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Abstract  Most popular search engines have provided query autocompletion features in their systems. When a user issues a 

query, without inputting complete keywords, the search engine will prompt several options which complete the remaining part 

of the query automatically. This research will focus on investigating novel techniques for error-tolerant query autocompletion 

by addressing several key issues of this feature, and eventually improve the efficiency and the accuracy of the query processing. 

In our work, we proposed an improve expansion algorithm based on current state-of-the-art work. Moreover, we also improve 

the index reduction method to reduce the index size as much as possible. Experiment results show that our new method can 

improve the algorithm efficiency and reduce the index size very well. 
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1. Introduction 

Recently, the user experience of search engine becomes 

more and more important. Most popular search engines 

have provided query autocompletion features in their sys-

tems. When a user issues a query, without inputting com-

plete keywords, the search engine will prompt several op-

tions which complete the remaining part of the query au-

tomatically. 

Moreover, search engines like Google, have equipped 

their system with an advanced autocompletion technique, 

which is called autocompletion with error tolerance. Even 

a user issues an uncompleted query which may contain 

typos, the search engine can still identify the intended 

query and give the correct answers. As more and more 

users are using smartphones as search engine interface, 

this feature is considered of great importance and pro-

spective. 

This research will focus on investigating novel tech-

niques for error-tolerant query autocompletion by ad-

dressing several key issues of this feature, e.g., improving 

the efficiency and the accuracy of query processing.  Fig-

ure.1 shows an example of the result of autocompletion 

with inputting “coff”. 

 

Figure 1. An example of autocompletion of “coff”  

2. Related Work 

There are various ways to implement the autocomple-

tion technique[1][6]. Currently, trie index[2] becomes 

very popular and is adopted as the most efficient way 

among the current research works.  The ICPAN algorithm 

put forward by Guoliang Li[3] is considered the most re-

liable trie traversal algorithm while IncNGTrie which is 

put forward by Chuan Xiao[4] is considered the most ef-

ficient trie traversal algorithm. The ICPAN[3] gives a 

definition about the Pivotal Active Node which is seemed 

as the basic composition unit of the trie index and can 

support 2-length characters error tolerance which means 

the search system can give the correct answer despite of 

two characters typos. The IncNGTrie[4] uses the Neighbor 

Generation method[5] so as to include the possibility of 

typos in advance. In the experiment, it can support 

3-length characters error and achieves up to two orders of 

magnitude speedup over Li’s ICPAN method. However, 

IncNGTrie achieves the efficiency at the price of sacri-

ficing large memory space, and under the special circum-

stances the overhead of the space may be unaffordable.  

 

Figure 2. An example of IncNGTrie with keyword 

{test, text} with τ=1 



 

 

Example 2  Figure 2. shows a simple example of IncNTrie  

Index Structure which consists of two strings t1 and t2. T1 

represents “test” and t2 represents “text”.  Single path from 

the root to one leaf represents one string. For example, 

from left side, we have Φ-t-e-s-t path, which represents 

string “test”. Meanwhile we use ‘#’ as the placeholder to 

represent the deletion conducted on the data string side.  

Below we give the definition of ‘#’.  

Definition 1 (Placeholder ‘#’) We use ‘#’ to create more 

deletion-marked variant[7,8], that is, ‘#’ means at this 

position one character is deleted from a data string.  E.g., 

“ts”, a 2-variant of “test”, will be represented as “t#s#”.  

Meanwhile, we will generate all the 1-variant of “test”, 

which is {#est, t#st, te#t, tes#}.  And finally use these 

variants to construct the trie as Figure 2. shows. Moreover, 

we use τ as the threshold to limit the error-tolerant ability 

of this index. 

3. Index reduction 

As IncNGTrie has the shortcoming of space cost, I be-

gan my work from reducing the space of IncNGTrie, I also 

propose a new expansion algorithm of the trie traversal 

algorithm to improve the traversal efficiency. After that, 

I’m doing the work of result ranking to improve the qual-

ity of results as much as possible.  

In IncNGTrie research, they used two techniques to re-

duce the index size as much as possible, so as to make it 

fit the computer memory.  One is Common Data String 

Merge, the other is Common Subtree Merge. After my 

experiments, I found some disadvantages of these two 

techniques. For the former one, this work simply does the 

reduction exhaustedly without any consideration of the 

reduction extent parameterization. Thus I come up with 

the idea that I can introduce the parameter p to control the 

reduction extent. In the original work, this parameter is set 

to 1, that is, only when the parent node share completely 

the identical data strings, it’l l be merge into 1 string, 

which drastically limits the benefit of the reduction. And 

after I introduce this parameter BRC, we can generally 

control the benefit and gain from the common data string 

merge technique. Here we give the definition of Branch 

Reduction Control. 

Definition 2 BRC (Branch Reduction Control)  

We use BRC as the parameter to control how much we will 

reduce the index size. First we will traverse the whole trie 

in a Depth-First order, and check every nodes to see if its 

descendants amount is lower than BRC, if so, we will 

prune all the path which contain ‘#’ in the subtree from 

current node.  

Example 3 Figure 3, Figure 4, Figure 5 give an example 

of the trie variation under the condition when we increase 

BRC from 1 to 3 consecutively. If we set the BRC param-

eter to 1, the leaf nodes’ parent node will be merged when 

the descendant identical data string number less equal s 

than 1. Numbers in the bracket represent the amount of the 

descendant identical data string under each node. As 

showed in Figure 3, note that in the left subtree under the 

node “a”, as all the descendants under “a” only represent 

the same string “t3”,  all the paths start from “a” and con-

tain “#” will be removed from the index.  In Figure 3, we 

change the nodes’ color into grey i f they are removed. In 

Figure 4 and Figure 5, we increase BRC to 2 and 3, as the 

nodes satisfying our reduction condition increase quite a 

lot, we can find the index size will be reduced incremen-

tally. Especially when BRC=3, we successfully prune al-

most a half part in our example. In our experiment, this 

change will reduce the size of our tree drastically when τ 

is larger than 1 and decrease a little bit on the search time  

side because this is an inevitable tradeoff between the 

storage and efficiency. Moreover, I change the underlying 

data storage to make all the identical data point to just one 

copy instead of store a copy for every redundant record. 

The parameter we introduce could be adjusted accordin g 

to the requirement of the real environment.  

 

Figure 3. Index of {test, text, taxi} when BRC=1 

 

Figure 4. Index of {test, text, taxi} when BRC=2  



 

 

 

Figure 5. Index of {test, text, taxi} when BRC=3 

4. Expansion algorithm improvement 

To support the active node model proposed in Li’s paper, 

Xiao’s work used a triplet <node, cursor, incoordination> 

as the representation of the active node states . This makes 

the expansion algorithm much more tedious and it gener-

ate too many active nodes states which consume quite a lot 

resources of the memory. To fix this problem, I change the 

active node representation to <node, incoordination, dif-

ference in trailing’#’>, which simplifies the model dras-

tically and generate much less active node states dur ing 

the expansion procedure. Our experiment shows that 

compared with the original work, the intermediate active 

nodes number is reduced by over 50%. Moreover, I also 

change the BST method to remove the second duplicate 

data because the original lemma supporting the old method 

is not reliable. 

To search an index constructed like Figure 2, we need 

traverse the trie with the single stroke of query input.  In 

Li’s work, <node, incoordination> is used  to represent the 

active node state because the index constructed is a direct 

trie. In Xiao’s work, <node, cursor, incoordination> is 

used instead because its new index structure IncNGTrie.  

Now we adjust it into <node, incoordination, difference> 

and give the explanation based on Xiao’s work.  

In line 1 of Algorithm1, we use ExpandActiveImproved 

to initialize the original active states.  At this moment, 

there’s no query stroke is input.  τ represents the threshold 

of error’s upper bound, we first go through the trie from 

root to most τ #’s and set the corresponding node to active. 

And then from line 2, we can see user will input a query 

stroke q[v], with the new stroke, algorithm will expand 

new active states based on original ones. Line 4 to line 9 

shows the method. When a query stroke q[v] comes, for 

each active state <node, incoordination, difference>, we 

do two steps: 

1. We keep ‘q[v]’ in the query’s variant, so we’ll go 

through ‘q[v]’, and then go through ‘#’ in the trie.  

 

 

2. We delete ‘q[v]’ in the query’s variant and mark it 

as ‘#’. So we’ll see if current node is still active by 

checking incoordination and difference, and then go 

through ‘#’ in the trie.  

After processing all the query strokes, the final set A is 

returned and used to fetch the results . 

5. Experiment 

The experiments were implemented using a PC with 

Intel Core i5 CPU (2.60GHz), 4GB memory, and Windows 

7 OS. The dataset was made by extracting the string of 

POI of the GNIS dataset.  This dataset consists of 200400 

strings and average string length is 11.  

5.1 Effect of index reduction 

We first evaluated the effect of our index reduction 

method. Figure 6, Figure 7, Figure 8 corresponds to the 

situation when τ=1, 2 and 3. The value of τ represents the 

error-length, that is, how many errors the query can con-

tain at most. Y-axis represents the amount of data strings 

and index nodes. Here, we use data size to represent the 

data strings amount. Because we merge the subtree’s node 

and its leaf nodes, some identical data strings we store in 

the memory will be merged into one.  Then, we use index 

size to represent the index nodes amount.  From the ex-

periments, we can see that when BRC variates from 0 to 1, 

both data size and index size is reduced by almost 30%, 



 

 

and the larger tau is, the more the total size is reduced. 

When BRC is increased to 9999999, the whole IncNGTrie 

is degenerated to a direct trie, which has a very small size.  

 

Figure 6. Data size and index size reduction effect 

when τ=1 

 

Figure 7. Data size and index size reduction effect 

when τ=2 

 

Figure 8. Data size and index size reduction effect 

when τ=3 

5.2 Effect of expansion improvement 

 

Figure 9. Returned active nodes amount when τ=1  

The three figures Figure 9, Figure 10, Figure 11 show 

the expansion improvement effect under the condition  τ=1, 

2 and 3. X-axis represents the query length and Y-axis 

represents the active node states amount. The common 

point of the three is that, as the length of query word in-

creases, the improved expansion algorithm has much less 

active states, which can remarkably save the memory and 

improve the time efficiency compared with the old algo-

rithm. When query length equals 8, the improved algo-

rithm’s active nodes states number is almost a half of the 

old one, which means our method reduce over 50% active 

node states when query is long enough. 

 

Figure 10. Returned active nodes amount when τ=2 

 

Figure 11. Returned active nodes amount when τ=3 
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