DEIM Forum 2015 D5-1
Detection of text-based advertising and promotion in Wikipedia by deep learning method
Yuanzhen Guo, Mizuho lwaihara
Graduate School of Information, Production and Systems, Waseda University
2-7 Hibikono, Wakamatu-ku, Kitakyushu-shi, Fukuoka-ken, 808-0135 Japan
E-mail: steve_guo@akane.waseda.jp, iwaihara@waseda.jp
Abstract
Wikipedia is an open Internet encyclopedia that everyone can access and edit. Due to its “written from a neutral point of view” policy, both
advertising and promotion are strictly forbidden in Wikipedia, and advertising articles will be deleted by administrators manually. Currently most
researches about spamming in Wikipedia are focusing on editing behavior and making use of user’s edit history to do feature-based judging. In
this paper, we propose a pure text-based method to automatically detect advertising and promotion articles in Wikipedia. In order to apply
learning algorithms to training corpus, we need to transform text article into a vector form. Rather than traditional bag-of-words document vector
representation which was proved to be inefficient, we employ a deep learning method to obtain a word vector for each word and then apply a
sliding window on each document to gradually gain the document vector. Furthermore, we implement an improved deep-learning structure
which can directly give us a document vector for each document. We then construct a supervised SVM classifier on the document vectors to
obtain the final results. Our method was tested on several datasets and produced better performance than the bag-of-words model in both

precision and recall measurements.

Keywords: Wikipedia, deep learning, advertisement detection

1 Introduction
Wikipedia is an Internet encyclopedia aiming at facilitating

detection are feature-based learning approaches which analyze user’s

behavior to do judgment. For example, Potthast et al. [10] used

collaboration and information sharing. Wikipedia allows anyone
from different backgrounds (even anonymous users) to create and
edit articles. Launched in January 2001, Wikipedia has grown into
one of the largest free public knowledge bases with about 34 million
articles in more than 200 languages. Wikipedia adopts the concept of
maintaining a neutral point of view (NPOV) as one of its founding
principles. However, Wikipedia’s unrestricted editing access to
everyone makes this NPOV goal impossible. Instead of collaborating
on editing neutral articles, some users regard Wikipedia as a way to
advertise or promote their products. Such advertising and promotion
is strictly forbidden in Wikipedia. Currently all the deletions of these
advertising articles are done by Wikipedia administrators manually.
Administrators have to browse the suspected articles themselves and
decide whether they are advertising or promotion by their own
experiences. This may requires a lot of time and hard work regarding
the relatively small number of administrators comparing to the large
amount of advertising and promotion articles in Wikipedia. Let alone
administrators may make wrong decisions deleting those articles
which are actually just states of fact which leads to even worse
situation. So Wikipedia’s current advertising and promotion article
deletion procedure is time consuming and inefficient. An automatic
and more efficient way of deleting advertising articles in Wikipedia
is needed.

In order to solve this problem, we propose a learning method to
automatically detect advertising and promotion articles in Wikipedia.

Most of the former researches on Wikipedia spam or vandalism

machine learning in combination with manually crafted rules to
classify Wikipedia spam edits. Itakura et al. [4] employed a
compression model-based algorithm to detect spam editing behaviors
in Wikipedia. Lam et al. [5] proposed a machine learning approach to
implement spam detection by extracting seven features from each
email and using supervised learning to learn the behaviors of
spammers. However, our method is pure text-based which means that
neither edit history nor user behavior is needed. In this way, we can
avoid the ad-hoc problem indicating that we do not need to create
rules to extract particular features from the data set which may only
works well in special environment. Instead our method not only can
be applied in Wikipedia study but also can be extended to other big
social networks analysis as long as large text corpus is available.

We first implemented an unsupervised deep learning method to
achieve fixed-length vector representation for each unique word in
the corpus. We use the same deep learning structure as described in
Mikolov et al.’s paper [8, 9]. We then calculate the document vector
by taking either the mean of word vectors or tf-idf weighted average.
Then we apply a supervised SVM classifier to train the model and
use the model to detect advertising and promotion articles in the test
set. We also try directly getting document vector from texts by
modifying the deep learning structure to a new form as introduced by
Mikolov [6]. Finally we improve the method by using LDA words in
topic distributions as the initial word vectors. Our method showed
better performance on several datasets than bag-of-words models in

both precision and recall measurements.

The rest of this paper is organized as follows: In Section 2 we
survey related works, including vector space model, Word to Vector
model and Document to Vector model. In Section 3 we discuss how
our advertising detection system works in details, including
pre-processing of the corpus, learning the document vector for each
document using Word2Vec, training different classifiers and
detection of advertising articles on the test set. Section 4 shows
experiments and results, which compares two methods: Bag of
Words and Word to Vector, and analyze performance of these two
methods. Section 5 is the conclusion and future work.

2 Related work

2.1 \ector Space Model

Vector space model or term vector model is an algebraic model for
representing text documents (and any objects, in general)
as vectors of identifiers, such as, for example, index terms. It is
widely used in natural language processing, information retrieval,
indexing and relevancy rankings. Traditionally a word is represented
by a one-hot vector where the vector size equals the vocabulary size
and the position represents word index is 1 while the others are Os.
However, the one-hot word vector model suffers two main problems:
One is that as the size of the data grows the vocabulary size becomes
so large, yielding to the curse of dimensionality (Bengio et al.
2003[1]) and the one is that this one-hot representation captures no
syntactic or semantic regularities of words since the distances
between any two words are the same in the vector space. Then came
out the distributed representation of words [1] and it has achieved
significant success in the recent past. Instead of a one-hot vector
representation, a word is represented by a fixed length (usually
several hundreds) real-valued vector. The distributional hypothesis
states that words in similar contexts have similar meanings [8].
Intuitively, it means that words who share many same contexts will
be similar to each other in the vector space. The distributed
representation does not face the-curse-of-dimensionality problem
because the length of the vector size is not proportional compared to
the data set growth.

2.2 Word2Vec

Word2Vec is an open source project released by Google which
achieved state of the art performances in many natural language
processing tasks. It takes a large text corpus as input and outputs the
word vectors for each unique word. These word vectors can be
subsequently used in many natural language processing and machine
learning applications such as classification, clustering and other
further research. In Mikolov et al.’s word2vec paper [8], they carried
out two neural network models for representation learning:
Continuous Bag-of-Words Model (CBOW) and Continuous
Skip-gram Model. Figure 1 shows the structure of these two models.
CBOW uses the word vectors of adjacent words in the range of a

surrounding window (e.g. 3 previous words and 3 latter words) to

predict the word vector of the central word, while on the contrary
Skip-gram uses the central word’s vector to predict the surrounding
words. As for neural network’s optimization and back propagation
part, Word2Vec adopts hierarchical softmax based on CBOW and the
negative sampling method based on Skip-gram [3]. Hierarchical
Softmax was first introduced by Morin and Bengio [1] in the neural
network language models. It uses a binary tree (a Huffman tree in
Word2Vec) to represent neural network’s output layer where words
are placed as its leaves and nodes represent relative probabilities. The
main advantage of this method is that we only need log, (W) nodes
along a path to obtain probability distribution instead of W nodes in
the standard neural network models. Negative Sampling is a
simplified version of Noise Contrastive Estimation (NCE) method [2]
which reduces the language model estimation problem to the
problem of estimating the parameters of a probabilistic binary
classifier and differentiates data from noise. The main difference is
that NCE needs both samples and the numerical probabilities of the

noise distribution, while Negative Sampling uses only samples.

INPUT PROJECTION OUTPUT INPUT PROJECTION OQUTPUT
w(t-2) wi(t-2)
wi(t-1) wi(t-1)

\SUM /
— wit) w(t) —
wit+1) 7’ \ w(t+1)
w(t+2) w(t+2)
cBOW Skip-gram

Figure 1 CBOW and Skip-gram model structure

By applying the CBOW and Skip-gram neural network structure,
we can achieve very promising results. Similar words will be closer
to each other in the vector space after training [11]. For example, if
we search for the most similar word to 'France’, by just calculating
the distances between words in the vector space, we would probably
obtain 'Spain’, 'Belgium', 'Netherlands', and so on. It was also shown
that the word vectors captured many linguistic regularities, for
example vector operations: vector (‘Paris’) — vector (‘France’) +
vector (‘ltaly") results in a vector that is very close to vector (‘Rome"),
and vector ('king) — vector (‘man’) + vector (‘woman')is close

to vector (‘queen’).

2.3 Doc2Vec

Doc2Vec (also known as paragraph2vec or sentence embedding) is a
modified version of Word2Vec algorithm which carries
out unsupervised learning to obtain continuous representations for
larger blocks of texts, such as sentences, paragraphs or entire
documents. It was first described in Mikolov’s latter paper [6]. Figure
2 shows the structure improvement from Word2Vec to
Doc2Vec. More formally, the only change in this model compared
to the word vector framework is adding all the document vectors of

same length to the word vectors into the binary tree as additional

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Index_(search_engine)

leaves so that we can obtain the document vectors optimized just as
the word vectors. In the word2vec architecture, the two algorithm
names were Continuous Bag of Words and Skip-gram. In the
doc2vec architecture, the corresponding algorithms are Distributed
memory and Distributed Bag of Words. A sliding window goes
through the document to sample fixed-length contexts for each
learning process. The document vector is shared if the texts sampled
were sampled from same document but not shared across different
documents. However, the word vector is shared across all the
documents meaning that there is only one word vector representation
for each unique word in the whole corpus.

‘chasing’ ‘chasing'
Predict Predict

—>

Leaming model Learning model

Average/Connect Average/Connect

Do N

‘a' is" ‘behind’ ‘a" ‘dog' Dos st g ‘cat’ s’ ‘behind' 'a’ ‘dog’

Word vectors Document vector Word vectors

Figure 2 Word2Vec to Doc2Vec

3 Implement of the detection method

3.1 Word Vectors

To begin with, we pre-process the corpus, where all the stop words in
articles like ‘the’, ‘a’, in’ etc. are removed, and words with total
counts less than 3 times in the corpus are also deleted because these
words appear only a few times that are negligible to the whole
corpus.

Then Word2Vec algorithm is used to obtain the word vector for
each unique word in the corpus. We implement the CBOW plus
Hierarchical Softmax model described in the Word2Vec paper [8]
which uses 2N surrounding words (N ahead and N behind) to predict
the middle word and builds up a Huffman tree to represent
probability distribution of words in the corpus. The model structure

is shown in Figure 3.

V(ws) Viwg Viw) Viwy) V(wz) V(wg

Input Layer

Projection Layer

Output Layer
(Huffman Tree)

'like' ‘watch' ‘'spurs'

‘basketball ‘nba’

Figure 3 Detailed model structure

The basic process of this algorithm is described as below. First,
count the word occurrences for each unique word in the whole
corpus and build up the Huffman tree according to the word counts.
Then treat the whole corpus as a very long word sequence and use a
sliding window to go through the sequence step by step. As the
sliding window returns 2N+1 word (central word w and 2N
surrounding words) each time, use equations (1) to update the
auxiliary vectors on the path p™(that is 6,7) and use equation (2) to
update the vectors representing the surrounding words:

o = 6y + 1 — dy — o(XLOVIXY, &)
VW) = V(w)® +n Tl - dy - o(xue0ley (2)

where 6 is the auxiliary weight vectors stored at each
non-leaf node. d} is 1 if the path is from father node to its
left node and O otherwise. X,, is the summation of input word
vector while 1 is the learning rate.

3.2 Document vectors

Turning word vectors into document vectors, we try several methods.
To begin with, we simply calculate the average vector for all the
words in a particular document and regard the average vector as the
document vector for this particular document:

V(Dw) = = Zwen, V(W) (3)

where D,, is the nth document in the corpus, [P is the length of

D, and w represents each word in D,,.

The inspiration behind this method is simple: every word vector
contributes some values to the document vector. Then naturally, we
consider that not every word is equally important, it is admitted that
some words are more important in a particular document.
Considering evaluating word importance in documents, tf-idf [14] is
the first choice. So the second method we use is a weighted average
based on tf-idf value of the words:

V(Dn) = ZweDn t(w)-V(w) 4
where t(w) is the tf-idf value for word w.

Instead of achieving document vector from word vectors, Doc2Vec
is another way to maintain document vector directly by training a
modified model. We implement the same structure as Doc2Vec [6].
In the initialize period, each document is regarded as a special ‘word’
and its document length is regarded as ‘word counts’ when building
the corresponding Huffman tree. During the iteration process, an
extra path from the root of the tree to the corresponding document
leaf node is established. Addition to update the word vectors,
document vectors (in fact the special ‘word’ vector) is also updated in

the same way:

V(DD =v(D)D +nTES1 — d¥ — o (X504)]16Y (15)

We can explain this as through the iteration process, each of the 2N
word vectors in this document has some influence on this document’s
document vector. The document vector is trained along with the word
vectors thus should perform better for document representation.

Several researchers have showed that Word2Vec and Doc2Vec
models performed very well on the syntactic tasks, but poorly on the
semantic ones [7, 12]. So we also implement a model using results
from Latent Dirichlet Allocation (LDA) as the pre-trained word
vectors, since LDA is good at digging up latent semantic relations
between documents and words. We collect one word’s distribution
among all the topics as the fixed length word vector for that word.
We only update the document vector through the learning process
and the LDA word vectors are fixed. After learning the document
vectors for all the documents in the corpus, we use them as input for

a supervised classifier.

3.3 Classifiers

The positive and negative documents are divided into two parts: one
for training and another for testing. We use several standard
classifiers to train and test our method. K Nearest neighbors (KNN)
is the first classifier we use. There are two types of KNN
clustering-based classifying algorithms: 1) Find all the neighbors
within a certain distance or 2) find K nearest neighbors. We adopt the
second method. Document vectors are spread in the 100 dimension
space. For each test document, we find its K (in our case, 10) nearest
neighbors in the vector space and give the test document the same
label as the majority of the K documents. Then we try to use a
decision tree as the classifier. The decision tree is a simple but
effective learning method which takes specified attributes variables
and outputs target values. In our model, the input variables are
document vectors while the target variable can take a binary value (1
for advertising articles and 0 for non-advertising ones) so that the
decision tree becomes a classification tree. Further, we implement a
random forest classifier. ~Random forestis anensemble
learning method for classification which constructs multiple decision
trees and combines the outputs from individual trees to achieve a
better result. To classify a test document in the form of an input
vector, put the vector down each of the decision trees in the forest.
Each decision tree gives a classification result called the ‘votes’ for
that class and we chooses the class with most ‘votes’ to be our
classifying result. Finally, we use Support Vector Machine (SVM)
classifier to test our method. SVM is one of the most successful
supervised learning models that analyze data and recognize
patterns. It filters the data so that only limited ‘support’ document
vectors are considered when calculating a classifying hyper plane.
Choosing kernel functions are what matters in SVM models. Due to
the simplicity of our data set right now, we find linear kernel for

SVM classifier already works well.

4 Experiments and results

4.1 Datasets

We tested our method on three data sets, Wikipedia user page dataset
and Wikipedia simulate ads injection dataset created by ourselves
and another one is Farm Ads Data Set collected by Mesterharm et al
[13].

Table 1 Basic statistics of datasets

Wikipedia user page dataset

Article Number 1893
Vocabulary size 26329
Average length 347 words

Positive articles Negative articles

1470 432

Farm Ads dataset

Article Number 4143
Vocabulary size 26839
Average length 427 words

Positive articles Negative articles

2210 1933

Wikipedia simulate ads injection dataset

Article Number 2470
Vocabulary size 95240
Average length 954 words

Positive articles Negative articles

1470 1000

The Wikipedia user page dataset is labeled as two classes, one
positive class represents the advertising articles and the other
negative class represents the non-ad articles. In the Wikipedia logs,
all deletion logs of advertising articles are labeled with a sign: ‘G11:
Unambiguous advertising or promotion’. We targeted at the
pages, differ

significantly from normal user pages, thus are relatively easy to

Wikipedia user since advertising user pages
recognize. From 2014 May to August, we collected 1470 deleted user
pages from Google Cache as our positive documents in the dataset.
As turn for the negative documents, we collected 423 Wikipedia
administrators’ user pages assuming that the administrators’ user
pages are of good qualities and satisfying Wikipedia’s neutral rules.
An example of two representative deleted advertising article (the
upper part) and non-advertising article (the bottom part) are shown in

Figure 4.

User:Amrapali Builders

From Wikipedia, the free encyclopedia

Amrapali Group, an ISO 9001:2000 company is one of the leading developers in Amrapali Builders

real estate sector

Type Public Company
It was founded nearly 10 years ago by Dr. Anil Kumar Sharma and is based in Industry Real estate
Noida. Under the dynamic leadership of Chairman cum Managing Director and Foudor Dr. Anil Kumar Sharma
President of CREDAI- NCR Dr. Anil Kumar Sharma, the Group has successfully Headquarters Noida, India
imprinted its assessment based visualization on the stone of certainty. The Key people Or. Anil Kumar Sharma
company enjoys pan India presence launching nearly 42 residential projects in 20 (CMD)
different cities of India such as Noida, Greater Noida, Ghaziabad, Lucknow :‘:‘:‘I:;’.:: 2
Jaipur, Udaipur, Raipur, Kochi, Vrindavan and Nagpur Wk SRR

Contents [nide]

User:Sandstein

From Wikipedia, the free encyclopedia

[CNCRY

Hello, and welcome to my user page.
I also edit the German Wikipedia and Wikimedia Commons as Sandstein. On public
computers, | use the account Sandstein Il for security reasons.

| am an administrator on the English language Wikipedia. If there is anything | can help you

with, you're welcome to leave me a message on my talk page

For privacy and transparency reasons, | prefer not to communicate by e-mail unless there is a
compelling reason for private communication. If you e-mail me through Wikipedia's "E-mail this
user" function, | reserve the right to reproduce the e-mail and to answer it on your user talk

page. | will not do this if the e-mail is of a clearly confidential nature, or if you ask me not to Wikipedia:Babel

make the e-mail public. But in the latter case | may not reply if | do not believe that there is a de O sonc Deutach o

good reason for off-wiki communication.

Figure 4 Examples of Wikipedia user page articles

The Wikipedia simulate ads injection dataset is created to simulate
the injection of advertise into Wikipedia articles. We use 1470
deleted advertising articles as injection ads to find articles in the
related areas in Wikipedia and add the advertising articles at the end
of the related articles. This is based on the assumption that some
advertisers will find Wikipedia articles related to their ads and
modify the article page inserting their ads. Aiming to detect such
kind of advertising, we create 1470 simulated advertising articles as
positive samples (ad) and randomly pick 1000 Wikipedia articles as
negative samples (non-ad). An example of ads injected article is

shown in Figure 5.

Manufacturing
biological or The term may refer to a range of human from handicraft to high but is most commonly applied to
industrial in which raw materials are transformed into finished goods on a large Such finished goods may be used for...
... co ltd is sumrey british columbia canada based manufacturing company that designs builds rugged robust control
systems marine industrial industries ...

iring is the p tion of for use or sale using labour and chemical and

Figure 5 Wikipedia Ads injection dataset example article
The Farm Ads data set [13] was collected from text ads found on
twelve websites that deal with various farm animal related topics.
Information from the ad creative and the ad landing page is included.
The binary labels (1 for accepted ads and -1 for rejected ads) are
based on whether or not the content owner approves of the ad. An
example of two representative ad article (the upper part) and non-ad

article (the bottom part) after stemming are shown in Figure 6.

No.107: pet veterinary question health care information online vet answer dog cat bird fish hamster gerbil ferret reptile
horse rabbit farm animal servername www register login help veterinary veterinary question answer asap watch video
pet veterinary category legal tax legal family law immigration law employment law criminal law military law real estate
law canada law personal injury law business law consumer protection law estate law bankruptcy law australia law
intellectual property law south africa law zealand law republic ireland law uk law uk family law uk property law uk
immigration law scot law uk employment law uk bankruptcy law uk traffic law tax finance uk tax financial software car
vehicle car bmw motorcycle merce vw volvo audi classic car jaguar subaru rv australia car kia porsche hyundai
mitsubishi mazda saab boat marine electronics chrysler dodge jeep ford mercury lincoln gme chevy buick pontiac
cadillac saturn honda acura toyota lexus uk car uk ford uk nissan nissan infiniti heavy equipment health medical health
dental mental health pharmacy medical ob gyn pediatrics urology eye dermatology oncology neurology bariatrics
plastic surgery pet veterinary pet dog cat bird reptile horse management veterinary dog veterinary cat veterinary bird
veterinary horse veterinary animal veterinary home appliance home improvement ...

C 3

No.3870: american fertility female infertility skip content navigation search search site search navigation service
testimonial finance resource faq female infertility female infertility male infertiity egg donor program advance
laparoscopic surgery service blood test blood test step woman infertility easy identify potential fertility relate test doctor
hormone level test follicle stimulate hormone fsh measure fsh essential start infertility evaluation prior treatment fsh
level indirectly measure store follicle ovarian reserve egg oocyte remain ovary predict quality remain oocyte fsh level
indicate diminish quality quantity oocyte help predict fertility doctor measure fsh level draw blood third day menstrual
cycle fsh test fall range normal microiu borderiine microiu abnormal microiu borderline result suggest poor ovarian
reserve prompt aggressive treatment abnormal fsh level suggest poor ovarian reserve markedly low chance healthy
pregnancy own egg please note fsh lab range vary institution institution estradiol estradiol type estrogen hormone
produce follicle ovary elevate level third day cycle indicate compromise ovarian reserve despite normal fsh level
progesterone progesterone major hormone prepare sustain uterus pregnancy produce corpus luteum embryo develop
placenta blood test perform determine proper function corpus luteum...

Figure 6 Farm Ads dataset example articles

4.2 Results and Evaluation

Experiments were conducted on the Wikipedia user page dataset and
Farm Ads dataset. Different classifiers are used to test our method.
As the Farm Ads dataset is more balanced, more experiments are
done on it. All the experiments are done on an Ubuntu 32bit system
with 2GB memory based on VMware Workstation.

Table 2 shows the experiment results on Wikipedia user page
dataset. We used 1000 positive and 1000 negative articles to train the
model and use the rest articles as the test set. BOW represents for
Bag of Words model such that each document is coded into a fixed
length (as for this Wikipedia dataset, 26329) vector and if one
particular word exists in this document, the corresponding position in
this document’s vector is 1, otherwise 0. W2V (mean) means that we
first train the model to obtain word vectors for each unique word in
the corpus. Then we take average of all the word vectors of one
document as its document vector. As we can see, simple BOW model
already achieved very good results on this dataset. The W2V (mean)
method performed better on the KNN classifier and achieved the
same results on the Random Forest classifier. But the result became
on the Decision Tree and SVM classifiers. This is due to the low
similarity between advertising articles and non-advertising articles.
Since this dataset are limited to Wikipedia user pages, frequent words
in the positive documents rarely appear in the negative documents.
This makes Bag of Words perfect for handling the classification task
on these documents. But the BOW model suffers from the curse of
dimension problem. As the dataset gradually grows, the size of the
document vectors becomes larger, making the computation process
really expensive. However, W2V does not have such a scalability
problem so we can expect it to be better than the BOW model when

we deal with larger and more complex dataset.

Table 2 Wikipedia user page dataset experiment results

Method Precision | Recall F1-score
BOW + KNN 0.94 0.93 0.93
BOW + Decision Tree 0.96 0.96 0.96
BOW + Random Forest 0.93 0.92 0.92
BOW + SVM 0.96 0.96 0.96
W2V (mean) + KNN 0.96 0.96 0.96
W2V (mean) + Decision Tree 0.90 0.90 0.90
W2V (mean)+ Random Forest | 0.93 0.92 0.92
W2V (mean)+ SVM 0.81 0.82 0.81

Table 3 shows the experiment results on Wikipedia ads injection
dataset. We used 1000 positive and 500 negative articles to train the
model and use the rest articles as the test set. As we can see, simple
BOW model works worse in this dataset comparing to the previous
Wikipedia user page dataset. This is due to the increased word
appearance complexity of the ads injected article as the injected ads
may contain same set of words appearing in the related article which
makes BOW model hard to distinguish between ads and non-ads. The

W2V model achieved equivalent results which show the
effectiveness of deep learning model. When applying the D2V model,
we use pre-trained word vectors® getting from Wikipedia 2014 and
Gigaword5 dataset (around 6 billion words) since deep learning
method couldn’t achieve relatively good results with only several
million words. The results with D2V model clearly outperform the

BOW model.

Table 3 Wikipedia ads injection dataset experiment results

BOW + SVM 0.82 0.81 0.82
W2V (mean) + KNN 0.85 0.84 0.84
W2V (mean) + Decision Tree 0.80 0.80 0.80
W2V (mean)+ Random Forest | 0.84 0.84 0.84
W2V (mean)+ SVM 0.84 0.83 0.84
w2V (tf-idf) + SVM 0.75 0.46 0.32
D2V + SVM 0.85 0.82 0.82
D2V + LDA + SVM 0.82 0.82 0.82

Method Precision Recall F1-score
BOW + SVM 0.83 0.83 0.83
W2V (mean) + SVM 0.82 0.82 0.82
D2V (pre-trained) + SVM 0.86 0.86 0.86

Table 4 shows the experiment results on the Farm Ads dataset. We
used 1000 positive and 1000 negative articles to train the model and
use the rest articles as the test set. BOW represents for Bag of Words
model and W2V (mean) means that we used average word vectors to
represent document vectors. D2V stands for the Document to Vector
model which directly learns the document vectors along with the
word vectors. D2V + LDA means that we used word distributions
among topics from training a 1000 pass LDA model as the word
vectors in the Doc2Vec model and fix the word vectors during the
D2V training process. From the results of Table 2, we can clearly tell
that our method is better than the baseline BOW model. Compared to
the Wikipedia user page dataset, the Farm Ads dataset is much more
complex. Same words can appear both in the ad and nonad articles,
making the simple BOW model inefficient. Surprisingly, the tf-idf
weighted strategy to obtain document vectors from word vectors did
not work well. The reason behind this is that when training the word
vector, the term frequency information has already been taken into
consider (using word counts to create the Huffman tree). So if we
apply tf-idf weights again, it is like using the term frequency twice
thus creating some imbalance leading to bad results. The D2V
method shows no obvious improvements on the results but works
better on the precision part. If we care more about the precision of
the classifier, we should adopt the D2V structure. Adding LDA word
distributions makes the results a little worse. One possible reason is
that W2V training process is like clustering syntactic similar words
together, while LDA word distributions are placing semantic similar
words together in the vector space. Comparing to random
initialization, this may even larger the distance between syntactic

similar words thus making the result worse.

Table 4 Farm Ads dataset experiment results

Method Precision Recall F1-score
BOW + Decision Tree 0.81 0.81 0.81
BOW + Random Forest 0.84 0.84 0.84

! http://nlp.stanford.edu/projects/glove/

5 Conclusion and future work
In this paper, we described a method to automatically detect
advertising articles in Wikipedia. We first implement a deep learning
method to either directly obtain document vectors or from the learned
word vectors. Then the document vectors in the training dataset are
used to train a supervised classifier which does the classification for
the test dataset in the next step. Experiment results based on two
dataset showed that our method achieves more than 0.8 precision and
recall scores and works better than the baseline bag of words model.
In the future, more work need to be done. We plan to extend our
dataset to the whole Wikipedia range, detect all the potential
advertising articles using our method and check the performance by
keeping track of the Wikipedia deletion logs. We also plan to try
other methods to improve the initial part of the Word2Vec model
which now takes random values. Applying new classifiers and new

models are also under our considerations.

References

[1] ‘Yoshua Bengio, Rgean Ducharme, Pascal Vincent, Christian
Jauvin: A Neural Probabilistic Language Model, Journal of
Machine Learning Research 3 (2003) , Pages 1137-1155
(2003)

[2] Chris Dyer: Notes on Noise Contrastive Estimation and
Negative Sampling, arXiv:1410.8251 [cs.LG] (2014)

[31 Yoav Goldberg, Omer Levy: word2vec Explained: Deriving
Mikolov et al.’s Negative-Sampling Word-Embedding Method

[4] Kelly Y. Itakura, Charles L.A. Clarke: Using Dynamic Markov
Compression to Detect Vandalism in the Wikipedia. SIGIR
'09 Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information
retrieval, Pages 822-823 (2009)

[5] Ho-yu Lam, Dit-yan Yeung: A learning approach to spam
detection based on social networks. Proceedings of the fourth
conference on email and anti-spam (2007)

[6] Quoc Le, Tomas Mikolov: Distributed Representations of
Sentences and Documents, JMLR '14 Proceedings of the 31st
International Conference on Machine Learning, W&CP volume
32 (2014)

[71 Yang Liu, Zhiyuan Liul, Tat-Seng Chua, Maosong Sun:
Topical Word Embeddings, AAAI '15 Association for the

http://arxiv.org/abs/1410.8251

(8]

(9]

[10]

[11]

[12]

(13]

(14]

Advancement of Artificial (2015)

Tomas Mikolov, lIlya Sutskever, Kai Chen, Greg Corrado,
Jeffrey Dean: Distributed Representations of Words and
Phrases and their Compositionality, NIPS '13, Pages 3111-3119
(2013)

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean:
Efficient Estimation of Word Representations in Vector Space,
ICLR '13 Proceedings of Workshop at International Conference
on Learning Representations (2013)

Martin Potthast, Benno Stein, Robert Gerling: Automatic
Vandalism Detection in Wikipedia, ECIR '08 Proceedings of
the 30th European Conference on IR Research (2008)

Lin Qiu, Yong Cao, Zaiging Nie, Yong Rui: Learning Word
Representation Considering Proximity and Ambiguity, AAAI
'14 Association for the Advancement of Artificial (2014)

Radim Rehaiek: Making sense of word2vec,
http://radimrehurek.com/2014/12/making-sense-of-word2vec/
Chris Mesterharm, Michael J. Pazzani: Active Learning using
On-line Algorithms, KDD 11 Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining, Pages 850-858, 2011

Karen Spé&ck Jones: A statistical interpretation of term
specificity and its application in retrieval, Document retrieval
systems, Pages 132-142

http://link.springer.com/search?facet-author=%22Martin+Potthast%22
http://link.springer.com/search?facet-author=%22Benno+Stein%22
http://link.springer.com/search?facet-author=%22Robert+Gerling%22
http://radimrehurek.com/

