
DEIM Forum 2016 A3-4

Efficient Keyword Search over Relational Data Streams

Savong BOU†, Toshiyuki AMAGASA††, and Hiroyuki KITAGAWA††

† Graduate School of Systems and Information Engineering, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

†† Center for Computational Sciences, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

E-mail: †savong.bou@kde.cs.tsukuba.ac.jp, ††{amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract Keyword search over relational streams plays an important role when enabling users to issue queries

without knowing the details about information sources as well as query languages. The state-of-the-art approaches

exploit Candidate Networks (CNs), which are high-level (or schema-level) representation of joining networks of tuples

containing all query keywords, to filter relational streams. However, in fact, the performance of these approaches

seriously degrades in particular when the maximum size of CNs (Tmax) and/or the number of query keywords are

large, due to the explosive increase in the number of CNs. To cope with this problem, this paper proposes a scalable

approach that consolidates all CNs in such a way that all common edges in the CNs can share processing, thereby

avoiding unnecessary evaluation of different CNs as much as possible. The experimental results reveal that the

query execution time of the proposed approach greatly outperforms the comparative methods.

Key words Keyword Search, Relational Data Streams

1. Introduction

With the recent trends of Cyber Physical Systems [6, 11],

Internet of Things [5,15], etc., the number of real-time infor-

mation sources has been explosively increasing. Besides, it

has become common to extract information from various so-

cial medias, such as Twitter, and Facebook, in real-time for

making analysis of diverse social activities. Typically, each

data item generated at stream data sources can be modeled

as structured records. For this reason, such data sources are

often called relational streams [3], where structured records

that conform to some predefined relational schemas are con-

tinuously generated. Therefore, the importance of query pro-

cessing over relational streams has been increasing.

Processing keyword search over relational streams is con-

sidered to be a practical approach due to its user-friendliness,

which does not requires users to learn neither (potentially)

complicated query language, like CQL [3], nor the schemas

of streams being queried, which is also very complicated

in many real applications. So far, keyword search over

permanently-stored relational data [2, 7, 8, 10, 12] has been

extensively studied, but only a few works have addressed

keyword search over relational streams [9, 13].

In the works [9,13], they employ candidate network-based

approach for better performance. Specifically, all candidate

networks (CNs) that represent all possible combinations of

keyword occurrences on join paths are enumerated. Then,

they are merged to generate a query plan by which actual re-

lational streams are processed. More precisely, in S-KWS [9],

a set of CNs are merged only if they share at least one leaf

node called root, and possible subtrees are merged to remove

redundant processing as much as possible. In SS-KWS [13],

common partial networks are merged more aggressively from

every leaf node of CNs, thereby generating more compact

query plans.

However, it should be noted that the performance of S-

KWS and SS-KWS considerably degrades when the number

of query keywords and/or network size (Tmax) are increased.

The increase of these two parameters causes rapid increase in

the number of CNs, which results in a lot of common partial

networks remain unintegrated. To exemplify the problem, let

us take TPC-H dataset [1] as an example. When the num-

ber of keywords and Tmax are increased from four to five, the

number of CNs increases from 3,600 to 85,803 [13]. Likewise,

the total number of edges in the query execution plans expo-

nentially increases from 4,276 to 73,596 in S-KWS and from

7,486 to 222,040 in SS-KWS. (More detailed discussion can

be found in Section 5. 1.) Thus the performance of S-KWS

and SS-KWS would deteriorate in particular when dealing

with a lot of query keywords and/or large relational streams

consisting of many relations.

How can we cope with such exponential blow up of CNs

and the complication of query plans? If we consider the edges

in CNs, each of them actually represents primary/foreign-key

— 1 —

relationships between two tables. For this reason, in the ex-

isting approaches, even though the number of edges grows at

an exponential rate, most of them, which are created from

smaller number of primary/foreign-key relationships in the

original schema, are actually redundant. With the same ex-

ample above when the number of keywords and Tmax are

increased from four to five, the total number of unique edges

in all CNs grows linearly from 1,088 to 3,536. Under this

observation, to cope with the problem of CN’s exponential

blow up, it is possible to consolidate the edges sharing the

same primary/foreign-key relationship into one edge when

generating a query plan, which leads to great performance

improvement.

This paper proposes a novel approach to processing key-

word search over relational streams by taking into account

the above idea. Specifically, an MX-structure is proposed

to consolidate common edges in different CNs as much as

possible. The experimental results prove that the proposed

approach can process relational streams about 40 to 70 times

faster than the state-of-the-art approaches when the number

of keywords and Tmax are increased to five.

This paper is organized as follow. We introduce related

works in Section 2.. Section 3. introduces existing works

of keyword search over relational streams, and the proposed

approach is in Section 4.. Experiments and conclusion are in

Section 5. and 6. respectively.

2. Related Works

So far, many proposals have been done to enable keyword

search on permanently-stored-relational data [2,4,7,8,12] and

few proposals on relational streams [9, 13].

DISCOVER [8] and DBXPLORER [2] are the CN-based

keyword search on (static) relational data. In DISCOVER

[8], first all CNs are generated from the given keyword search

and relational data’s schema. Then, a plan is built for effi-

cient evaluation of all CNs by reusing some common edges

of CNs. DBXPLORER-II [7] adopts IR-style document-

relevance ranking technique to keyword search over relational

data. Since the total number of CNs can be very big, and

evaluation of all CNs is costly, [12] proposes an algorithm

to rank all CNs, and only top-k CNs are chosen to evaluate

against relational data.

S-KWS [9] is the first work to enable keyword search over

relational streams. It is also a candidate network based

approach, which makes use of common edge attached to

root nodes to elevate query searching. And the most recent

work to enable keyword search on relational streams is SS-

KWS [13], which is proved to outperform S-KWS [9] when

most tuples from the relational data streams mostly match

CNs that have common edges at leaf-nodes.

(a) Schema.

(b) Instances.

Figure 1 A sample e-commerce application.

Figure 2 Some CNs created from schema in Figure 1(a) for query

{k1, k2, k3}.

(a) Cluster #1.

(Combine the first two CNs.)

(b) Cluster #2.

(Only CN 3 is included.)

Figure 3 Operator mesh for CNs in Figure 2.

3. Keyword Search over Relational Streams

3. 1 Problem Definition

In this section we shall introduce keyword search on rela-

tional streams. First, we start our discussion from keyword

search on relational databases.

As a common basis, graph representation of relational

database is used to define the semantics of keyword

search [14]. In a data graph, each node represents a tu-

ple and an edge represents a primary/foreign-key reference

between two tuples. Now, let us assume a relational schema

and a database that conforms to the schema. Given a set

of user-specified query keywords, {k1, k2, . . . , kn}, keyword

search on the database is to find all minimal total joining

networks of tuples (MTJNT) [8], each of which contains all

query keywords. More precisely, total means that all key-

words are contained in each network, and minimal means

that removing any tuple from a network of tuples leads to

loss of eligibility for query results. Notice that the maximum

size of data graphs is bounded by parameter Tmax.

In contrast to conventional relational data, relational

streams [3] can be modeled as possibly unbounded sequences

— 2 —

of relational tuples. In other words, each tuple in a stream

can be represented by a pair of 1) a relational tuple and 2)

a time instant of a discrete and ordered time domain, e.g.,

integer. Thus tuples are regarded that they are arrived ac-

cording to their timestamps. Figure 1 (a) and (b) illustrate

a sample schema and its instances.

When dealing with (relational) streams, we often use slid-

ing windows to convert an infinite stream of tuples to a re-

lation of finite tuples. There are two types of sliding win-

dows, namely, time- and tuple-based sliding windows. Given

a window size either in term of time interval (e.g., 1 hour) or

number of tuples (e.g., 100 tuples), it generates relations by

capturing the latest tuples within the window while sliding

the window over the stream. In such window semantics, two

tuples can be joined only if both tuples are valid.

Having defined relational streams and sliding windows,

keyword search over relational streams can be defined as

follows. Given a set of query keywords {k1, k2, . . . , kn}, a

maximum network size Tmax, and a window specification

W , it continuously reports 1) new MTJNTs when new tu-

ples are delivered and 2) invalidation of existing MTJNTs

due to deletion or aging of tuples.

3. 2 Existing Works

As mentioned in Section 1., S-KWS [9] and SS-KWS [13]

are the predecessors of this work. In this section, we briefly

overview these works.

3. 3 Overview

In S-KWS and SS-KWS the process of keyword search on

relational streams comprises two main steps: preprocessing

and evaluating steps.

• In preprocessing step, given a schema, a set of query

keywords, and Tmax, all Candidate Networks (CNs) [9, 13]

(both linear and tree) are generated. Each node in a CN

represents a relation, and the edges represent relational join

operation. Notice that all CNs must conform to the concept

of MTJNT [9]. Figure 2 shows three examples of linear CNs

from the schema in Figure 1(a).

• In evaluation step, keyword search over relational

streams is actually processed by evaluating all CNs. When

new MTJNTs are detected due to arrivals of new tuples, they

are reported. On the other hand, expired tuples are removed

by using either eager or lazy approaches [9].

3. 3. 1 S-KWS

S-KWS [9] is one of the pioneering works that addressed

the problem of keyword search on relational streams using

CNs. In their work, for each CN, the root node is determined

such that 1) it is a leaf containing one chosen query keyword

and 2) the keyword has a higher selectivity in the streams

than other leaf nodes.

To improve performance, they propose to group all CNs

that share the same root into a cluster. In fact, a CN can be

converted into a corresponding operator tree, where the leaf

nodes represent selection operators, in which their selection

conditions may be null, and the internal nodes represent join

operators. By combining multiple CNs in a cluster, they con-

struct a data structure called operator mesh. Figure 3 shows

two clusters of operator mesh created from the three CNs in

Figure 2. It is important to notice that, for shared subtrees

in the operator mesh, its process should be shared among

different CNs, thereby reducing the cost of query processing.

When processing relational streams, all partial results are

cached in each operator’s buffer. Hence, in the case when

some matches are detected in some CNs at the same time,

all matched tuples can be efficiently catched from the opera-

tor’s buffer. However, in fact, the idea of caching all partial

results in buffers causes a performance bottleneck due to its

high memory cost.

3. 3. 2 SS-KWS

SS-KWS [13] is a successor of S-KWS, and it can be re-

garded as the state-of-the-art approach. The novel idea of

SS-KWS is to aggressively merge more sub-networks in CNs

not only at single leaf, but also at all leaves. Unlike S-KWS,

the root is the center node of the CNs. Besides, instead of

operator mesh, a lattice is created by combining all CNs so

that the query processing cost is reduced by sharing common

subtrees except for the root nodes in CNs as much as possi-

ble. For example, the lattice structure for the three CNs in

Figure 2 is shown in Figure 4. In this example, nodes marked

with double lines are root nodes; black colored nodes are leaf

nodes; and the rests are other non-leaf nodes.

SS-KWS proposes selection/semi-join approach to fully re-

duce all partial results. The concept of semi-join approach

works as follows. First, each node’s buffer is divided into

three sub-buffers: N (not joinable), W (waiting), and R

(ready). Figure 4 shows the lattice structure and all sub-

buffers of node P . Probing sequence is clearly defined:

• In non-leaf nodes, for each incoming tuple, all tuples

in sub-buffers W or R of their child nodes are checked. If it

is not joinable with any tuple, the incoming tuple is stored

in sub-buffer N of its corresponding node, and the probing

is finished. Else, the incoming tuple is stored in sub-buffer

W of its corresponding node, and the probing continues for

the connected parent nodes. In leaf nodes, it immediately

probes parent nodes.

• Similarly, in root nodes, for each incoming tuple, all

tuples in sub-buffers W and R in the child nodes are checked,

and the incoming tuple is stored in the respective sub-buffers

as explained above. If all branches are joinable, the detected

joining network of tuples (JNT) is emitted as a result, and

all tuples in the JNT are moved to sub-buffers R of the re-

— 3 —

Figure 4 Lattice for CNs in Figure 2.

(a) MX-structure. (b) Edge-mapping

table.

(c) Sub-space in node

PS{}.

Figure 5 MX-structure for CNs in Figure 2.

spective nodes.

3. 4 Scalability Issues in Existing Approaches

We discuss the scalability issues of these approaches. As

a common problem, the number of CNs grows exponentially

as the number of keywords and/or Tmax increase. This gives

a significant impact on both time and space.

In S-KWS, partial results are maintained in the buffers in

an operator mesh. Due to the low sharing rate of common

subtrees in CNs; i.e., in an operator mesh, we can find a lot

of common edges shared by different CNs but are not con-

solidated, because they are either in different clusters or do

not have same root node. Consequently, in query processing,

a lot of partial results need to be duplicated in buffers and

need also to be processed independently.

In SS-KWS, the problem of the low sharing rate of com-

mon subtrees is mitigated by sharing common subtrees in

all possible subtrees. However, there still exists a restriction

that it is impossible to consolidate common paths in inter-

nal nodes, because 1) sharing is only allowed for common

subtrees; and 2) root nodes are not allowed to be shared.

Therefore, the number of common paths that are not consol-

idated in lattice grows rapidly as the number of CNs grows.

For the same reason discussed above, such duplicated paths

cause high memory consumption in internal buffers and also

cause high computational cost for possibly useless processing

of (duplicated) intermediate results.

4. Proposed Approach

4. 1 Overview

In this section, we propose a novel approach to process-

ing keyword search over relational streams. The proposed

scheme also exploits CN-based approach, but tries to im-

prove the performance by the following ideas: 1) given a set

of CNs, we generate a maximal sharing structure called MX-

structure by consolidating all shared edges in CNs regardless

of their positions in CNs (i.e., root or leaf); and 2) we try

to avoid duplications of tuples in buffers in MX-structure.

More precisely, the former is achieved by maintaining infor-

mation about the edges and their corresponding CNs using

tables called edge-mapping table. The latter is achieved by

introducing a new data organization in each node buffer. To

operate with sliding windows, lazy approach [9] is used to

deal with dead tuples.

4. 2 MX-Structure

First, we introduce the proposed MX-structure. In each

CN, the root (and the output node as well) is determined

as the center of the CN. Then, all CNs are merged in such

a way that all edges are unique; i.e., edges in MX-structure

are created only for different combinations of nodes regard-

less of the node’s position (root or leaf). Such information

needs to be maintained as well. (In the sequel discussion, we

denote by () a leaf node and by [] a root node.) We also

maintain in the edge-mapping table the information of edge

occurrences in different CNs.

Due to the space limitation, we cannot show the algorithm,

but it can be constructed in the following way. Basically, all

CNs are processed and added to an MX-structure one by one.

When adding a new CN, we take each edge, and check its

existence; we only add one only if it has not been added yet.

Next, we insert the ID of the edge’s CN to the edge-mapping

table. The information about each CN’s root and leaf nodes

is also maintained.

Figure 5(a) illustrates an example of MX-structure for the

CNs in Figure 2. Nodes marked with double lines show root

nodes, and black nodes are leaf nodes. The label on each

edge represents the set of corresponding CNs in term of IDs.

Table 5(b) is its edge-mapping tables.

4. 3 Query Evaluation in MX-Structure

4. 3. 1 Node Buffers

To enable efficient query evaluation using MX-structure,

we propose a novel data organization in each node buffer.

Our idea is based on the sub-buffer proposed in SS-KWS [13].

In an MX-structure, each node is associated with a buffer,

which is further divided into two sub-buffers, N and WR.

Sub-buffer N is for storing tuples that are not joinable with

tuples in child nodes, while sub-buffer WR is for storing tu-

ples that are partially matched (not part of the completed

query results yet) or fully matched (as part of the completed

query results) in some JNTs. Moreover, sub-buffer WR of

each node is further divided into sub-spaces for each CN and

for all possible combinations of all CNs containing that node.

— 4 —

We use ∼n to denote fully matched to in CN n. If there is

no ∼ (i.e., n), it means it is partially matched in CN n. Fig-

ure 5(c) shows the buffer of node PS{} in the MX-structure.

As shown in the figure, node PS{} appears in CNs 1, 2, and

3. Therefore, sub-spaces for these CNs are created in sub-

buffer WR. Sub-space {1, 2} is for storing tuples that are

partially matched for CNs 1 and 2. Sub-space {∼1,∼2, 3}
is for storing tuples that are fully matched for CNs 1 and 2,

and partially matched for CN 3.

4. 3. 2 Probing Sequence

Probing sequence in MX-structure is explained as fol-

lows. Suppose a tuple arrives to a non-leaf node in an MX-

structure. First, all tuples in sub-buffers N and WR of the

child nodes are probed if the child nodes are at the leaf level;

otherwise, only tuples in sub-buffers WR are probed. Sec-

ond, if there exist some tuples that are joinable, all sub-

buffers of the parent nodes are probed. If a new tuple arrives

at one of the leaf nodes, the parent nodes are immediately

probed. Unlike SS-KWS, probing is only performed to par-

ent nodes that belong to set of active CNs, which are the CNs

that have joinable tuples from their respective leaf nodes up

to the node of the probing tuple (being used to probe tuples

at parent nodes).

Active CNs are identified by 1) the IDs assigned to a con-

nected edge (cnedge) being traversed, 2) the IDs assigned to

a leaf node (cnleaf) if the child node is a leaf, and 3) the IDs

of non-empty sub-spaces (cnecsubspace) in the child node, and

is calculated by the following formula:

cnactive = cnedge ∩ (cnleaf ∪ cnecsubspace) (1)

Having finished probing tuples in child/parent nodes, the

probed tuple may be moved to appropriate sub-spaces ac-

cording to matching status. In fact, in our approach, sub-

spaces are dynamically created in an on-demand manner; i.e.,

if there exists an appropriate sub-space, we just use it; oth-

erwise, we create a new sub-space according to the following

formula:

cnnpsubspace = cnepsubspace ∪ cnactive (2)

where cnnpsubspace and cnepsubspace are respectively the new

sub-space and the existing sub-space marked by IDs of CNs

for the probed tuples at parent nodes.

Note that, if cnepsubspace is not empty, all tuples in

cnepsubspace are already used to probe the parent nodes. In

this case, probing parent nodes again can be performed effi-

ciently, because only tuples in cnepsubspace need to be probed.

Let us take a look at Figure 6 as an example. First,

when tuple t5, which belongs to node PS{}, arrives (Fig-

ure 6(a)), its child nodes (leaf nodes C{k1} and P{k1}) are
probed. Since node P{k1} is empty, only node C{k1} is

probed. Since tuple t1 can be joined with t5, a new sub-space

cnepsubspace is computed by Equations (1) and (2). Then, we

get cnedge = {1, 2}, cnleaf = {1, 2}, and cnecsubspace = {}.
As a result, we get cnactive = {1, 2}. So, we create new

sub-spaces cnepsubspace = {1, 2} in sub-buffers WR of nodes

C{k1} and PS{} (Figure 6(b)). Thus, t1 and t5 are moved

to sub-space {1, 2} of sub-buffer WR of nodes C{k1} and

PS{}, respectively. Since the coming tuple t5 is joinable

with tuple in child node, it continues to probe parent nodes.

Before probing parent nodes, P{} and C{}, the set of

active CNs are computed by Equation (1) as follows. For

edge PS{} − P{}, we get cnedge = {1, 2}, cnleaf = {},
and cnecsubspace = {1, 2}. So, cnactive = {1, 2}. Since

cnactive = {1, 2} is not empty, the parent node P{} will be

probed, while, for edge PS{} − C{}, we have cnedge = {3},
cnleaf = {}, and cnecsubspace = {1, 2}. Then, we get

cnactive = {}. Because cnactive is empty, the parent node

C{} will not be probed. Since t2 can be joined with t5, and

node P{} is the root node for both CNs in cnactive (= {1, 2}),
a couple of branch maps (branch map) are created for both

CNs, and the first bit is set to 1 in both maps. A branch map

is to maintain the status of the CN whether the branches up

to the root is connected or not (Figure 6(b)).

Same procedures are performed when t6 arrives (Fig-

ure Figure 6(c)), which results in the match of another

branch in CN 2. Since all bits of CN 2 are set, CN 2 is

detected as matched. Therefore, all matched tuples are re-

turned as a query result. Then, they are moved to appro-

priate sub-spaces as shown in Figure 6(d) for subsequent

processing.

4. 4 Algorithm Details

The proposed algorithm is shown in Algorithm 1. This

algorithm works as follows. If the newly-arrived tuple, t0,

belongs to a leaf node, it probes the parent nodes (Line 5)

by calling function Probe_parent_nodes. For each parent

node, cnactive is calculated by Equation (1). If cnactive is not

empty, it continues to check sub-buffers N and WR (Lines

2–3). For each sub-space in sub-buffer WR, cnnpsubspace is

calculated by Equation (2) (Line 4). If one or more tuples

in the sub-space can be joined with t0, we create a new sub-

space cnnpsubspace if necessary (Lines 5–6).

Then it checks if any CN in cnactive is fully matched by

calling function Match_CN (Line 7). This function checks each

CN in cnactive to update the branch map. It is the map, at-

tached to each tuple in the nodes with more than one child

nodes for the same CN (Line 2). If the parent node is the

root node of the CN, and if all bits in the branch map for

the CN are set to 1, the CN is detected to be fully matched

(Line 4). Hence, all related fully-matched tuples are out-

put as query results (Line 5). In addition, new sub-space

— 5 —

(a) Read t5. (b) Create branch map for CNs

1 and 2.

(c) Update branch map for CN

2.

(d) Select matched tuples for CN

2.

Figure 6 Query processing using MX-structure. Let tuples t1,

t2, t3, and t4 are currently maintained in Figure 6(a),

and let all tuples joinable together, except t4.

for each selected tuples is created if necessary by copying its

current sub-space and updating CN to ∼CN (Line 6) to in-

dicate that the new sub-space is for storing the tuples that

are fully matched to the CN. Then, it moves the matched

tuples into respective new sub-spaces (Line 7). At the same

time, cnnpsubspace for the parent node needs also to be up-

dated from CN to ∼CN (Line 9). After the call of function

Match_CN, we go back to function Probe_parent_nodes, store

t in sub-space cnnpsubspace, and t1 is put in the set sjtp for

subsequent probing to parent nodes.

Back to the main algorithm (Line 5), Probe_parent_nodes

returns sjtp. If sjtp is not empty, it will call function

Probe_parent_nodes again for probing subsequent parent

nodes; otherwise, the loop is finished (Lines 7–12).

If the new tuple t0 does not belong to leaf nodes (Line 14),

it will call function Probe_child_nodes by following similar

procedure above (Lines 14–31).

4. 5 Discussion

In this section we elaborate the reason why the proposed

scheme is advantageous to the existing approaches. As we ob-

served, the number of CNs exponentially increases as query

keywords and/or the size of CNs grows. Consequently, even

though S-KWS and SS-KWS try to merge the CNs by find-

ing common sub-networks, the size of query plans rapidly

Algorithm 1 Candidate Networks (CN) Evaluation

Input: Tuple t0 just from streams, MX-structure MX

1: put t0 in set joint tuples
2: if t0 from leaf nodes then
3: while 1 do
4: while each t in set joint tuples do
5: sjtp = Probe parent nodes (t, sjtp, MX)
6: end while
7: if sjtp is empty then
8: break;
9: else

10: set joint tuples = sjtp
11: clear sjtp
12: end if
13: end while
14: else
15: while each t in set joint tuples do
16: Probe child nodes (t, MX)
17: if t joinable then
18: while 1 do
19: while each t in set joint tuples do
20: sjtp = Probe parent nodes (t, sjtp, MX)
21: end while
22: if sjtp is empty then
23: break;
24: else
25: set joint tuples = sjtp
26: clear sjtp
27: end if
28: end while
29: end if
30: end while
31: end if

Function: Probe child nodes (t, sjtp, MX)

1: while Each child nodes do
2: joinable = false
3: if cnactive not empty then
4: while Each sub-space in WR do
5: Calculate cnnpsubspace

6: if tuple t1 joinable then
7: joinable = true
8: Matched CN (CN , cnactive, cnnpsubspace, branch map,

node of t, MX)
9: Put t in cnnpsubspace

10: put t1 in sjtp
11: end if
12: end while
13: end if
14: if joinable == true then
15: Update branch map for CNs in cnactive

16: end if
17: end while
18: Return sjtp

grows, which leads to poor performance.

In MX-structure, we attempt to integrate different CNs

more aggressively by consolidating edges according to the

nodes at the both ends. Thus we can avoid the exponential

blow up in query plans.

Readers may think that the complication is just migrated

to the management of edge-mapping tables and compli-

cated sub-buffers. This is partly true, but the point is that

the number of CNs that are actually activated against real

streams is far smaller than the possible combinations due to

the locality in real data. Therefore, the cost for maintaining

edge-mapping table and sub-buffers is expected to be mod-

est. We confirm this in the following experiment.

— 6 —

Function: Probe parent nodes (t, sjtp, MX)

1: while Each parent nodes do
2: if cnactive not empty then
3: while N and each sub-space in WR do
4: Calculate cnnpsubspace

5: if tuple t1 joinable then
6: Create cnnpsubspace if not exist

7: Matched CN (CN , cnactive, cnnpsubspace, branch map,

node of t, MX)
8: Put t in cnnpsubspace

9: put t1 in sjtp
10: end if
11: end while
12: end if
13: end while
14: Return sjtp

Function: Matched CN (CN , cnactive, cnnpsubspace, branch map,

node, MX)

1: while Each CN in cnactive do
2: Update branch map of that CN
3: if Parent node is root node then
4: if All bits in branch map set to 1 then
5: Select all matched tuples
6: Copy sub-space of matched tuple, and update CN

to ∼CN .
7: Create that new sub-space if not exist, and move

matched tuple in it.
8: Return all matched tuples as result
9: Update CN to ∼CN in cnnpsubspace

10: end if
11: end if
12: end while
13: Return (cnnpsubspace, branch map, All buffers in MX)

Table 1 Parameters used in the experiments.

Parameter Range and default

Window size (mn) 10, 20, 30, 40, 50

Keyword frequency (%) 0.003, 0.007, 0.01, 0.013

of keywords 2, 3, 4, 5

Tmax 2, 3, 4, 5

5. Experiments

In this section we report the experimental results to

demonstrate the performance of the proposed scheme. As

comparative methods, we implemented full mesh (FM) and

partial mesh (PM) of S-KWS [9], SS-KWS [13], and the pro-

posed approach in C++ language.

To generate relational streams, we read datasets from the

disk, and fed them in the implement systems. All experi-

ments were performed using 8-way Intel Core i7 CPU 870

(2.93 GHz) with 31.4 GiB memory running Ubuntu 13.10.

We used both synthetic and real datasets. Due to lack of

space, only the result of synthetic dataset is presented. For

synthetic dataset, we used TPC-H [1], which deals with ad-

hoc decision support system in business environment. In this

dataset, there are eight tables with 61 attributes.

Parameters used in the experiments are shown in Table 1.

We varied these parameters and compared the performance

of the proposed algorithm, S-KWS and SS-KWS. The default

parameters are written in bold.

5. 1 Edge Count

First, we compared the number of edges in the query plans

of all approaches, which significantly affects the performance.

As can be seen in Figure 7, when the number of query

keywords and Tmax increased, the total number of edges

in S-KWS and SS-KWS was exponentially increased, which

was caused by the explosion of number of CNs whose edges

could not be consolidated in their query plans. However, the

growth rate of the proposed scheme was linearly increased

because it consolidated unique edges into one, and the total

number of unique edges, which were the primary/foreign-

key relationships between two tables, in all CNs was slightly

increased as the number of CNs increased.

(a) # keywords = 2. (b) # keywords = 3.

(c) # keywords = 4. (d) # keywords = 5.

Figure 7 Comparison of number of edges.

5. 2 Performance Comparison

We compared CPU running time and memory usage. No-

tice that this dataset is specially prepared to favor SS-KWS

to S-KWS.

First, we measured the CPU running time and memory

usage when varying the number of keywords (Figures 8(a)

and 8(b), respectively). As can be seen, CPU running time

and memory usage in FM/PM and SS-KWS were increased

exponentially, whereas the proposed scheme was not. This

is due to the reason as developed above that an explosive

increase in number of edges in the query plan of S-KWS

and SS-KWS causes an exponensial increase in number of

probings in FM/PM and SS-KWS. Similar tendency can be

observed when varying Tmax from 2 to 5 (Figure 9).

Next, we increased the size of window from 10 min to 50

min. As expected, when the size of window was increased,

the CPU running time and memory usage also increased as

shown in Figure 10. This was because fewer tuples in the

buffers of all approaches were expired and deleted as a re-

sult of the increase in size of window. Nevertheless, the to-

tal number of CNs did not increase when increasing window

size, which caused little impact on the performance of all

— 7 —

(a) CPU running times. (b) Memory usage.

Figure 8 Varying # of keywords.

(a) CPU running times. (b) Memory usage.

Figure 9 Varying Tmax.

(a) CPU running times. (b) Memory usage.

Figure 10 Varying window size.

(a) CPU running times. (b) Memory usage.

Figure 11 Varying keyword frequency.

approaches.

Figure 11 shows the impact on the performance of all

approaches when varying keyword frequency in the dataset

from 0.003%, 0.007%, 0.01% to 0.013%. When keyword fre-

quency was increased, there were more tuples containing the

keywords of the query. As a result, there were more tuples

that need to be joint. Moreover, increasing keyword fre-

quency did not cause any increase in total number of CNs.

As a result, the increase in keyword frequency did not have

much impact on the performance of all approaches.

6. Conclusion

In this paper, we had proposed a novel approach to effi-

ciently process keyword search over relational streams. We

had proposed a compact maximal sharing structure, MX-

structure, which enables the sharing of any common edges

among all CNs. We had also proposed a very efficient algo-

rithm to process MX-structure over relational streams.

We had conducted several experiments by varying types

of datasets of both real and synthetic datasets and experi-

mental parameters. The experimental results prove that the

proposed algorithm can handle the processing of keyword

search over relational streams much better than all state-

of-the-art approaches both CPU running times and memory

usage. The proposed algorithm can process keyword search

over relational streams in average about 40 to 70 times faster

than the state-of-the-art approaches when the number of

query keywords or Tmax are increased up to five.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Num-

ber 26280037.

References

[1] Tpc-h benchmark dataset. http://www.tpc.org/tpch/, 2015.

[2] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A sys-

tem for keyword-based search over relational databases. In

ICDE, 2002.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,

K. Ito, U. Srivastava, and J. Widom. STREAM: The Stan-

ford data stream management system. Technical Report,

Stanford InfoLab, http://ilpubs.stanford.edu:8090/641/,

2004.

[4] A. Arasu, S. Babu, and J. Widom. Cql: A language for con-

tinuous queries over streams and relations. In Workshop,

DBPL 2003, Potsdam, Germany, 2003.

[5] M. Dyk, A. Najgebauer, and D. Pierzchala. Agent-based ms

of smart sensors for knowledge acquisition inside the inter-

net of things and sensor networks. ACIIDS, 9012:224–234,

2015.

[6] L. Edward. Cyber physical systems: Design challenges.

University of California, Berkeley Technical Report No.

UCB/EECS-2008-8. Retrieved 2008-06-07, 2008.

[7] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Effi-

cient ir-style keyword search over relational databases. In

VLDB, 2003.

[8] V. Hristidis and Y. Papakonstantinou. Discover: Key-

word search in relational databases. In VLDB, Hong Kong,

China, 2002.

[9] A. Markowetz, Y. Yang, and D. Papadias. Keyword search

on relational data streams. In SIGMOD, Beijing, China,

2007.

[10] K. Mehdi, A. Aijun, C. Nick, G. Parke, S. Jaroslaw,

and Y. Xiaohui. Meaningful keyword search in relational

databases with large and complex schema. In ICDE, Seoul,

Korea, 2015.

[11] O. Niggermann and V. Lohweg. On the diagnosis of cyber-

physical production systems. In AAAI, Texas, USA, 2015.

[12] O. Pericles, S. Altigran, and M. Edleno. Ranking candi-

date networks of relations to improve keyword search over

relational databases. In ICDE, Seoul, Korea, 2015.

[13] L. Qin, J. Xu Yu, and L. Chang. Scalable keyword search

on large data streams. In VLDB Journal, 2011.

[14] D. Shaul, E. Gadi, G. Shai, and P. Eran. DTL’s DataSpot:

Database exploration using plain language. In VLDB, San

Francisco, CA, USA, 1998.

[15] H. Zhang, C. Sanin, and E. Szczerbicki. Experience-oriented

enhancement of smartness for internet of things. ACIIDS,

9012:506–515, 2015.

— 8 —

