
DEIM Forum 2016 D7-1

A Branch-and-Bound Method for Group Reverse Queries

Yuyang DONG†, Hanxiong CHEN†, Katazuka FURUSE†, and Hiroyuki KITAGAWA†

† Department of Computer Science, Information and systems, University of Tsukuba,

Ibaraki 305-8577, Japan

E-mail: †tou@dblab.is.tsukuba.ac.jp, ††{chx,furuse,kitagawa}@cs.tsukuba.ac.jp

Abstract Recently, reverse ranks queries attracted significant interests in research. They applied for real-life

applications such as market analysis and product placement. One of them, Reverse k-ranks queries returns user

preferences that treat a given product be more favorite than others. Reverse k-ranks queries can help manufactur-

ers find potential buyers even for an unpopular product. In marketing, manufacturers also willing to offer several

products for sale as one combined product. Just like cable television industry often bundles channels and fast food

industry combines separate food items into a complete meal. This kind of product bundling can help manufacturers

extend market power even with imperfectly competitive products. Unfortunately, Reverse k-ranks queries and other

reverse ranks queries can only for one product. To address this limitation, we propose a group reverse k-ranks

queries to find k most potential user preference for a set of products. To solve group reverse k-ranks more efficiently,

we propose a Tree pruning method (TPM) and a Branch-and-Bound pruning method (BPM). Theoretical analysis

and experimental results show the efficacy of proposed methods.

Key words group reverse queries, branch-and-bound, product bundling

1. INTRODUCTION

Top-k queries and reverse k-ranks queries are two different

kinds of view-model. Top-k queries is a user-view model that

support to consumers by obtaining the best k products for

a user preference. On the other hand, reverse k-ranks [12]

queries charge to manufactures to discover the potential con-

sumers by retrieving the most appropriate user preference

than others. So it is a manufacture view mode. From the

perspective of manufacturers, reverse k-ranks can be a tool

for identifying the customers and estimate the marketing of

products.

Figure 1 shows the example of reverse k-ranks query when

k = 1. There are 5 different cell phones (p1 ∼ p5) and the

scores of ”smart” and the ”rating”, are recorded in table (a).

Two users preference (Tom and Jerry) showed in table (b);

these preferences consist of the weights for each attribute.

The scores of a cell phone based on a user preference is the

result of the inner product between the cell phone attributes

vector and user preference vector. Without loss of generality,

in this paper, minimum scores will be preferable. The result

of Reverse 1-ranks queries showed at the last cells in Table

(b). For example, Tom thinks cell phone p1 is the 3rd best

phone, Jerry thinks it is the 5th. To manufacture, Tom has

more possibility than Jerry to buy cell phone p1, so reverse

1-rank query returns Tom as the result.

Figure 1: The example of reverse 1-rank queries.

1. 1 motivation

In marketing, manufacturers also do sell with Product

Bundling. Product Bundling is offering several products for

sale as one combined product. It is a common feature in

many imperfectly competitive product markets. For exam-

ples, Microsoft Co., Ltd include a word processor, spread-

sheet, presentation program and other useful software into a

single Office suite. The cable television industry often bun-

dles various channels into a single tier to expand channel

market. Manufacturers of Video games also willing to group

a popular game with other games with the same theme, they

can obtain more benefits by selling them together.

As the Product Bundling is an important approach for

Figure 2: The example of group reverse 1-rank queries.

sale, it is significant to help manufacturers find the most

probable buyers for their bundled products. Unfortunately,

the reverse k-ranks query and other kinds of reverse ranking

queries are all designed for just one product. To solve this

limitation, we propose a new query definition that finds k

customers with smallest group rank values, where the rank

of the group defined as the sum of each product’s rank. We

name this query as group reverse k-rank queries (GR-k in

abbreviation).

Figure 2 shows the example of GR-1 queries. There are

3 groups of Bundling Product sale, {p1, p2}, {p2, p3} and

{p4, p5}. The group rank of {p1, p2} is 5 by Tom’s prefer-

ence and is 6 by Jerry’s. So GR-1 query return Tom as the

result.

1. 2 Contribution

The contribution of this paper is:

• To address these ”one product” limitation from re-

verse k-ranks queries. We define a new ranking query named

group reverse k-ranks query (GR-k) that return best k user

preferences to match a set of products. The GR-k can sup-

port to Product Bundling.

• We propose the solutions to process GR-k query effi-

ciently. They are tree pruning method (TPM) and branch-

and-bound pruning method (BPM).

• We employ the experiments both on factual data and

synthetic data. The experimental results evaluate the effi-

ciency of the proposed methods.

2. RELATED WORK

User-view model queries, top-k queries. The Onion tech-

nique [1] precomputes and stores the convex hulls of data

points in layers like an onion. The evaluation of a linear top-

k query is accomplished by starting from the outmost and

processing these layers inward.

Reverse top-k queries [5, 6] have been proposed for evalu-

ating the impact of a potential product in the market, based

on preferences of users that treat this product as one of their

top-k products. There are also various applications of re-

verse top-k queries, [9] identifying the most influential prod-

ucts, [8] monitoring the popularity of locations based on user

mobility. [7] propose a branch-and-bound algorithm for re-

verse top-k queries.

However, in order to answer reverse query for some less

popular objects, [12] proposed reverse k-ranks queries, which

finds for a given object the top-k user preferences whose rank

for the object is highest among all users.

Some other related researches on reverse query are listed

in the following. The essential difference is that they treat

one data set, while in reverse rank queries, there are two

data sets. Given a data point and aim at finding the queries

that have this data point in their result set. Contrast with

the nearest neighbour search, [3] proposed a reverse nearest

neighbour (RNN) queries. Opposite to RNN, [11] proposed

reverse furthest neighbour (RFN) queries to find the points

who deem query point as their furthest neighbour. [10] clas-

sifies RKNN (reverse k nearest neighbour) into bichromatic

and monochromatic queries. This make RKNN be similar

with reverse rank queries that obtaining users that prefer

given product as favorite, but they are different queries.

RKNN evaluates relative Lp distance in one euclid space with

two points. However, reverse rank queries focus on the ab-

solute ranking among all objects, and scores are found by

doing inner product (weighted sum) with two different vec-

tors, user preference and object, and they from different data

space. The reverse skyline query uses the advantages of prod-

ucts to find the potential customers based on the dominance

of the competitors products [2, 4].

3. PROBLEM STATMENT

There are a data set P and a data set W all in d di-

mension. Each product p ∈ P is a vector which con-

tains d non-negative scoring attribute. p can represented as

p = (p[1], p[2], ..., p[d]), and p[i] is an attribute value of i’th

dimension. The user preference w ∈ W is also a vector, and

w[i] corresponds to p[i] so that evaluate the i’th attribute of

p, where w[i] >= 0 and
∑d

i=1 = 1.

The score of p on w is defined by doing inner product

as fw(p) =
∑d

i=1 w[i] · p[i]. Without loss of generality, we

consider smaller score values are preferable that same with

related research.

The definitions of reverse k-ranks queries [12] are as follow.

［Definition 1］ (reverse k-ranks query). Given a point set P ,

a weighting vector set W , a positive integer k, and a query

point q. R-kRanks query returns a set S, S ⊂ P , |S| = k,

such that ∀wi ∈ S, ∀wj ∈ (W−S), rank(wi, q) <= rank(wj , q)

holds. Where rank(w, q) = |R|, where |R| is the cardinality

of R, a subset of P . ∀pi ∈ R, we have f(w, pi) < f(w, q) and

∀pj ∈ (P − S), f(w, pj) >= f(w, q).

The group rank is defined by the sum of each rank of q,

so

［Definition 2］ (gRank(w,Q)) Given a point set P , a

weighting vector w, and a query points set Q, the group

rank of Q for w is gRank(w,Q) =
∑|Q|

i=1 rank(w, qi), where

Figure 3: The filtering part (blue) of TPM algorithm with

2-dimension data.

qi ∈ Q.

The definition of group reverse k-ranks queries is:

［Definition 3］ (group reverse k-ranks query). Given a point

set P , a weighting vector set W , a positive integer k, and

a query point set Q. GR-kRanks query returns a set S,

S ⊂ P , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),

gRank(wi, Q) <= gRank(wj , Q) holds.

4. Tree Pruning Method

Algorithm 1 TraRtreeP

Require: P,w,Q,minRank

Ensure: include: rnk; discard: -1;

1: rnk ⇐ 0

2: heapP.enqueue(RtreeP.Root())

3: while heapP.isNotEmpty() do

4: e ⇐ heapP.dequeue()

5: for each ei ∈ e do

6: if f(w, ei.up) < f(w,Q.down) then

7: rnk ⇐ rnk + ei.size() ∗ |Q|
8: if rnk >= minRank then

9: return -1

10: else if f(w, ei.down) > f(w,Q.up) then

11: coutinue

12: else

13: if ei is a leaf node then

14: for each q ∈ Q do

15: if f(w, q) > f(w, ei) then

16: rnk ++

17: if rnk >= minRank then

18: return -1

19: else

20: heapP.enqueue(ei)

21: return rnk

Processing group reverse k-ranks queries with the big data

set is a challenge since the naive algorithm needs to evalu-

ate every pair of product and user preference. It will cost

vast amounts of computation with a large number of data

set of products and user preferences. To boost efficiency, we

index the products data set with R-tree for grouping similar

products and use upper and lower bounders of MBRs (Min-

imum Bounding Rectangles) to save computing. We call it

tree pruning method (TPM). The Geometry view of TPM

algorithm is showed in Figure 3. The blue shadow part, form

by dash line and space border, below Q.down or above Q.up

is the part that TPM algorithm can filter.

Base on the feature of MBRs in R-tree, we can use the two

facts below to pruning unnecessary MBRs entirely.

Fact 1. For a query point set Q, a weighting vector w, a

MBR e of R-tree. If f(w, e.up) < f(w,Q.down), ∀p ∈ e, ∀q ∈
Q, it holds f(w, q) < f(w, p).

Fact 2. For a query point set Q, a weighting vector w, a

MBR e of R-tree. If f(w, e.down) < f(w,Q.up), ∀p ∈ e, ∀q ∈
Q, it holds f(w, q) > f(w, p).

Algorithm 2 Tree Pruning Method (TPM)

Require: P,W,Q

Ensure: result set heap

1: heap ⇐ ∅
2: for each w ∈ {first k element in W} do

3: heap.insert(w, gRank(w,Q))

4: minRank ⇐ heap’s last rank.

5: for each w ∈ W− {first k element in W} do

6: rnk ⇐ TraRtreeP (P,w,Q,minRank)

7: if rnk |= −1 then

8: heap.insert(w, rnk)

9: minRank ⇐ heap’s last rank.

10: return heap

4. 1 TraRtreeP algorithm

When given data set P , a weighting vector w, a query

point set Q and a positive integer k. The TraRtreeP al-

gorithm can return whether the group rank of Q is smaller

than the given minRank or not. As the algorithm 1 shows,

TraRtreeP algorithm use R-tree to prune similar points in

a group (MBR). In this algorithm, we use counter rnk to

counter the group rank of Q (Line 1). Then we recursively

check the MBRs in products R-tree from the root (Line 2).

If the upper bounder score of current entry ei smaller than

query set Q’s lower bound score, the counter rnk increased

by ei.size() ∗ Q (Line 6-7). When rnk get greater than

minRank, it means this Q should not rank in minRank

on w and the algorithm return -1 to terminate (Line 8-9). If

lower bound score of current entry greater than Q’s upper

bound score, we don’t need to check any child in this entry

and just skip this entry (Line 10-11). Other situation, when

checking a leaf node of entries, we compute the score of each

q ∈ Q on w and increase rnk (Line 13-18). If the algorithm

does not return in the recursion, we return rnk as the rank

Figure 4: The filtering part (blue) of BPM algorithm with

2-dimension data.

of this Q based on the weighting vector w.

4. 2 TPM algorithm.

In TPM algorithm, we first initialize a heap with first k

weighting vectors and their ranks (Line 1-3). Then for oth-

ers weighting vectors, we call Algorithm 1 to check the group

rank of the query set Q (Line 6). If the current w can make

Q’s rank better than the last rank in heap, this w will be

inserted into heap with its rank. The heap will auto-update

itself by removing the last element and insert a new w and

a group rank, and then the heap sort itself by the order of

rank (Line 8). After update heap, minRank also updated by

the last rank in heap (Line 9). At last, the algorithm returns

heap as the result of group reverse k-ranks query.

5. Branch and Bound Pruning Method

TPM use R-tree to management the similar products and

avoid computing by MBRs. However, there is a limitation

that TPM evaluated each user preference one by one, and it

will reduce the efficiency when encountering a large weight

vectors data set. This limitation inspires us to remove re-

dundant computing by grouping similar weighting vectors.

We propose the branch-and-bound pruning method (BPM).

The Figure 4 shows the filtering property of BPM algorithm.

We denote the R-tree for products and weighting vectors as

RtreeP and RtreeW respectively.

Based on the feature of MBRs in RtreeP and RtreeW ,

there also have two facts in the following to pruning unnec-

essary MBRs entirely.

Fact 3. For a query point set Q, a MBR ep of R-

treeP and a MBR We of RtreeW . If f(We.up, ep.up) <

f(We.down,Q.down), then for ∀p ∈ ep,∀w ∈ We, ∀q ∈ Q, it

holds f(w, q) < f(w, p).

Fact 4. For a query point set Q, a MBR e of R-treeP

and a MBR We of RtreeW . If f(We.down, ep.down) <

f(We.up,Q.up), then for ∀p ∈ ep, ∀w ∈ We, ∀q ∈ Q, it holds

f(w, q) > f(w, p).

5. 1 Traverse RtreeP with We

For a MBR of weighting vectors from R-treeW, denoted as

We, Algorithm 3 helps to check these weighting vectors with

Q and minRank. The algorithm returns 1 if all w ∈ We

make Q rank in minRank, and returns -1 if none of w ∈ We

make Q rank in minRank. When some of We may let Q

rank better than minRank, the algorithm returns 0.

The difference with TPM algorithm stated in Section 4.,

BPM use two R-tree to index weighting vectors and prod-

ucts. Based on the methodology of branch-and-bound, BPM

can prune both weighting vectors and products.

5. 2 BPM algorithm

Algorithm 3 TraRtreeP++

Require: P,We, Q,minRank

Ensure: include: 1; discard: -1; 0: uncertain

1: rnk ⇐ 0, rnkUp ⇐ 0

2: heapP.enqueue(RtreeP.root())

3: while heapP.isNotEmpty() do

4: e ⇐ heapP.dequeue()

5: for each ei ⊂ e do

6: if f(We.up,Q.up) > f(We.down, ei.down) then

7: if f(We.up, ei.up) < f(We.down,Q.down) then

8: rnk ⇐ rnk + ei.size() ∗ |Q|
9: else if f(We.down, ei.down) > f(We.up,Q.up) then

10: coutinue

11: else

12: if ei is a leaf node of RtreeP then

13: for each q ∈ Q do

14: if f(We.down, q) > f(We.up, ei) then

15: rnk ++

16: if rnk >= minRank then

17: return -1

18: if f(We.up, q) > f(We.up, ei) then

19: rnkUp++

20: else

21: heapP.enqueue(ei)

22: if rnk + rnkUp <= minRank then

23: return 1

24: else

25: return 0

In Algorithm 4, we start from the root of RtreeW and

call Algorithm 3 to check the We (Line 14). If the flag is

0, we add all sub MBRs into heapW for next loop (Line 9-

10). If the flag is 1, it means every weighting vector in We

make Q rank better than minRank, so we call Algorithm 1

to compute the rank of weighting vectors in We and update

the heap and minRank (Line 20-22). When the leaf node of

single weighting vector need to check, we also use Algorithm

1 as same as the way in TPM (Line 8-12). At the end of

the algorithm, we return heap as the result of group reverse

k-ranks query.

6. EXPERIMENT

We present the experimental evaluation of the TPM and

Algorithm 4 branch-and-bound pruning method (BPM)

Require: P,W,Q

Ensure: result set heap

1: heap ⇐ ∅
2: for each w ∈ {first k element in W} do

3: heap.insert(w, gRank(w,Q))

4: minRank ⇐ heap’s last rank.

5: heapW.enqueue(RtreeW.root())

6: while heapW.isNotEmpty() do

7: We ⇐ heapW.dequeue()

8: if We is a leaf node then

9: rnk ⇐ TraRtreeP (P,w,Q,minRank)

10: if rnk |= −1 then

11: heap.insert(w, rnk)

12: minRank ⇐ heap’s last rank.

13: else

14: flag ⇐ TraRtreeP ++(P,We, Q,minRank)

15: if flag == 0 then

16: heapW.enqueue(all subMBR ⊂ We)

17: else

18: if flag == 1 then

19: for each w ∈ We do

20: rnk ⇐ TraRtreeP (P,w,Q,minRank)

21: heap.insert(w, rnk)

22: minRank ⇐ heap’s last rank.

23: return heap

Parameter Values

Data dimensionality d 2 ∼ 5, 3

Distribution of data set P UN,CL,RE

Distribution of data set W UN,CL

Data set cardinality of |W | and |P | 100K

Experiment times 1000

Number of clusters 3
√

|P |, 3
√

|W |
Variance σ2

W ,σ2
P 0.12

Table 1: Experimental parameters and default values(in

bold) .

BPM algorithms for aggregate reverse k-rank. All algorithms

are implemented in C++ and the experiments run on a Mac

with 2.6 GHz Intel Core i7, 16GB RAM, and 500GB flash

storage, OS X Yosemite.

6. 1 Experiment setup

Data set P . We employed both synthetic data and real

data for products P . Synthetic data set are uniform (UN)

and clustered (CL), whose attribute value range is [0, 1). In

UN, all attributes are generated independently following a

uniform distribution. CL is generated by randomly selecting

M centroids (M = 3
√

|P |) which following a uniform distri-

bution. Each coordinate is generated following the normal

distribution with variance σ = 0.1 and mean equal to the cor-

responding coordinate of the centroid. The real data, named

HOUSE, contains 201760 6-dimensional tuples, representing

American family annual payment on gas, electricity, water,

heating, insurance, and property tax in 2013. The dataset

HOUSE also used into related search [5, 7].

Data set W . For data set W , we also have UN, CL data

set that is in a same generating way with data set P .

Parameters. Parameters are shown in Table 1 where the

default values are d = 3, |P |=100K, |W |=100K, k = 10, |Q|
= 5, and both P and W are UN data.

Metrics. Our metrics is the query execution time required

by each algorithm. We do each experiment over 1000 times

and present the average value. The query point set Q is ran-

domly selected from P . To insight the filtering effect of TPM

and BPM, we also observe the computing time of real score

for a point in the leaf node of R-tree.

6. 2 Experiment result

Un data. Figure 5 shows the experimental results on

uniform distribution data sets on varying dimension d (2-5).

Figure 5a shows the CPU time of implemented algorithms,

NAIVE, TPM and BPM. According to the result, we can see

that TPM is much faster than NAIVE algorithm.Notice that

y-axis is in the log. BPM is more than ten times faster than

other algorithms and is stable even in 5 dimensions. Fig-

ure 5b shows computing times when the iterator access the

leaf node of R-tree. BPM algorithm has less computation in

a processing means that it prunes more unnecessary points

and weighting vectors than TPM.

CL data. Figure 6 shows the experimental results on

Cluster data sets on varying dimension d (2-5). Figure 6a

shows the CPU time of implemented algorithms while Figure

6b shows computing times. Notice that all tree-base meth-

ods (TPM and BPM) take less time finish querying than UN

data because Cluster data is easy to index by R-tree. The

experimental result is same with UN data, TPM is the best

algorithms and has the least computation.

House data. Figure 7 shows the performance of real data

 1000

 10000

 100000

 2 3 4 5

C
P

U
 t
im

e
 (

m
s
)

Dimensionality (2-5)

NAIVE
TPM
BPM

(a) Processing time.

 1000

 2000

 3000

 4000

 5000

 6000

 2 3 4 5

C
o

m
p

u
tin

g
 T

im
e

s

Dimensionality (2-5)

TPM
BPM

(b) Computing times.

Figure 5: Experimental result on UN data, |P | = 100K, |W |
= 100K, |Q| = 5, k = 10, d = 2 ∼ 5.

 1000

 10000

 100000

 2 3 4 5

C
P

U
 t
im

e
 (

m
s
)

Dimensionality (2-5)

NAIVE
TPM
BPM

(a) Processing time .

 0

 500

 1000

 1500

 2000

 2500

 2 3 4 5

C
o

m
p

u
tin

g
 T

im
e

s

Dimensionality (2-5)

TPM
BPM

(b) Computing times.

Figure 6: Experimental result on CL data, |P | = 100K, |W |
= 100K, |Q| = 5, k = 10, d = 2 ∼ 5.

 10000

 100000

 10 20 30 40 50

C
P

U
 t

im
e

 (
m

s
)

k, number of result (10-50)

NAIVE
TPM
BPM

(a) Processing time.

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

C
o

m
p

u
ti
n
g

 T
im

e
s

k, number of result (10-50)

NAIVE
TPM

(b) Computing times.

Figure 7: Experimental result on HOUSE data, |P | = 100K,

|W | = 100K, |Q| = 5, k = 10, d = 2 ∼ 5.

set HOUSE. Figure 7a and 7b is the result of CPU cost and

computing time respectively. Clearly, both TPM and BPM

faster than NAIVE and TPM is the best one. The BPM

is faster than TPM and has less computation amount than

TPM.

7. CONCLUSION

Reverse rank queries have become important tools in mar-

keting analyzing. However, the related researches of reverse

rank queries are all for one product. We propose group re-

verse k-ranks queries to apply reverse rank queries into the

situation of several products like the Product Bundling. We

devise two methods, TPM and BPM, to answer group reverse

k-ranks queries efficiently. Tree Pruning Method (TPM) is

a tree-based pruning method prune unnecessary products

with the help of R-tree. Branch-and-Bound Pruning Method

(BPM) uses two R-tree to manage Products and User pref-

erences, the unnecessary Products and User preferences can

be pruned at the same time based on the methodology of

Branch-and-Bound. We do the comparison experiment on

both synthetic data and real data, the experimental verify

the efficiency of our proposed methods.

As future work, we have two objects. The first one is

to consider another evaluating function. e.g., Evaluating a

group of products by the harmonic average of each one’s rank

instead of the sum function in this paper. The second one

consider the approximate solutions for group reverse k-ranks

queries.

References

[1] Chang, Y.-C., Bergman, L. D., Castelli, V., Li, C.-S.,

Lo, M.-L., and Smith, J. R. The onion technique: Index-

ing for linear optimization queries. In SIGMOD Conference

(2000), pp. 391–402.

[2] Dellis, E., and Seeger, B. Efficient computation of re-

verse skyline queries. In Proceedings of the 33rd Interna-

tional Conference on Very Large Data Bases, University of

Vienna, Austria, September 23-27, 2007 (2007), pp. 291–

302.

[3] Korn, F., and Muthukrishnan, S. Influence sets based on

reverse nearest neighbor queries. In Proceedings of the 2000

ACM SIGMOD International Conference on Management

of Data, May 16-18, 2000, Dallas, Texas, USA. (2000),

pp. 201–212.

[4] Lian, X., and Chen, L. Monochromatic and bichromatic

reverse skyline search over uncertain databases. In Pro-

ceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD 2008, Vancouver, BC,

Canada, June 10-12, 2008 (2008), pp. 213–226.

[5] Vlachou, A., Doulkeridis, C., and Kotidis, Y. Reverse

top-k queries. In ICDE (2010), pp. 365–376.

[6] Vlachou, A., Doulkeridis, C., and Kotidis, Y.

Monochromatic and bichromatic reverse top-k queries.

pp. 1215–1229.

[7] Vlachou, A., Doulkeridis, C., and Kotidis, Y. Branch-

and-bound algorithm for reverse top-k queries. In SIGMOD

Conference (2013), pp. 481–492.

[8] Vlachou, A., Doulkeridis, C. Monitoring reverse top-k

queries over mobile devices. In MobiDE (2011), pp. 17–24.

[9] Vlachou, A., Doulkeridis, C., and Kotidis, Y. Identi-

fying the most influential data objects with reverse top-k

queries. pp. 364–372.

[10] Yang, S., Cheema, M. A., Lin, X., and Zhang, Y. SLICE:

reviving regions-based pruning for reverse k nearest neigh-

bors queries. In IEEE 30th International Conference on

Data Engineering, Chicago, ICDE 2014, IL, USA, March

31 - April 4, 2014 (2014), pp. 760–771.

[11] Yao, B., Li, F., and Kumar, P. Reverse furthest neigh-

bors in spatial databases. In Proceedings of the 25th In-

ternational Conference on Data Engineering, ICDE 2009,

March 29 2009 - April 2 2009, Shanghai, China (2009),

pp. 664–675.

[12] Zhang, Z., Jin, C., and Kang, Q. Reverse k-ranks query.

PVLDB 7, 10 (2014), 785–796.

