

ficients associated with the training samples in each class can

reconstruct y. More specifically, for each class i in the train-

ing set, we generate a new vector from x defined as δi(x),

which consists of all zeros except the entries associated with

class i. Then, we assign y the class that minimizes the resid-

ual between y and y′, where y′ = Aδi(x) . The details of

the SRC algorithm is outlined in [12], and図 1 illustrates the

steps in SRC.

In contrast to Nearest Neighbor, which simply classifies a

test sample based on a single nearest training sample, SRC

considers all training data in each class, which gives it more

flexibility to work with a wider range of data. It can effec-

tively avoid problem of under-fitting by utilizing images in

different classes to extrapolate the image of interest, instead

of the nearest neighbor; and it does so by using the small-

est possible set of nonzero coefficients, thereby avoiding the

problem of over-fitting [13].



図 1 The input of SRC includes the sensing matrix A and

a column vector y representing a test image. Then, l1-

minimization gives the coefficient vector x, which is a sparse

vector with most of the nonzero entries concentrated in one

class. SRC then identifies the class y belongs to based on

the minimum residual calculated.

3. Proposed Method

Despite the numerous advantages of SRC, certain condi-

tions limit its applicability in practical applications. Since

the sensing matrix A is assumed to be underdetermined,

the number of columns n, must be greater than the num-

ber of rows m. In fact, it is theoretically desirable to have

m << n [5], implying that the size of the training set needs

to be large relative to the length of each signal. Moreover,

if the variability is small in the training set, then the lin-

ear combination of a test sample using the training images

is more likely to result in nonzero entries in the recovered

vector that are associated with incorrect classes.

Besides the structural restriction on A, performance of the

l1-minimization problem is another major issue. In general,

the time complexity of solving l1-minimization is O(n3) [13].

More efficient methods exist, such as Gradient Projection

for Sparse Reconstruction (GPSR) [6] or Homotopy [9] al-

gorithms, which can recover solutions that are S-sparse in

O(n+S3) [13] [14], linear in the size of the training set. Nev-

ertheless, it is desirable to keep the complexity as low as

possible, especially for real-life face recognition systems that

require high speed performance and scalability. In addition,

due to the high noise level in many real-life situations, the

Algorithm 1 RSS Algorithm
Input: The coefficient matrix G, generated by concatenating each

coefficient vector from the validated sample set.

G = [x1
1, x2

1, . . . , xt1
1 , . . . , xtk

k ] ∈ Rn×t, where xj
i ∈ Rn is

the coefficient vector of the jth validated sample in class i for

i = 1 . . . k, and t is the number of validated samples;

p = number of items to select in each class for the reduced

matrix.

1: Normalize each column of G to generate the contribution ma-

trix B, where

Bc =
δi(x

j
i )

‖xj
i‖1

, for c = 1 . . . t

2: Since each row of B corresponds to all the normalized coeffi-

cients associated with a single training item, we assign score

to each training item a in A by taking the summation of each

row in B:

Score(ar) = ‖(BT )r‖1 , for r = 1 . . . n

3: For each class i, select the top p representative items in Ai

based on the calculated score.

arg max
a∈Ci

Score(a)

Output: A reduced matrix A′ ∈ Rm×n′
, where n′ = p × k.

signals recovered using the existing algorithms often con-

tain many non-zero small coefficients that causes more costly

computation.

By looking at the output of l1-minimization for a set of

test samples, we can notice that in general, for a test sample

belonging to class i, far fewer samples are needed to repre-

sent it than the number of available training items in the

class. Also, low resolution images are enough to represent

an image to ensure that the vector dimension m does not

exceed the training set size n. Also, as stated in the original

CS paper [3], the smaller the coherence, the fewer samples

are needed to represent a signal. Thus, despite the initial

condition on the dimension of the sensing matrix m << n,

we can relax this constraint with enough variability within

the same class to cover the range of possible input, while

maintaining high incoherence between different classes.

These observations motivate the idea to utilize the infor-

mation we get from l1-minimization, which consists of a set

of sparse coefficient vectors, for a set of pre-validated sam-

ples to reduce the number of columns in the sensing matrix

A, thereby improving the speed performance for new input.

In other words, once we have enough validated data that

roughly cover the range of possible variations of an individ-

ual, it is sufficient to select those representative samples that

are more likely to contribute to the recovered signal for each

class, resulting in a reduced projection from the original A.

Algorithm 1 outlines the proposed method, which we call the

RSS (Representative Sample-Selection) algorithm.



Basically, we first normalize each coefficient to determine

how much each training item contributes to the representa-

tion of the original image belonging to class i, relative to all

the other training data. Then for each training item in class

i, we take the summation of all the coefficients associated

with it from all the validated sample data belonging to class

i and assign the result as the score. Finally, we can rank the

scores and select the top p items from the training set as our

representative samples for class i. 図 2 is a visualization of

matrix B, which is composed of the concatenation of all the

δi(x) column vectors for each validated sample in each class

i.

B =

0

BBBBBBBBBB@

C1

C2 0
. . .

0 . . .

Ck

1

CCCCCCCCCCA

図 2 Matrix visualization: each Ci is a block matrix containing

the nonzero coefficients associated with class i, and each

row corresponds to all the coefficients associated with single

training item in Ai.

4. Experiments

4. 1 Experimental Setup

We used a subset of the Yale Face Database B [7] for our

experiments, which is composed of 10 individuals, or classes,

each containing various poses and viewing conditions, with

a total of 4500 gray-scale images. We randomly split this

dataset into three sets, each of which contains 1500 images.

Two of the sets are used for training and generating the

reduced training set using RSS, and the remaining set is

used for testing the performance of our method. We cross-

evaluated the different sets and used the average as the final

results. The results we are interested in are the accuracy

or recognition rate, and the average processing time of the

test sample for running l1-minimization.We also compared

our method against random selection method, where a sens-

ing matrix of the same dimension is generated by randomly

selecting items from the original training set.

OpenCV library [2] is used to detect and segment faces

from the dataset. Each face image is then preprocessed via

histogram equalization and down-sampled to a resolution of

10 × 10. As a result, each image is represented as a single

column vector by stacking the 100 8-bit pixel values. Since

each set has a length of 1500, the dimension of the sensing

matrix A is 100 × 1500.

The tool used for solving the l1-minimization problem is

GPSR BB（注1）, which has been shown to be reasonably effi-

cient and scalable [6] [14]. The output of l1- minimization for

those samples that are correctly classified, which we call the

validated set, is used as the input of RSS.

図 3 Two examples of the transformations from a) the original

segmented face image to b) the down-sampled 10 × 10 im-

age y, c) the recovered image y′ via l1-minimization with

the sensing matrix A ∈ R100×1500, where y′ = Aδi(x), and

d) the recovered image y′′ when n is reduced to 150, where

A′ ∈ R100×150.

We tested the method using different values of p, where p

is the number of representative samples in each class. For

p = [15, 25, 40, 50, 75] , the dimension of the sensing matrix

becomes 100 × 150, 100 × 250, and so on. 図 3 shows some

examples of the face images through the down-sampling and

recovering process via l1-minimization for the original sens-

ing matrix A and the reduced matrix when p = 15.

4. 2 Results and Comparison

n Accuracy (%) Time(s)

1500 96.87 4.1965

RSS Rand. RSS Rand.

750 95.42 92.49 2.0897 2.2207

500 92.81 90.26 1.5947 1.6764

400 90.81 87.80 1.3583 1.4241

250 85.73 80.89 1.0161 1.0597

150 78.37 74.16 0.7702 0.8146

表 1 This table shows the results of comparing our Represen-

tative Sample-Selection (RSS) method versus the Random-

Selection Approach

Looking at the results in 表 1 and the graphs in 図 4, we

can see that the time complexity is linear in respect to the

number of columns in A. When we reduce n by half, the

accuracy drop merely 1.45%, while the processing time is

twice as fast. Even when n has been reduced 10-fold, we still

retain 80% of the original accuracy. In other words, only 15

training data is needed in each class to recognize up to 80%

of faces out of the 1500 faces in the test set. These results

illustrate the power of the SRC in comparison to traditional

approaches for FR.

（注1）：The source code for the GPSR BB algorithm can be found at

http://www.lx.it.pt/%7Emtf/GPSR/



(a) Graph 1 (b) Graph 2

(c) Graph 3 (d) Graph 4

図 4 Graphs demonstrating the results.

In comparing the results using our RSS method against

the random selection method, we can draw two conclu-

sions. First, our method outperforms the random approach

in terms of accuracy for each value of n. Moreover, the differ-

ence becomes more apparent as the sensing matrix becomes

smaller in dimension, as illustrated in Graph 1. This obser-

vation coincides with the work in [13]. Another important

observation to make is that the processing time is always

slightly slower using the random approach, which implies

that the RSS approach increases the incoherence between

different classes in the training data, thereby increasing the

sparsity of the recovered signals and improving the time ef-

ficiency. As stated in [3], sparsity of a signal directly deter-

mines how efficient it can be recovered. These observations

are illustrated in Graph 2 and Graph 4.

4. 3 Discussion

Our method yields several benefits and possibilities for real

life face recognition systems. Assuming we have enough test

data to obtain the necessary l1-minimization output. The

information can then be used to effectively reduce n and im-

prove the quality of the data simultaneously by neglecting

unrepresentative items that are likely to be noisy.

While method based on joint sparsity models [4] can also

perform face recognition with reasonable accuracy by using

an even smaller set of training data, such approach removes

information of the individual signal in relation to the train-

ing data. For instance, we can use ranked list of coefficients

generated in RSS for a test sample to get the most similar

items within the same class in addition to the identification

of the class.

From 図 5, we can see that our RSS method provides the

distribution of the representativeness in each class by cap-

turing the variability in the training set. As shown in the

example, the top ranked items roughly covers the different

poses with little occlusion while items with more corruption

or occlusion are likely to become outliers, therefore ranked

at the bottom of the list.

5. Conclusion and Future Work

We have proposed a new approach for SRC that utilizes

the output of l1-minimization for a set of validated samples

to effectively select representative items in the training set.

By reducing the number of columns in the sensing matrix A,

RSS is able to greatly improve the space and time efficiency

of the recognition task without losing significant accuracy. It

has also been shown to be more accurate and efficient than

a random selection approach.



図 5 This graph contains all the training samples in one of the classes, ranked by the

representativeness of each item based on its normalized score.

One idea for a future application is to use RSS as a method

to incrementally update a set of training data by incorporat-

ing the score of each coefficient associated with each item in

a newly recovered signal and the original calculated score.

Such approach may be able to enhance the representative-

ness, hence quality of a training set and adapt to changes in

a class over time. The scoring scheme may also be applied

to validate new input or to determine if a new sample should

become a new representative item in the class.

Some probable improvements include finding ways to effec-

tively determine the optimal number of representative sam-

ples required to represent a class, which is dependent on the

variability of the data. It may also be interesting to apply

our method to more diverse or noisy data such as images

from the web.

文 献
[1] H. Bay. Surf: Speeded-up robust features. In Computer

Vision and Image Understanding, June 2008.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000.

[3] E.J. Candes and M.B. Wakin. An introduction to compres-

sive sampling. IEEE Signal Processing Magazine, Vol. 25,

No. 2, pp. 21–31, March 2008.

[4] S.F. Cotter. Sparse representation for accurate classification

of corrupted and occluded facial expressions. In Proc. Int.

Conf. on Acoustics, Speech, and Signal Processing, March

2010.

[5] D.L. Donoho. Compressed sensing. In IEEE Trans. Inform.

Theory, July 2006.

[6] M. Figueiredo. Gradient projection for sparse reconstruc-

tion: Application to compressed sensing and other inverse

problems. In IEEE Journal on Selected Topics in Signal

Processing, 2004.

[7] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman.

From few to many: Illumination cone models for face recog-

nition under variable lighting and pose. IEEE Trans. Pat-

tern Anal. Mach. Intelligence, Vol. 23, No. 6, pp. 643–660,

2001.

[8] D.G. Lowe. Distinctive image features from scale-invariant

keypoints. In Int. Journal of Computer Vision, January

2004.

[9] D.M. Malioutov. Homotopy continuation for sparse signal

representation. In Proc. Int. Conf. on Acoustics, Speech,

and Signal Processing, 2005.

[10] P. Nagesh. A compressive sensing approach for expression-

invariant face recognition. In IEEE Conf. on Computer

Vision and Pattern Recognition, June 2009.

[11] M. Turk. Eigenfaces for face recognition. In Journal of

Cognitive Neuroscience, 1991.

[12] J. Wright. Robust face recognition via sparse representa-

tion. In IEEE Trans. PAMI, February 2009.

[13] A. Yang. Feature selection in face recognition: A sparse rep-

resentation perspective. In UC Berkeley Technical Report

UCB/EECS-2007-99, August 2007.

[14] A. Yang. Fast l1-minimization algorithms and an applica-

tion in robust face recognition: A review. In UC Berkeley

Technical Report UCB/EECS-2010-13, 2010.


