

DEIM Forum 2016 D4-1

Efficient Autocompletion with Error tolerance

Sheng HU† Chuan XIAO‡ and Yoshiharu ISHIKAWA†

†Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 466-8601 Japan

‡Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 466-8601 Japan

E-mail: †hu@db.ss.is.nagoya-u.ac.jp, ‡{chuanx, y-ishikawa}@nagoya-u.ac.jp

Abstract Most popular search engines have provided query autocompletion features in their systems. When a user issues a

query, without inputting complete keywords, the search engine will prompt several options which complete the remaining part

of the query automatically. This research will focus on investigating novel techniques for error-tolerant query autocompletion

by addressing several key issues of this feature, and eventually improve the efficiency and the accuracy of the query processing.

In our work, we proposed an improve expansion algorithm based on current state-of-the-art work. Moreover, we also improve

the index reduction method to reduce the index size as much as possible. Experiment results show that our new method can

improve the algorithm efficiency and reduce the index size very well.

Keyword Query Autocompletion，Query Processing，Textual Database

1. Introduction

Recently, the user experience of search engine becomes

more and more important. Most popular search engines

have provided query autocompletion features in their sys-

tems. When a user issues a query, without inputting com-

plete keywords, the search engine will prompt several op-

tions which complete the remaining part of the query au-

tomatically.

Moreover, search engines like Google, have equipped

their system with an advanced autocompletion technique,

which is called autocompletion with error tolerance. Even

a user issues an uncompleted query which may contain

typos, the search engine can still identify the intended

query and give the correct answers. As more and more

users are using smartphones as search engine interface,

this feature is considered of great importance and pro-

spective.

This research will focus on investigating novel tech-

niques for error-tolerant query autocompletion by ad-

dressing several key issues of this feature, e.g., improving

the efficiency and the accuracy of query processing. Fig-

ure.1 shows an example of the result of autocompletion

with inputting “coff”.

Figure 1. An example of autocompletion of “coff”

2. Related Work

There are various ways to implement the autocomple-

tion technique[1][6]. Currently, trie index[2] becomes

very popular and is adopted as the most efficient way

among the current research works. The ICPAN algorithm

put forward by Guoliang Li[3] is considered the most re-

liable trie traversal algorithm while IncNGTrie which is

put forward by Chuan Xiao[4] is considered the most ef-

ficient trie traversal algorithm. The ICPAN[3] gives a

definition about the Pivotal Active Node which is seemed

as the basic composition unit of the trie index and can

support 2-length characters error tolerance which means

the search system can give the correct answer despite of

two characters typos. The IncNGTrie[4] uses the Neighbor

Generation method[5] so as to include the possibility of

typos in advance. In the experiment, it can support

3-length characters error and achieves up to two orders of

magnitude speedup over Li’s ICPAN method. However,

IncNGTrie achieves the efficiency at the price of sacri-

ficing large memory space, and under the special circum-

stances the overhead of the space may be unaffordable.

Figure 2. An example of IncNGTrie with keyword

{test, text} with τ=1

Example 2 Figure 2. shows a simple example of IncNTrie

Index Structure which consists of two strings t1 and t2. T1

represents “test” and t2 represents “text”. Single path from

the root to one leaf represents one string. For example,

from left side, we have Φ-t-e-s-t path, which represents

string “test”. Meanwhile we use ‘#’ as the placeholder to

represent the deletion conducted on the data string side.

Below we give the definition of ‘#’.

Definition 1 (Placeholder ‘#’) We use ‘#’ to create more

deletion-marked variant[7,8], that is, ‘#’ means at this

position one character is deleted from a data string. E.g.,

“ts”, a 2-variant of “test”, will be represented as “t#s#”.

Meanwhile, we will generate all the 1-variant of “test”,

which is {#est, t#st, te#t, tes#}. And finally use these

variants to construct the trie as Figure 2. shows. Moreover,

we use τ as the threshold to limit the error-tolerant ability

of this index.

3. Index reduction

As IncNGTrie has the shortcoming of space cost, I be-

gan my work from reducing the space of IncNGTrie, I also

propose a new expansion algorithm of the trie traversal

algorithm to improve the traversal efficiency. After that,

I’m doing the work of result ranking to improve the qual-

ity of results as much as possible.

In IncNGTrie research, they used two techniques to re-

duce the index size as much as possible, so as to make it

fit the computer memory. One is Common Data String

Merge, the other is Common Subtree Merge. After my

experiments, I found some disadvantages of these two

techniques. For the former one, this work simply does the

reduction exhaustedly without any consideration of the

reduction extent parameterization. Thus I come up with

the idea that I can introduce the parameter p to control the

reduction extent. In the original work, this parameter is set

to 1, that is, only when the parent node share completely

the identical data strings, it’l l be merge into 1 string,

which drastically limits the benefit of the reduction. And

after I introduce this parameter BRC, we can generally

control the benefit and gain from the common data string

merge technique. Here we give the definition of Branch

Reduction Control.

Definition 2 BRC (Branch Reduction Control)

We use BRC as the parameter to control how much we will

reduce the index size. First we will traverse the whole trie

in a Depth-First order, and check every nodes to see if its

descendants amount is lower than BRC, if so, we will

prune all the path which contain ‘#’ in the subtree from

current node.

Example 3 Figure 3, Figure 4, Figure 5 give an example

of the trie variation under the condition when we increase

BRC from 1 to 3 consecutively. If we set the BRC param-

eter to 1, the leaf nodes’ parent node will be merged when

the descendant identical data string number less equal s

than 1. Numbers in the bracket represent the amount of the

descendant identical data string under each node. As

showed in Figure 3, note that in the left subtree under the

node “a”, as all the descendants under “a” only represent

the same string “t3”, all the paths start from “a” and con-

tain “#” will be removed from the index. In Figure 3, we

change the nodes’ color into grey i f they are removed. In

Figure 4 and Figure 5, we increase BRC to 2 and 3, as the

nodes satisfying our reduction condition increase quite a

lot, we can find the index size will be reduced incremen-

tally. Especially when BRC=3, we successfully prune al-

most a half part in our example. In our experiment, this

change will reduce the size of our tree drastically when τ

is larger than 1 and decrease a little bit on the search time

side because this is an inevitable tradeoff between the

storage and efficiency. Moreover, I change the underlying

data storage to make all the identical data point to just one

copy instead of store a copy for every redundant record.

The parameter we introduce could be adjusted accordin g

to the requirement of the real environment.

Figure 3. Index of {test, text, taxi} when BRC=1

Figure 4. Index of {test, text, taxi} when BRC=2

Figure 5. Index of {test, text, taxi} when BRC=3

4. Expansion algorithm improvement

To support the active node model proposed in Li’s paper,

Xiao’s work used a triplet <node, cursor, incoordination>

as the representation of the active node states . This makes

the expansion algorithm much more tedious and it gener-

ate too many active nodes states which consume quite a lot

resources of the memory. To fix this problem, I change the

active node representation to <node, incoordination, dif-

ference in trailing’#’>, which simplifies the model dras-

tically and generate much less active node states dur ing

the expansion procedure. Our experiment shows that

compared with the original work, the intermediate active

nodes number is reduced by over 50%. Moreover, I also

change the BST method to remove the second duplicate

data because the original lemma supporting the old method

is not reliable.

To search an index constructed like Figure 2, we need

traverse the trie with the single stroke of query input. In

Li’s work, <node, incoordination> is used to represent the

active node state because the index constructed is a direct

trie. In Xiao’s work, <node, cursor, incoordination> is

used instead because its new index structure IncNGTrie.

Now we adjust it into <node, incoordination, difference>

and give the explanation based on Xiao’s work.

In line 1 of Algorithm1, we use ExpandActiveImproved

to initialize the original active states. At this moment,

there’s no query stroke is input. τ represents the threshold

of error’s upper bound, we first go through the trie from

root to most τ #’s and set the corresponding node to active.

And then from line 2, we can see user will input a query

stroke q[v], with the new stroke, algorithm will expand

new active states based on original ones. Line 4 to line 9

shows the method. When a query stroke q[v] comes, for

each active state <node, incoordination, difference>, we

do two steps:

1. We keep ‘q[v]’ in the query’s variant, so we’ll go

through ‘q[v]’, and then go through ‘#’ in the trie.

2. We delete ‘q[v]’ in the query’s variant and mark it

as ‘#’. So we’ll see if current node is still active by

checking incoordination and difference, and then go

through ‘#’ in the trie.

After processing all the query strokes, the final set A is

returned and used to fetch the results .

5. Experiment

The experiments were implemented using a PC with

Intel Core i5 CPU (2.60GHz), 4GB memory, and Windows

7 OS. The dataset was made by extracting the string of

POI of the GNIS dataset. This dataset consists of 200400

strings and average string length is 11.

5.1 Effect of index reduction

We first evaluated the effect of our index reduction

method. Figure 6, Figure 7, Figure 8 corresponds to the

situation when τ=1, 2 and 3. The value of τ represents the

error-length, that is, how many errors the query can con-

tain at most. Y-axis represents the amount of data strings

and index nodes. Here, we use data size to represent the

data strings amount. Because we merge the subtree’s node

and its leaf nodes, some identical data strings we store in

the memory will be merged into one. Then, we use index

size to represent the index nodes amount. From the ex-

periments, we can see that when BRC variates from 0 to 1,

both data size and index size is reduced by almost 30%,

and the larger tau is, the more the total size is reduced.

When BRC is increased to 9999999, the whole IncNGTrie

is degenerated to a direct trie, which has a very small size.

Figure 6. Data size and index size reduction effect

when τ=1

Figure 7. Data size and index size reduction effect

when τ=2

Figure 8. Data size and index size reduction effect

when τ=3

5.2 Effect of expansion improvement

Figure 9. Returned active nodes amount when τ=1

The three figures Figure 9, Figure 10, Figure 11 show

the expansion improvement effect under the condition τ=1,

2 and 3. X-axis represents the query length and Y-axis

represents the active node states amount. The common

point of the three is that, as the length of query word in-

creases, the improved expansion algorithm has much less

active states, which can remarkably save the memory and

improve the time efficiency compared with the old algo-

rithm. When query length equals 8, the improved algo-

rithm’s active nodes states number is almost a half of the

old one, which means our method reduce over 50% active

node states when query is long enough.

Figure 10. Returned active nodes amount when τ=2

Figure 11. Returned active nodes amount when τ=3

References
[1] L. Boytsov. Indexing methods for approximate dic-

tionary searching: Comparative analysis. ACM Jour-
nal of Experimental Algorithmics, 16(1), 2011.

[2] D. Deng, G. Li, and J. Feng. An efficient trie -based
method for approximate entity extraction with ed-
it-distance constraints. In ICDE, pages 762-773,
2012.

[3] G. Li, S. Ji, C. Li, J. Feng. Efficient Fuzzy Full -text
Type-ahead Search. VLDB Journal, 2011.

[4] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, K.
Sadakane. Efficient Error-tolerant Query Autocom-
pletion. Proceedings of the VLDB Endowment, Vol. 6,
No. 6, 2013.

[5] T. Bocek, E. Hunt, and B. Stiller. Fast Similarity
Search in Large Dictionaries. Technical Report
ifi-2007.02, Department of Informatics, University of
Zurich, April 2007.

[6] Inci Cetindil, Jamshid Esmaelnezhad, Taewoo Kim,
and Chen Li. Efficient instantfuzzy search with
proximity ranking. In Data Engineering (ICDE), 2014
IEEE 30 t h International Conference on, pages 328–
339. IEEE, 2014.

[7] Thomas Bocek, Ela Hunt, Burkhard Stiller, and Fabio
Hecht. Fast similarity search in large dictionaries.
University of Zurich, 2007.

[8] Moshe Mor and Aviezri S. Fraenkel. A hash code
method for detecting and correcting spelling errors.
Communications of the ACM, 25(12):935–938, 1982.

0

1000000

2000000

3000000

BRC

data size

index size

0

5000000

10000000

BRC

data size

index size

0

5000000

10000000

15000000

20000000

25000000

BRC

data size

index size

0

10

20

30 old improved

0

100

200

300

old improved

0

500

1000

1500

2000
old improved

