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Abstract 

Wikipedia is an open Internet encyclopedia that everyone can access and edit. Due to its “written from a neutral point of view” policy, both 

advertising and promotion are strictly forbidden in Wikipedia, and advertising articles will be deleted by administrators manually. Currently most 

researches about spamming in Wikipedia are focusing on editing behavior and making use of user’s edit history to do feature-based judging. In 

this paper, we propose a pure text-based method to automatically detect advertising and promotion articles in Wikipedia. In order to apply 

learning algorithms to training corpus, we need to transform text article into a vector form. Rather than traditional bag-of-words document vector 

representation which was proved to be inefficient, we employ a deep learning method to obtain a word vector for each word and then apply a 

sliding window on each document to gradually gain the document vector. Furthermore, we implement an improved deep-learning structure 

which can directly give us a document vector for each document. We then construct a supervised SVM classifier on the document vectors to 

obtain the final results. Our method was tested on several datasets and produced better performance than the bag-of-words model in both 

precision and recall measurements. 
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1 Introduction 

Wikipedia is an Internet encyclopedia aiming at facilitating 

collaboration and information sharing. Wikipedia allows anyone 

from different backgrounds (even anonymous users) to create and 

edit articles. Launched in January 2001, Wikipedia has grown into 

one of the largest free public knowledge bases with about 34 million 

articles in more than 200 languages. Wikipedia adopts the concept of 

maintaining a neutral point of view (NPOV) as one of its founding 

principles. However, Wikipedia’s unrestricted editing access to 

everyone makes this NPOV goal impossible. Instead of collaborating 

on editing neutral articles, some users regard Wikipedia as a way to 

advertise or promote their products. Such advertising and promotion 

is strictly forbidden in Wikipedia. Currently all the deletions of these 

advertising articles are done by Wikipedia administrators manually. 

Administrators have to browse the suspected articles themselves and 

decide whether they are advertising or promotion by their own 

experiences. This may requires a lot of time and hard work regarding 

the relatively small number of administrators comparing to the large 

amount of advertising and promotion articles in Wikipedia. Let alone 

administrators may make wrong decisions deleting those articles 

which are actually just states of fact which leads to even worse 

situation. So Wikipedia’s current advertising and promotion article 

deletion procedure is time consuming and inefficient. An automatic 

and more efficient way of deleting advertising articles in Wikipedia 

is needed. 

In order to solve this problem, we propose a learning method to 

automatically detect advertising and promotion articles in Wikipedia. 

Most of the former researches on Wikipedia spam or vandalism 

detection are feature-based learning approaches which analyze user’s 

behavior to do judgment. For example, Potthast et al. [10] used 

machine learning in combination with manually crafted rules to 

classify Wikipedia spam edits. Itakura et al. [4] employed a 

compression model-based algorithm to detect spam editing behaviors 

in Wikipedia. Lam et al. [5] proposed a machine learning approach to 

implement spam detection by extracting seven features from each 

email and using supervised learning to learn the behaviors of 

spammers. However, our method is pure text-based which means that 

neither edit history nor user behavior is needed. In this way, we can 

avoid the ad-hoc problem indicating that we do not need to create 

rules to extract particular features from the data set which may only 

works well in special environment. Instead our method not only can 

be applied in Wikipedia study but also can be extended to other big 

social networks analysis as long as large text corpus is available. 

We first implemented an unsupervised deep learning method to 

achieve fixed-length vector representation for each unique word in 

the corpus. We use the same deep learning structure as described in 

Mikolov et al.’s paper [8, 9]. We then calculate the document vector 

by taking either the mean of word vectors or tf-idf weighted average. 

Then we apply a supervised SVM classifier to train the model and 

use the model to detect advertising and promotion articles in the test 

set. We also try directly getting document vector from texts by 

modifying the deep learning structure to a new form as introduced by 

Mikolov [6]. Finally we improve the method by using LDA words in 

topic distributions as the initial word vectors. Our method showed 

better performance on several datasets than bag-of-words models in 

both precision and recall measurements. 



The rest of this paper is organized as follows: In Section 2 we 

survey related works, including vector space model, Word to Vector 

model and Document to Vector model. In Section 3 we discuss how 

our advertising detection system works in details, including 

pre-processing of the corpus, learning the document vector for each 

document using Word2Vec, training different classifiers and 

detection of advertising articles on the test set. Section 4 shows 

experiments and results, which compares two methods: Bag of 

Words and Word to Vector, and analyze performance of these two 

methods. Section 5 is the conclusion and future work. 

 

2 Related work 

2.1 Vector Space Model 

Vector space model or term vector model is an algebraic model for 

representing text documents (and any objects, in general) 

as vectors of identifiers, such as, for example, index terms. It is 

widely used in natural language processing, information retrieval, 

indexing and relevancy rankings. Traditionally a word is represented 

by a one-hot vector where the vector size equals the vocabulary size 

and the position represents word index is 1 while the others are 0s. 

However, the one-hot word vector model suffers two main problems: 

One is that as the size of the data grows the vocabulary size becomes 

so large, yielding to the curse of dimensionality (Bengio et al. 

2003[1]) and the one is that this one-hot representation captures no 

syntactic or semantic regularities of words since the distances 

between any two words are the same in the vector space. Then came 

out the distributed representation of words [1] and it has achieved 

significant success in the recent past. Instead of a one-hot vector 

representation, a word is represented by a fixed length (usually 

several hundreds) real-valued vector. The distributional hypothesis 

states that words in similar contexts have similar meanings [8]. 

Intuitively, it means that words who share many same contexts will 

be similar to each other in the vector space. The distributed 

representation does not face the-curse-of-dimensionality problem 

because the length of the vector size is not proportional compared to 

the data set growth. 

2.2 Word2Vec 

Word2Vec is an open source project released by Google which 

achieved state of the art performances in many natural language 

processing tasks. It takes a large text corpus as input and outputs the 

word vectors for each unique word. These word vectors can be 

subsequently used in many natural language processing and machine 

learning applications such as classification, clustering and other 

further research. In Mikolov et al.’s word2vec paper [8], they carried 

out two neural network models for representation learning: 

Continuous Bag-of-Words Model (CBOW) and Continuous 

Skip-gram Model. Figure 1 shows the structure of these two models. 

CBOW uses the word vectors of adjacent words in the range of a 

surrounding window (e.g. 3 previous words and 3 latter words) to 

predict the word vector of the central word, while on the contrary 

Skip-gram uses the central word’s vector to predict the surrounding 

words. As for neural network’s optimization and back propagation 

part, Word2Vec adopts hierarchical softmax based on CBOW and the 

negative sampling method based on Skip-gram [3]. Hierarchical 

Softmax was first introduced by Morin and Bengio [1] in the neural 

network language models. It uses a binary tree (a Huffman tree in 

Word2Vec) to represent neural network’s output layer where words 

are placed as its leaves and nodes represent relative probabilities. The 

main advantage of this method is that we only need log2 (W) nodes 

along a path to obtain probability distribution instead of W nodes in 

the standard neural network models. Negative Sampling is a 

simplified version of Noise Contrastive Estimation (NCE) method [2] 

which reduces the language model estimation problem to the 

problem of estimating the parameters of a probabilistic binary 

classifier and differentiates data from noise. The main difference is 

that NCE needs both samples and the numerical probabilities of the 

noise distribution, while Negative Sampling uses only samples. 

 

  Figure 1 CBOW and Skip-gram model structure 

By applying the CBOW and Skip-gram neural network structure, 

we can achieve very promising results. Similar words will be closer 

to each other in the vector space after training [11]. For example, if 

we search for the most similar word to 'France', by just calculating 

the distances between words in the vector space, we would probably 

obtain 'Spain', 'Belgium', 'Netherlands', and so on. It was also shown 

that the word vectors captured many linguistic regularities, for 

example vector operations: vector ('Paris') – vector ('France') + 

vector ('Italy') results in a vector that is very close to vector ('Rome'), 

and vector ('king') – vector ('man') + vector ('woman') is close 

to vector ('queen').  

2.3 Doc2Vec 

Doc2Vec (also known as paragraph2vec or sentence embedding) is a 

modified version of Word2Vec algorithm which carries 

out unsupervised learning to obtain continuous representations for 

larger blocks of texts, such as sentences, paragraphs or entire 

documents. It was first described in Mikolov’s latter paper [6]. Figure 

2 shows the structure improvement from Word2Vec to 

Doc2Vec.  More formally, the only change in this model compared 

to the word vector framework is adding all the document vectors of 

same length to the word vectors into the binary tree as additional 

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Index_(search_engine)


leaves so that we can obtain the document vectors optimized just as 

the word vectors. In the word2vec architecture, the two algorithm 

names were Continuous Bag of Words and Skip-gram. In the 

doc2vec architecture, the corresponding algorithms are Distributed 

memory and Distributed Bag of Words. A sliding window goes 

through the document to sample fixed-length contexts for each 

learning process. The document vector is shared if the texts sampled 

were sampled from same document but not shared across different 

documents. However, the word vector is shared across all the 

documents meaning that there is only one word vector representation 

for each unique word in the whole corpus. 

 

Figure 2 Word2Vec to Doc2Vec 

 

3 Implement of the detection method 

3.1 Word Vectors 

To begin with, we pre-process the corpus, where all the stop words in 

articles like ‘the’, ‘a’, ‘in’ etc. are removed, and words with total 

counts less than 3 times in the corpus are also deleted because these 

words appear only a few times that are negligible to the whole 

corpus. 

Then Word2Vec algorithm is used to obtain the word vector for 

each unique word in the corpus. We implement the CBOW plus 

Hierarchical Softmax model described in the Word2Vec paper [8] 

which uses 2N surrounding words (N ahead and N behind) to predict 

the middle word and builds up a Huffman tree to represent 

probability distribution of words in the corpus. The model structure 

is shown in Figure 3. 

                                        
Figure 3 Detailed model structure 

The basic process of this algorithm is described as below. First, 

count the word occurrences for each unique word in the whole 

corpus and build up the Huffman tree according to the word counts. 

Then treat the whole corpus as a very long word sequence and use a 

sliding window to go through the sequence step by step. As the 

sliding window returns 2N+1 word (central word w and 2N 

surrounding words) each time, use equations (1) to update the 

auxiliary vectors on the path 𝑝𝑤(that is 𝜃𝑛
𝑤) and use equation (2) to 

update the vectors representing the surrounding words: 

𝜃𝑛
𝑤(𝑖+1) = 𝜃𝑛

𝑤(𝑖) + 𝜂[1 − 𝑑𝑛
𝑤 − 𝜎(𝑋𝑤

𝑇 𝜃𝑛
𝑤)]𝑋𝑤

𝑇
     (1) 

𝑉(𝑤𝑗)(𝑖+1) = 𝑉(𝑤𝑗)(𝑖) + 𝜂 ∑ [1 − 𝑑𝑛
𝑤 − 𝜎(𝑋𝑤

𝑇 𝜃𝑛
𝑤)]𝜃𝑛

𝑤𝑙𝑤−1
𝑛=1     (2) 

where 𝜃𝑛
𝑤  is the auxiliary weight vectors stored at each 

non-leaf node. 𝑑𝑛
𝑤 is 1 if the path is from father node to its 

left node and 0 otherwise. Xw is the summation of input word 

vector while 𝜂 is the learning rate. 

3.2 Document vectors 

Turning word vectors into document vectors, we try several methods. 

To begin with, we simply calculate the average vector for all the 

words in a particular document and regard the average vector as the 

document vector for this particular document: 

𝑉(𝐷𝑛) =
1

𝑙𝐷𝑛
∑ 𝑉(𝑤)𝑤𝜖𝐷𝑛

     (3) 

where 𝐷𝑛 is the nth document in the corpus, 𝑙𝐷𝑛 is the length of 

𝐷𝑛 and 𝑤 represents each word in 𝐷𝑛.  

The inspiration behind this method is simple: every word vector 

contributes some values to the document vector. Then naturally, we 

consider that not every word is equally important, it is admitted that 

some words are more important in a particular document. 

Considering evaluating word importance in documents, tf-idf [14] is 

the first choice. So the second method we use is a weighted average 

based on tf-idf value of the words: 

𝑉(𝐷𝑛) = ∑ 𝑡(𝑤) ∙ 𝑉(𝑤)𝑤𝜖𝐷𝑛
    (4) 

where 𝑡(𝑤) is the tf-idf value for word w.  

Instead of achieving document vector from word vectors, Doc2Vec 

is another way to maintain document vector directly by training a 

modified model. We implement the same structure as Doc2Vec [6]. 

In the initialize period, each document is regarded as a special ‘word’ 

and its document length is regarded as ‘word counts’ when building 

the corresponding Huffman tree. During the iteration process, an 

extra path from the root of the tree to the corresponding document 

leaf node is established. Addition to update the word vectors, 

document vectors (in fact the special ‘word’ vector) is also updated in 

the same way: 



𝑉(𝐷𝑗)(𝑖+1) = 𝑉(𝐷𝑗)(𝑖) + 𝜂 ∑ [1 − 𝑑𝑛
𝑤 − 𝜎(𝑋𝑤

𝑇 𝜃𝑛
𝑤)]𝜃𝑛

𝑤𝑙𝑤−1
𝑛=1  (15) 

We can explain this as through the iteration process, each of the 2N 

word vectors in this document has some influence on this document’s 

document vector. The document vector is trained along with the word 

vectors thus should perform better for document representation.  

Several researchers have showed that Word2Vec and Doc2Vec 

models performed very well on the syntactic tasks, but poorly on the 

semantic ones [7, 12]. So we also implement a model using results 

from Latent Dirichlet Allocation (LDA) as the pre-trained word 

vectors, since LDA is good at digging up latent semantic relations 

between documents and words. We collect one word’s distribution 

among all the topics as the fixed length word vector for that word. 

We only update the document vector through the learning process 

and the LDA word vectors are fixed. After learning the document 

vectors for all the documents in the corpus, we use them as input for 

a supervised classifier.  

3.3 Classifiers 

The positive and negative documents are divided into two parts: one 

for training and another for testing. We use several standard 

classifiers to train and test our method. K Nearest neighbors (KNN) 

is the first classifier we use. There are two types of KNN 

clustering-based classifying algorithms: 1) Find all the neighbors 

within a certain distance or 2) find K nearest neighbors. We adopt the 

second method. Document vectors are spread in the 100 dimension 

space. For each test document, we find its K (in our case, 10) nearest 

neighbors in the vector space and give the test document the same 

label as the majority of the K documents. Then we try to use a 

decision tree as the classifier. The decision tree is a simple but 

effective learning method which takes specified attributes variables 

and outputs target values. In our model, the input variables are 

document vectors while the target variable can take a binary value (1 

for advertising articles and 0 for non-advertising ones) so that the 

decision tree becomes a classification tree. Further, we implement a 

random forest classifier. Random forest is an ensemble 

learning method for classification which constructs multiple decision 

trees and combines the outputs from individual trees to achieve a 

better result. To classify a test document in the form of an input 

vector, put the vector down each of the decision trees in the forest. 

Each decision tree gives a classification result called the ‘votes’ for 

that class and we chooses the class with most ‘votes’ to be our 

classifying result. Finally, we use Support Vector Machine (SVM) 

classifier to test our method. SVM is one of the most successful 

supervised learning models that analyze data and recognize 

patterns. It filters the data so that only limited ‘support’ document 

vectors are considered when calculating a classifying hyper plane. 

Choosing kernel functions are what matters in SVM models. Due to 

the simplicity of our data set right now, we find linear kernel for 

SVM classifier already works well. 

 

4 Experiments and results 

4.1 Datasets 

We tested our method on three data sets, Wikipedia user page dataset 

and Wikipedia simulate ads injection dataset created by ourselves 

and another one is Farm Ads Data Set collected by Mesterharm et al 

[13].  

 

Table 1 Basic statistics of datasets 

Wikipedia user page dataset 

Article Number 1893 

Vocabulary size 26329 

Average length 347 words 

Positive articles Negative articles 

1470 432 

Farm Ads dataset 

Article Number 4143 

Vocabulary size 26839 

Average length 427 words 

Positive articles Negative articles 

2210 1933 

Wikipedia simulate ads injection dataset 

Article Number 2470 

Vocabulary size 95240 

Average length 954 words 

Positive articles Negative articles 

1470 1000 

 

The Wikipedia user page dataset is labeled as two classes, one 

positive class represents the advertising articles and the other 

negative class represents the non-ad articles. In the Wikipedia logs, 

all deletion logs of advertising articles are labeled with a sign: ‘G11: 

Unambiguous advertising or promotion’. We targeted at the 

Wikipedia user pages, since advertising user pages differ 

significantly from normal user pages, thus are relatively easy to 

recognize. From 2014 May to August, we collected 1470 deleted user 

pages from Google Cache as our positive documents in the dataset. 

As turn for the negative documents, we collected 423 Wikipedia 

administrators’ user pages assuming that the administrators’ user 

pages are of good qualities and satisfying Wikipedia’s neutral rules. 

An example of two representative deleted advertising article (the 

upper part) and non-advertising article (the bottom part) are shown in 

Figure 4. 



 

Figure 4 Examples of Wikipedia user page articles 

The Wikipedia simulate ads injection dataset is created to simulate 

the injection of advertise into Wikipedia articles. We use 1470 

deleted advertising articles as injection ads to find articles in the 

related areas in Wikipedia and add the advertising articles at the end 

of the related articles. This is based on the assumption that some 

advertisers will find Wikipedia articles related to their ads and 

modify the article page inserting their ads. Aiming to detect such 

kind of advertising, we create 1470 simulated advertising articles as 

positive samples (ad) and randomly pick 1000 Wikipedia articles as 

negative samples (non-ad). An example of ads injected article is 

shown in Figure 5. 

 

Figure 5 Wikipedia Ads injection dataset example article 

The Farm Ads data set [13] was collected from text ads found on 

twelve websites that deal with various farm animal related topics. 

Information from the ad creative and the ad landing page is included. 

The binary labels (1 for accepted ads and -1 for rejected ads) are 

based on whether or not the content owner approves of the ad. An 

example of two representative ad article (the upper part) and non-ad 

article (the bottom part) after stemming are shown in Figure 6. 

 

Figure 6 Farm Ads dataset example articles 

4.2 Results and Evaluation 

Experiments were conducted on the Wikipedia user page dataset and 

Farm Ads dataset. Different classifiers are used to test our method. 

As the Farm Ads dataset is more balanced, more experiments are 

done on it. All the experiments are done on an Ubuntu 32bit system 

with 2GB memory based on VMware Workstation. 

Table 2 shows the experiment results on Wikipedia user page 

dataset. We used 1000 positive and 1000 negative articles to train the 

model and use the rest articles as the test set. BOW represents for 

Bag of Words model such that each document is coded into a fixed 

length (as for this Wikipedia dataset, 26329) vector and if one 

particular word exists in this document, the corresponding position in 

this document’s vector is 1, otherwise 0. W2V (mean) means that we 

first train the model to obtain word vectors for each unique word in 

the corpus. Then we take average of all the word vectors of one 

document as its document vector. As we can see, simple BOW model 

already achieved very good results on this dataset. The W2V (mean) 

method performed better on the KNN classifier and achieved the 

same results on the Random Forest classifier. But the result became 

on the Decision Tree and SVM classifiers. This is due to the low 

similarity between advertising articles and non-advertising articles. 

Since this dataset are limited to Wikipedia user pages, frequent words 

in the positive documents rarely appear in the negative documents. 

This makes Bag of Words perfect for handling the classification task 

on these documents. But the BOW model suffers from the curse of 

dimension problem. As the dataset gradually grows, the size of the 

document vectors becomes larger, making the computation process 

really expensive. However, W2V does not have such a scalability 

problem so we can expect it to be better than the BOW model when 

we deal with larger and more complex dataset. 

Table 2 Wikipedia user page dataset experiment results 

Method Precision Recall F1-score 

BOW + KNN 0.94 0.93 0.93 

BOW + Decision Tree 0.96 0.96 0.96 

BOW + Random Forest 0.93 0.92 0.92 

BOW + SVM 0.96 0.96 0.96 

W2V (mean) + KNN 0.96 0.96 0.96 

W2V (mean) + Decision Tree 0.90 0.90 0.90 

W2V (mean)+ Random Forest 0.93 0.92 0.92 

W2V (mean)+ SVM 0.81 0.82 0.81 

Table 3 shows the experiment results on Wikipedia ads injection 

dataset. We used 1000 positive and 500 negative articles to train the 

model and use the rest articles as the test set. As we can see, simple 

BOW model works worse in this dataset comparing to the previous 

Wikipedia user page dataset. This is due to the increased word 

appearance complexity of the ads injected article as the injected ads 

may contain same set of words appearing in the related article which 

makes BOW model hard to distinguish between ads and non-ads. The 



W2V model achieved equivalent results which show the 

effectiveness of deep learning model. When applying the D2V model, 

we use pre-trained word vectors1 getting from Wikipedia 2014 and 

Gigaword5 dataset (around 6 billion words) since deep learning 

method couldn’t achieve relatively good results with only several 

million words. The results with D2V model clearly outperform the 

BOW model. 

Table 3 Wikipedia ads injection dataset experiment results 

Method Precision Recall F1-score 

BOW + SVM 0.83 0.83 0.83 

W2V (mean) + SVM 0.82 0.82 0.82 

D2V (pre-trained) + SVM 0.86 0.86 0.86 

 

Table 4 shows the experiment results on the Farm Ads dataset. We 

used 1000 positive and 1000 negative articles to train the model and 

use the rest articles as the test set. BOW represents for Bag of Words 

model and W2V (mean) means that we used average word vectors to 

represent document vectors. D2V stands for the Document to Vector 

model which directly learns the document vectors along with the 

word vectors. D2V + LDA means that we used word distributions 

among topics from training a 1000 pass LDA model as the word 

vectors in the Doc2Vec model and fix the word vectors during the 

D2V training process. From the results of Table 2, we can clearly tell 

that our method is better than the baseline BOW model. Compared to 

the Wikipedia user page dataset, the Farm Ads dataset is much more 

complex. Same words can appear both in the ad and nonad articles, 

making the simple BOW model inefficient. Surprisingly, the tf-idf 

weighted strategy to obtain document vectors from word vectors did 

not work well. The reason behind this is that when training the word 

vector, the term frequency information has already been taken into 

consider (using word counts to create the Huffman tree). So if we 

apply tf-idf weights again, it is like using the term frequency twice 

thus creating some imbalance leading to bad results. The D2V 

method shows no obvious improvements on the results but works 

better on the precision part. If we care more about the precision of 

the classifier, we should adopt the D2V structure. Adding LDA word 

distributions makes the results a little worse. One possible reason is 

that W2V training process is like clustering syntactic similar words 

together, while LDA word distributions are placing semantic similar 

words together in the vector space. Comparing to random 

initialization, this may even larger the distance between syntactic 

similar words thus making the result worse.  

Table 4 Farm Ads dataset experiment results 

Method Precision Recall F1-score 

BOW + Decision Tree 0.81 0.81 0.81 

BOW + Random Forest 0.84 0.84 0.84 

                                                             
1 http://nlp.stanford.edu/projects/glove/ 

BOW + SVM 0.82 0.81 0.82 

W2V (mean) + KNN 0.85 0.84 0.84 

W2V (mean) + Decision Tree 0.80 0.80 0.80 

W2V (mean)+ Random Forest 0.84 0.84 0.84 

W2V (mean)+ SVM 0.84 0.83 0.84 

W2V (tf-idf) + SVM 0.75 0.46 0.32 

D2V + SVM 0.85 0.82 0.82 

D2V + LDA + SVM 0.82 0.82 0.82 

 

5 Conclusion and future work 

In this paper, we described a method to automatically detect 

advertising articles in Wikipedia. We first implement a deep learning 

method to either directly obtain document vectors or from the learned 

word vectors. Then the document vectors in the training dataset are 

used to train a supervised classifier which does the classification for 

the test dataset in the next step. Experiment results based on two 

dataset showed that our method achieves more than 0.8 precision and 

recall scores and works better than the baseline bag of words model.  

In the future, more work need to be done. We plan to extend our 

dataset to the whole Wikipedia range, detect all the potential 

advertising articles using our method and check the performance by 

keeping track of the Wikipedia deletion logs. We also plan to try 

other methods to improve the initial part of the Word2Vec model 

which now takes random values. Applying new classifiers and new 

models are also under our considerations. 
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