
DEIM Forum 2015 D5-1

Detection of text-based advertising and promotion in Wikipedia by deep learning method

Yuanzhen Guo, Mizuho Iwaihara

Graduate School of Information, Production and Systems, Waseda University

2-7 Hibikono, Wakamatu-ku, Kitakyushu-shi, Fukuoka-ken, 808-0135 Japan

E-mail: steve_guo@akane.waseda.jp, iwaihara@waseda.jp

Abstract

Wikipedia is an open Internet encyclopedia that everyone can access and edit. Due to its “written from a neutral point of view” policy, both

advertising and promotion are strictly forbidden in Wikipedia, and advertising articles will be deleted by administrators manually. Currently most

researches about spamming in Wikipedia are focusing on editing behavior and making use of user’s edit history to do feature-based judging. In

this paper, we propose a pure text-based method to automatically detect advertising and promotion articles in Wikipedia. In order to apply

learning algorithms to training corpus, we need to transform text article into a vector form. Rather than traditional bag-of-words document vector

representation which was proved to be inefficient, we employ a deep learning method to obtain a word vector for each word and then apply a

sliding window on each document to gradually gain the document vector. Furthermore, we implement an improved deep-learning structure

which can directly give us a document vector for each document. We then construct a supervised SVM classifier on the document vectors to

obtain the final results. Our method was tested on several datasets and produced better performance than the bag-of-words model in both

precision and recall measurements.

Keywords: Wikipedia, deep learning, advertisement detection

1 Introduction

Wikipedia is an Internet encyclopedia aiming at facilitating

collaboration and information sharing. Wikipedia allows anyone

from different backgrounds (even anonymous users) to create and

edit articles. Launched in January 2001, Wikipedia has grown into

one of the largest free public knowledge bases with about 34 million

articles in more than 200 languages. Wikipedia adopts the concept of

maintaining a neutral point of view (NPOV) as one of its founding

principles. However, Wikipedia’s unrestricted editing access to

everyone makes this NPOV goal impossible. Instead of collaborating

on editing neutral articles, some users regard Wikipedia as a way to

advertise or promote their products. Such advertising and promotion

is strictly forbidden in Wikipedia. Currently all the deletions of these

advertising articles are done by Wikipedia administrators manually.

Administrators have to browse the suspected articles themselves and

decide whether they are advertising or promotion by their own

experiences. This may requires a lot of time and hard work regarding

the relatively small number of administrators comparing to the large

amount of advertising and promotion articles in Wikipedia. Let alone

administrators may make wrong decisions deleting those articles

which are actually just states of fact which leads to even worse

situation. So Wikipedia’s current advertising and promotion article

deletion procedure is time consuming and inefficient. An automatic

and more efficient way of deleting advertising articles in Wikipedia

is needed.

In order to solve this problem, we propose a learning method to

automatically detect advertising and promotion articles in Wikipedia.

Most of the former researches on Wikipedia spam or vandalism

detection are feature-based learning approaches which analyze user’s

behavior to do judgment. For example, Potthast et al. [10] used

machine learning in combination with manually crafted rules to

classify Wikipedia spam edits. Itakura et al. [4] employed a

compression model-based algorithm to detect spam editing behaviors

in Wikipedia. Lam et al. [5] proposed a machine learning approach to

implement spam detection by extracting seven features from each

email and using supervised learning to learn the behaviors of

spammers. However, our method is pure text-based which means that

neither edit history nor user behavior is needed. In this way, we can

avoid the ad-hoc problem indicating that we do not need to create

rules to extract particular features from the data set which may only

works well in special environment. Instead our method not only can

be applied in Wikipedia study but also can be extended to other big

social networks analysis as long as large text corpus is available.

We first implemented an unsupervised deep learning method to

achieve fixed-length vector representation for each unique word in

the corpus. We use the same deep learning structure as described in

Mikolov et al.’s paper [8, 9]. We then calculate the document vector

by taking either the mean of word vectors or tf-idf weighted average.

Then we apply a supervised SVM classifier to train the model and

use the model to detect advertising and promotion articles in the test

set. We also try directly getting document vector from texts by

modifying the deep learning structure to a new form as introduced by

Mikolov [6]. Finally we improve the method by using LDA words in

topic distributions as the initial word vectors. Our method showed

better performance on several datasets than bag-of-words models in

both precision and recall measurements.

The rest of this paper is organized as follows: In Section 2 we

survey related works, including vector space model, Word to Vector

model and Document to Vector model. In Section 3 we discuss how

our advertising detection system works in details, including

pre-processing of the corpus, learning the document vector for each

document using Word2Vec, training different classifiers and

detection of advertising articles on the test set. Section 4 shows

experiments and results, which compares two methods: Bag of

Words and Word to Vector, and analyze performance of these two

methods. Section 5 is the conclusion and future work.

2 Related work

2.1 Vector Space Model

Vector space model or term vector model is an algebraic model for

representing text documents (and any objects, in general)

as vectors of identifiers, such as, for example, index terms. It is

widely used in natural language processing, information retrieval,

indexing and relevancy rankings. Traditionally a word is represented

by a one-hot vector where the vector size equals the vocabulary size

and the position represents word index is 1 while the others are 0s.

However, the one-hot word vector model suffers two main problems:

One is that as the size of the data grows the vocabulary size becomes

so large, yielding to the curse of dimensionality (Bengio et al.

2003[1]) and the one is that this one-hot representation captures no

syntactic or semantic regularities of words since the distances

between any two words are the same in the vector space. Then came

out the distributed representation of words [1] and it has achieved

significant success in the recent past. Instead of a one-hot vector

representation, a word is represented by a fixed length (usually

several hundreds) real-valued vector. The distributional hypothesis

states that words in similar contexts have similar meanings [8].

Intuitively, it means that words who share many same contexts will

be similar to each other in the vector space. The distributed

representation does not face the-curse-of-dimensionality problem

because the length of the vector size is not proportional compared to

the data set growth.

2.2 Word2Vec

Word2Vec is an open source project released by Google which

achieved state of the art performances in many natural language

processing tasks. It takes a large text corpus as input and outputs the

word vectors for each unique word. These word vectors can be

subsequently used in many natural language processing and machine

learning applications such as classification, clustering and other

further research. In Mikolov et al.’s word2vec paper [8], they carried

out two neural network models for representation learning:

Continuous Bag-of-Words Model (CBOW) and Continuous

Skip-gram Model. Figure 1 shows the structure of these two models.

CBOW uses the word vectors of adjacent words in the range of a

surrounding window (e.g. 3 previous words and 3 latter words) to

predict the word vector of the central word, while on the contrary

Skip-gram uses the central word’s vector to predict the surrounding

words. As for neural network’s optimization and back propagation

part, Word2Vec adopts hierarchical softmax based on CBOW and the

negative sampling method based on Skip-gram [3]. Hierarchical

Softmax was first introduced by Morin and Bengio [1] in the neural

network language models. It uses a binary tree (a Huffman tree in

Word2Vec) to represent neural network’s output layer where words

are placed as its leaves and nodes represent relative probabilities. The

main advantage of this method is that we only need log2 (W) nodes

along a path to obtain probability distribution instead of W nodes in

the standard neural network models. Negative Sampling is a

simplified version of Noise Contrastive Estimation (NCE) method [2]

which reduces the language model estimation problem to the

problem of estimating the parameters of a probabilistic binary

classifier and differentiates data from noise. The main difference is

that NCE needs both samples and the numerical probabilities of the

noise distribution, while Negative Sampling uses only samples.

 Figure 1 CBOW and Skip-gram model structure

By applying the CBOW and Skip-gram neural network structure,

we can achieve very promising results. Similar words will be closer

to each other in the vector space after training [11]. For example, if

we search for the most similar word to 'France', by just calculating

the distances between words in the vector space, we would probably

obtain 'Spain', 'Belgium', 'Netherlands', and so on. It was also shown

that the word vectors captured many linguistic regularities, for

example vector operations: vector ('Paris') – vector ('France') +

vector ('Italy') results in a vector that is very close to vector ('Rome'),

and vector ('king') – vector ('man') + vector ('woman') is close

to vector ('queen').

2.3 Doc2Vec

Doc2Vec (also known as paragraph2vec or sentence embedding) is a

modified version of Word2Vec algorithm which carries

out unsupervised learning to obtain continuous representations for

larger blocks of texts, such as sentences, paragraphs or entire

documents. It was first described in Mikolov’s latter paper [6]. Figure

2 shows the structure improvement from Word2Vec to

Doc2Vec. More formally, the only change in this model compared

to the word vector framework is adding all the document vectors of

same length to the word vectors into the binary tree as additional

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Index_(search_engine)

leaves so that we can obtain the document vectors optimized just as

the word vectors. In the word2vec architecture, the two algorithm

names were Continuous Bag of Words and Skip-gram. In the

doc2vec architecture, the corresponding algorithms are Distributed

memory and Distributed Bag of Words. A sliding window goes

through the document to sample fixed-length contexts for each

learning process. The document vector is shared if the texts sampled

were sampled from same document but not shared across different

documents. However, the word vector is shared across all the

documents meaning that there is only one word vector representation

for each unique word in the whole corpus.

Figure 2 Word2Vec to Doc2Vec

3 Implement of the detection method

3.1 Word Vectors

To begin with, we pre-process the corpus, where all the stop words in

articles like ‘the’, ‘a’, ‘in’ etc. are removed, and words with total

counts less than 3 times in the corpus are also deleted because these

words appear only a few times that are negligible to the whole

corpus.

Then Word2Vec algorithm is used to obtain the word vector for

each unique word in the corpus. We implement the CBOW plus

Hierarchical Softmax model described in the Word2Vec paper [8]

which uses 2N surrounding words (N ahead and N behind) to predict

the middle word and builds up a Huffman tree to represent

probability distribution of words in the corpus. The model structure

is shown in Figure 3.

Figure 3 Detailed model structure

The basic process of this algorithm is described as below. First,

count the word occurrences for each unique word in the whole

corpus and build up the Huffman tree according to the word counts.

Then treat the whole corpus as a very long word sequence and use a

sliding window to go through the sequence step by step. As the

sliding window returns 2N+1 word (central word w and 2N

surrounding words) each time, use equations (1) to update the

auxiliary vectors on the path 𝑝𝑤(that is 𝜃𝑛
𝑤) and use equation (2) to

update the vectors representing the surrounding words:

𝜃𝑛
𝑤(𝑖+1) = 𝜃𝑛

𝑤(𝑖) + 𝜂[1 − 𝑑𝑛
𝑤 − 𝜎(𝑋𝑤

𝑇 𝜃𝑛
𝑤)]𝑋𝑤

𝑇
 (1)

𝑉(𝑤𝑗)(𝑖+1) = 𝑉(𝑤𝑗)(𝑖) + 𝜂 ∑ [1 − 𝑑𝑛
𝑤 − 𝜎(𝑋𝑤

𝑇 𝜃𝑛
𝑤)]𝜃𝑛

𝑤𝑙𝑤−1
𝑛=1 (2)

where 𝜃𝑛
𝑤 is the auxiliary weight vectors stored at each

non-leaf node. 𝑑𝑛
𝑤 is 1 if the path is from father node to its

left node and 0 otherwise. Xw is the summation of input word

vector while 𝜂 is the learning rate.

3.2 Document vectors

Turning word vectors into document vectors, we try several methods.

To begin with, we simply calculate the average vector for all the

words in a particular document and regard the average vector as the

document vector for this particular document:

𝑉(𝐷𝑛) =
1

𝑙𝐷𝑛
∑ 𝑉(𝑤)𝑤𝜖𝐷𝑛

 (3)

where 𝐷𝑛 is the nth document in the corpus, 𝑙𝐷𝑛 is the length of

𝐷𝑛 and 𝑤 represents each word in 𝐷𝑛.

The inspiration behind this method is simple: every word vector

contributes some values to the document vector. Then naturally, we

consider that not every word is equally important, it is admitted that

some words are more important in a particular document.

Considering evaluating word importance in documents, tf-idf [14] is

the first choice. So the second method we use is a weighted average

based on tf-idf value of the words:

𝑉(𝐷𝑛) = ∑ 𝑡(𝑤) ∙ 𝑉(𝑤)𝑤𝜖𝐷𝑛
 (4)

where 𝑡(𝑤) is the tf-idf value for word w.

Instead of achieving document vector from word vectors, Doc2Vec

is another way to maintain document vector directly by training a

modified model. We implement the same structure as Doc2Vec [6].

In the initialize period, each document is regarded as a special ‘word’

and its document length is regarded as ‘word counts’ when building

the corresponding Huffman tree. During the iteration process, an

extra path from the root of the tree to the corresponding document

leaf node is established. Addition to update the word vectors,

document vectors (in fact the special ‘word’ vector) is also updated in

the same way:

𝑉(𝐷𝑗)(𝑖+1) = 𝑉(𝐷𝑗)(𝑖) + 𝜂 ∑ [1 − 𝑑𝑛
𝑤 − 𝜎(𝑋𝑤

𝑇 𝜃𝑛
𝑤)]𝜃𝑛

𝑤𝑙𝑤−1
𝑛=1 (15)

We can explain this as through the iteration process, each of the 2N

word vectors in this document has some influence on this document’s

document vector. The document vector is trained along with the word

vectors thus should perform better for document representation.

Several researchers have showed that Word2Vec and Doc2Vec

models performed very well on the syntactic tasks, but poorly on the

semantic ones [7, 12]. So we also implement a model using results

from Latent Dirichlet Allocation (LDA) as the pre-trained word

vectors, since LDA is good at digging up latent semantic relations

between documents and words. We collect one word’s distribution

among all the topics as the fixed length word vector for that word.

We only update the document vector through the learning process

and the LDA word vectors are fixed. After learning the document

vectors for all the documents in the corpus, we use them as input for

a supervised classifier.

3.3 Classifiers

The positive and negative documents are divided into two parts: one

for training and another for testing. We use several standard

classifiers to train and test our method. K Nearest neighbors (KNN)

is the first classifier we use. There are two types of KNN

clustering-based classifying algorithms: 1) Find all the neighbors

within a certain distance or 2) find K nearest neighbors. We adopt the

second method. Document vectors are spread in the 100 dimension

space. For each test document, we find its K (in our case, 10) nearest

neighbors in the vector space and give the test document the same

label as the majority of the K documents. Then we try to use a

decision tree as the classifier. The decision tree is a simple but

effective learning method which takes specified attributes variables

and outputs target values. In our model, the input variables are

document vectors while the target variable can take a binary value (1

for advertising articles and 0 for non-advertising ones) so that the

decision tree becomes a classification tree. Further, we implement a

random forest classifier. Random forest is an ensemble

learning method for classification which constructs multiple decision

trees and combines the outputs from individual trees to achieve a

better result. To classify a test document in the form of an input

vector, put the vector down each of the decision trees in the forest.

Each decision tree gives a classification result called the ‘votes’ for

that class and we chooses the class with most ‘votes’ to be our

classifying result. Finally, we use Support Vector Machine (SVM)

classifier to test our method. SVM is one of the most successful

supervised learning models that analyze data and recognize

patterns. It filters the data so that only limited ‘support’ document

vectors are considered when calculating a classifying hyper plane.

Choosing kernel functions are what matters in SVM models. Due to

the simplicity of our data set right now, we find linear kernel for

SVM classifier already works well.

4 Experiments and results

4.1 Datasets

We tested our method on three data sets, Wikipedia user page dataset

and Wikipedia simulate ads injection dataset created by ourselves

and another one is Farm Ads Data Set collected by Mesterharm et al

[13].

Table 1 Basic statistics of datasets

Wikipedia user page dataset

Article Number 1893

Vocabulary size 26329

Average length 347 words

Positive articles Negative articles

1470 432

Farm Ads dataset

Article Number 4143

Vocabulary size 26839

Average length 427 words

Positive articles Negative articles

2210 1933

Wikipedia simulate ads injection dataset

Article Number 2470

Vocabulary size 95240

Average length 954 words

Positive articles Negative articles

1470 1000

The Wikipedia user page dataset is labeled as two classes, one

positive class represents the advertising articles and the other

negative class represents the non-ad articles. In the Wikipedia logs,

all deletion logs of advertising articles are labeled with a sign: ‘G11:

Unambiguous advertising or promotion’. We targeted at the

Wikipedia user pages, since advertising user pages differ

significantly from normal user pages, thus are relatively easy to

recognize. From 2014 May to August, we collected 1470 deleted user

pages from Google Cache as our positive documents in the dataset.

As turn for the negative documents, we collected 423 Wikipedia

administrators’ user pages assuming that the administrators’ user

pages are of good qualities and satisfying Wikipedia’s neutral rules.

An example of two representative deleted advertising article (the

upper part) and non-advertising article (the bottom part) are shown in

Figure 4.

Figure 4 Examples of Wikipedia user page articles

The Wikipedia simulate ads injection dataset is created to simulate

the injection of advertise into Wikipedia articles. We use 1470

deleted advertising articles as injection ads to find articles in the

related areas in Wikipedia and add the advertising articles at the end

of the related articles. This is based on the assumption that some

advertisers will find Wikipedia articles related to their ads and

modify the article page inserting their ads. Aiming to detect such

kind of advertising, we create 1470 simulated advertising articles as

positive samples (ad) and randomly pick 1000 Wikipedia articles as

negative samples (non-ad). An example of ads injected article is

shown in Figure 5.

Figure 5 Wikipedia Ads injection dataset example article

The Farm Ads data set [13] was collected from text ads found on

twelve websites that deal with various farm animal related topics.

Information from the ad creative and the ad landing page is included.

The binary labels (1 for accepted ads and -1 for rejected ads) are

based on whether or not the content owner approves of the ad. An

example of two representative ad article (the upper part) and non-ad

article (the bottom part) after stemming are shown in Figure 6.

Figure 6 Farm Ads dataset example articles

4.2 Results and Evaluation

Experiments were conducted on the Wikipedia user page dataset and

Farm Ads dataset. Different classifiers are used to test our method.

As the Farm Ads dataset is more balanced, more experiments are

done on it. All the experiments are done on an Ubuntu 32bit system

with 2GB memory based on VMware Workstation.

Table 2 shows the experiment results on Wikipedia user page

dataset. We used 1000 positive and 1000 negative articles to train the

model and use the rest articles as the test set. BOW represents for

Bag of Words model such that each document is coded into a fixed

length (as for this Wikipedia dataset, 26329) vector and if one

particular word exists in this document, the corresponding position in

this document’s vector is 1, otherwise 0. W2V (mean) means that we

first train the model to obtain word vectors for each unique word in

the corpus. Then we take average of all the word vectors of one

document as its document vector. As we can see, simple BOW model

already achieved very good results on this dataset. The W2V (mean)

method performed better on the KNN classifier and achieved the

same results on the Random Forest classifier. But the result became

on the Decision Tree and SVM classifiers. This is due to the low

similarity between advertising articles and non-advertising articles.

Since this dataset are limited to Wikipedia user pages, frequent words

in the positive documents rarely appear in the negative documents.

This makes Bag of Words perfect for handling the classification task

on these documents. But the BOW model suffers from the curse of

dimension problem. As the dataset gradually grows, the size of the

document vectors becomes larger, making the computation process

really expensive. However, W2V does not have such a scalability

problem so we can expect it to be better than the BOW model when

we deal with larger and more complex dataset.

Table 2 Wikipedia user page dataset experiment results

Method Precision Recall F1-score

BOW + KNN 0.94 0.93 0.93

BOW + Decision Tree 0.96 0.96 0.96

BOW + Random Forest 0.93 0.92 0.92

BOW + SVM 0.96 0.96 0.96

W2V (mean) + KNN 0.96 0.96 0.96

W2V (mean) + Decision Tree 0.90 0.90 0.90

W2V (mean)+ Random Forest 0.93 0.92 0.92

W2V (mean)+ SVM 0.81 0.82 0.81

Table 3 shows the experiment results on Wikipedia ads injection

dataset. We used 1000 positive and 500 negative articles to train the

model and use the rest articles as the test set. As we can see, simple

BOW model works worse in this dataset comparing to the previous

Wikipedia user page dataset. This is due to the increased word

appearance complexity of the ads injected article as the injected ads

may contain same set of words appearing in the related article which

makes BOW model hard to distinguish between ads and non-ads. The

W2V model achieved equivalent results which show the

effectiveness of deep learning model. When applying the D2V model,

we use pre-trained word vectors1 getting from Wikipedia 2014 and

Gigaword5 dataset (around 6 billion words) since deep learning

method couldn’t achieve relatively good results with only several

million words. The results with D2V model clearly outperform the

BOW model.

Table 3 Wikipedia ads injection dataset experiment results

Method Precision Recall F1-score

BOW + SVM 0.83 0.83 0.83

W2V (mean) + SVM 0.82 0.82 0.82

D2V (pre-trained) + SVM 0.86 0.86 0.86

Table 4 shows the experiment results on the Farm Ads dataset. We

used 1000 positive and 1000 negative articles to train the model and

use the rest articles as the test set. BOW represents for Bag of Words

model and W2V (mean) means that we used average word vectors to

represent document vectors. D2V stands for the Document to Vector

model which directly learns the document vectors along with the

word vectors. D2V + LDA means that we used word distributions

among topics from training a 1000 pass LDA model as the word

vectors in the Doc2Vec model and fix the word vectors during the

D2V training process. From the results of Table 2, we can clearly tell

that our method is better than the baseline BOW model. Compared to

the Wikipedia user page dataset, the Farm Ads dataset is much more

complex. Same words can appear both in the ad and nonad articles,

making the simple BOW model inefficient. Surprisingly, the tf-idf

weighted strategy to obtain document vectors from word vectors did

not work well. The reason behind this is that when training the word

vector, the term frequency information has already been taken into

consider (using word counts to create the Huffman tree). So if we

apply tf-idf weights again, it is like using the term frequency twice

thus creating some imbalance leading to bad results. The D2V

method shows no obvious improvements on the results but works

better on the precision part. If we care more about the precision of

the classifier, we should adopt the D2V structure. Adding LDA word

distributions makes the results a little worse. One possible reason is

that W2V training process is like clustering syntactic similar words

together, while LDA word distributions are placing semantic similar

words together in the vector space. Comparing to random

initialization, this may even larger the distance between syntactic

similar words thus making the result worse.

Table 4 Farm Ads dataset experiment results

Method Precision Recall F1-score

BOW + Decision Tree 0.81 0.81 0.81

BOW + Random Forest 0.84 0.84 0.84

1 http://nlp.stanford.edu/projects/glove/

BOW + SVM 0.82 0.81 0.82

W2V (mean) + KNN 0.85 0.84 0.84

W2V (mean) + Decision Tree 0.80 0.80 0.80

W2V (mean)+ Random Forest 0.84 0.84 0.84

W2V (mean)+ SVM 0.84 0.83 0.84

W2V (tf-idf) + SVM 0.75 0.46 0.32

D2V + SVM 0.85 0.82 0.82

D2V + LDA + SVM 0.82 0.82 0.82

5 Conclusion and future work

In this paper, we described a method to automatically detect

advertising articles in Wikipedia. We first implement a deep learning

method to either directly obtain document vectors or from the learned

word vectors. Then the document vectors in the training dataset are

used to train a supervised classifier which does the classification for

the test dataset in the next step. Experiment results based on two

dataset showed that our method achieves more than 0.8 precision and

recall scores and works better than the baseline bag of words model.

In the future, more work need to be done. We plan to extend our

dataset to the whole Wikipedia range, detect all the potential

advertising articles using our method and check the performance by

keeping track of the Wikipedia deletion logs. We also plan to try

other methods to improve the initial part of the Word2Vec model

which now takes random values. Applying new classifiers and new

models are also under our considerations.

References

[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian

Jauvin: A Neural Probabilistic Language Model, Journal of

Machine Learning Research 3 (2003) , Pages 1137–1155

(2003)

[2] Chris Dyer: Notes on Noise Contrastive Estimation and

Negative Sampling, arXiv:1410.8251 [cs.LG] (2014)

[3] Yoav Goldberg, Omer Levy: word2vec Explained: Deriving

Mikolov et al.’s Negative-Sampling Word-Embedding Method

[4] Kelly Y. Itakura, Charles L.A. Clarke: Using Dynamic Markov

Compression to Detect Vandalism in the Wikipedia. SIGIR

'09 Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information

retrieval, Pages 822-823 (2009)

[5] Ho-yu Lam, Dit-yan Yeung: A learning approach to spam

detection based on social networks. Proceedings of the fourth

conference on email and anti-spam (2007)

[6] Quoc Le, Tomas Mikolov: Distributed Representations of

Sentences and Documents, JMLR '14 Proceedings of the 31st

International Conference on Machine Learning, W&CP volume

32 (2014)

[7] Yang Liu, Zhiyuan Liu1, Tat-Seng Chua, Maosong Sun:

Topical Word Embeddings, AAAI '15 Association for the

http://arxiv.org/abs/1410.8251

Advancement of Artificial (2015)

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,

Jeffrey Dean: Distributed Representations of Words and

Phrases and their Compositionality, NIPS '13, Pages 3111–3119

(2013)

[9] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean:

Efficient Estimation of Word Representations in Vector Space,

ICLR '13 Proceedings of Workshop at International Conference

on Learning Representations (2013)

[10] Martin Potthast, Benno Stein, Robert Gerling: Automatic

Vandalism Detection in Wikipedia, ECIR '08 Proceedings of

the 30th European Conference on IR Research (2008)

[11] Lin Qiu, Yong Cao, Zaiqing Nie, Yong Rui: Learning Word

Representation Considering Proximity and Ambiguity, AAAI

'14 Association for the Advancement of Artificial (2014)

[12] Radim Řehůřek: Making sense of word2vec,

http://radimrehurek.com/2014/12/making-sense-of-word2vec/

[13] Chris Mesterharm, Michael J. Pazzani: Active Learning using

On-line Algorithms, KDD ’11 Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery

and data mining, Pages 850-858, 2011

[14] Karen Spärck Jones: A statistical interpretation of term

specificity and its application in retrieval, Document retrieval

systems, Pages 132-142

http://link.springer.com/search?facet-author=%22Martin+Potthast%22
http://link.springer.com/search?facet-author=%22Benno+Stein%22
http://link.springer.com/search?facet-author=%22Robert+Gerling%22
http://radimrehurek.com/

