

DEIM Forum 2017 P7-3

Evaluating Programming Ability by Using a Visual Contents Comparison

Method

Dick MARTINEZ CALDERON† Yukinobu MIYAMOTO‡ Hidenari KIYOMITSU†

Kazuhiro OHTSUKI†

†Graduate School of Intercultural Studies, Kobe University 1-2-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan

‡Graduate School of Information Technology, Kobe Institute of Computing 2-2-7 Kanocho, Chuo-ku, Kobe, 650-

0001 Japan

E-mail: †dick.martinez@gmail.com, †{ohtsuki, kiyomitu}@kobe-u.ac.jp ‡miyamoto@kic.ac.jp

Abstract Until now, Paper tests and practical programming exercises have been widely used to evaluate programming

abilities but in recent years, professionals in different fields have become able to do programming by using simplified software

tools; as a consequence of this, they have become able to understand and do programming in a general or panoramic way. This

paper proposes a new method for evaluating programming abilities based on the comparison of visual output (pictures,

animations) produced by 2 or more programming samples. By comparing these output contents a student must decide which one

of the programs producing them is more difficult to build with programming than the other, or, if the difficulty is similar for both

of them.

Keyword Computer Science Education，Programming Training，Student Assessment，Graphic Design，Software

Engineering

1. Panoramic Understanding of Programming

Software development has changed drastically during

the last two decades; more and more people not involved

in professional software development have become able to

do programming and new resources to make programming

easier have been created. For example: code samples and

tutorials are being uploaded to the web and used through

copy-pasting; a large number of algorithms are constantly

being converted into libraries and made widely available,

so to find the best-suited function within libraries has

become an important task; and several visual software

development tools and languages, where the programming

code is hidden and it can be applied with “just a click” are

being developed.

Additionally, the background and learning modes of

people using programming in their fields or areas of

knowledge is becoming more diverse. Nowadays Software

developers and IT students learn to use code samples,

libraries and interfaces as a complement to traditional ways

to do programming, while students from other fields not

related with software development such as arts or business

are learning programming through authoring tools and

simplified programming languages.

Even when many studies have been proposing new

systems and software tools oriented to reduce the gap

between those different fields when learning skills on

programming, up to now, far too little attention has been

paid to the evaluation of programming ability in this wide

range of knowledge areas, and particularly, the evaluation

of the different ways professionals not related with

Software Development could be able to understand and

apply programming skills according to their knowledge; we

call this a Panoramic Understanding of Programming.

This new way to understand programming is different

than the programming perception applied by sof tware

developers or programmers. To be more specific, this new

understanding is not related to programming language

grammar, code writing, reading or debugging, or practical

performance at making programs, but instead, it ’s more

related to an awareness of how to build a program or how

to use structures or patterns in a specific programming

situation without knowing in depth the foundation of those

structures, or how to produce them using a specific

language or to do them from scratch.

2. A Method to Identify New Abilities on

Programming.

The objective of our research is to identify and measure

abilities related with the aforementioned “Panoramic

Understanding of Programming” in students from different

fields. To perform this, we propose a Programmed Visual

Contents Comparison (PVCC) method based on the

comparison of 2 or more output pictures (including

animations, interactive images, graphs, text) produced by

programming samples, if this comparison is showed to a

tested person, he is requested to decide which on e of the

pictures is more difficult to build with programming than

the other, or, if the difficulty is similar for both of them.

The correct answer for a question is defined by the most

difficult programming process (algorithm) in both samples;

basically, the student needs to identify this process to

provide the right answer to each question.

The person answering to any of the proposed samples

comparisons is asked to think about each comparison using

any experience and knowledge he could have on

programming, as little as it could be, regardless of the tools

or programming languages he could know. The following

examples will allow us to explain more in detail this

aspect:

Figure 1 Comparison Including Iteration process

Figure 1 shows a comparison where both samples are

built by using the same code (an iteration process)

changing only its parameters. In this sense, the correct

answer for this question was established to be: the

difficulty is similar.

We would expect students who understand how the

iteration process is applied on both samples to answer the

difficulty is similar, since they would surely identify that

both samples are built by using the same program only

changing its parameters.

In the other hand, those students choosing one sample

over the other as their answer are probably unaware of the

specific programming process used to build both samples

(iteration) and would probably consider their difficulty

based more on screen presentation issues (e.g. scale,

distance between objects, visual impress ion) than on how

they are programmed.

Fig. #2 shows a Question where the sample marked with

(1) uses a Hidden Line Removal process to draw circles,

while the program of the sample marked with (2) doesn ’t

use this process, therefore the correct answer for t his

question was decided to be: the sample marked with (1).

Figure 2 Comparison including Hidden Line Removal

process

Those students of programming knowing how difficult it

is to draw circles the way they are displayed on the sample

marked with (1) without using any libraries, or by using

older programming languages (closer to machine language),

would surely understand the difficulty of the Hidden Line

Removal process used on the sample marked with (1).

By contrast, those students who are used to program with

simplified programming languages, or by using libraries,

would probably answer that the difficulty is similar since

with those languages both samples can be produced by

using the same code changing only its parameters. These

students are surely unaware of what kind of algorithm is

the Hidden Line Removal and how it is applied.

Based on this method We built a Web Testing, where

Questions including three types of samples: Static Pictures,

Animated Graphics and Controlled by Mouse (sample

objects can be moved or changed by hovering and clicking)

were arranged.

Figure 3 Example of a Question as displayed on the Web

Testing System

Figure 3 shows an example of how a Question was

displayed on screen; in this case both samples were

Animated Graphics, the sample on the left draws and erases

a circle each frame, while the sample on the right draws

circles each frame without erasing them.

3. Potential of the Proposed Method to Evaluate

Programming Abilities.

As it was mentioned before, through using this method

we want to identify abilities related to what we defined as

“panoramic” understanding of programming, or in other

words, a general awareness of programming through which

a person can effectively make programs by putting together

several external resources, without having a deep

knowledge about programming (as software developers

have) or having learned programming by other ways

different than those applied in software development

courses.

The proposed method, then, has the potential to be

applied in order to measure abilities related with this

general awareness of programming; for example:

 The ability to know how (and where, what

library or snippet) to obtain a specific “part” or

“piece” of code to make something work,

depending or not of the language.

 The ability to “connect” or “replace” code parts

following the logic of an already written

program (perhaps written by another person).

 The ability to grasp fundamental programming

structures (e.g. loops, conditional structures

etc.) intuitively by understanding more complex

structures (functions, objects).

 The ability to understand deep concepts of

programming (e.g. resourciveness) from output

elements like graphics or animations, even

when not being able to do a recursive function.

In this respect, our proposed method has proven to have

potential to identify the aforementioned kind of abilities.

We applied this method in a test performed with more

than 200 students of different fields (reportedly: Game

Design, Graphic Design and IT including software

development), all of them provided feedback regarding

three items which results are described in the Table 1 and

will be discussed in the following paragraphs:

70% of the students indicated that they were able to

measure their ability on programming by testing

themselves with this method.

This result suggests that, in spite of their field or

knowledge level, the students who answered this test were

able to figure out how each programming sample of a

comparison could be done and based on their answer they

knew if they were able to handle or not a particular aspect

of programming of those evaluated (quote FIE article)

However, their answer to the comparisons of the test

even when “correct” couldn’t have been appropriate from

a common programming perspective, or in the opposite side,

even when “wrong” could have been given according to a

common programming point of view.

For example: Even though some students answering the

problem of Figure 1 probably didn’t have an idea of what

“nested iteration” was, they were able to use a

(programming) thinking different to “Nested iteration” to

figure out that both samples have a somewhat similar

difficulty if done with programming.

On the other hand, if fig 1 example is viewed from a too

strict programming point of view, the second programming

sample could be a little more difficult than the first sample.

Some students probably thought on the actual difficulty

required in programming to draw squares on screen and

adjust them in a grid with proportional interspaces; and

since the first sample has less squares it can take less time

Table 1. Feedback from the Verification Test .

D o y o u t h i n k t h i s t e s t w a s

us e f u l f o r y o u t o kn ow y o ur

ow n a b i l i ty i n

pro g r a m mi ng ?

D o y o u t h i n k t h a t by re a d i ng t he

ex p l a na t i o n a b o ut t he r i g ht a n sw e r s

a n d t h i n ki ng t he a nsw e r s o f t h i s

t e s t , y o u ha v e l e a r n e d o r re v i ew e d

a ny t h i ng a bo ut pro g r a m mi ng ?

D i d y o u f i n d t h i s t e s t mo re

e n j o y a b l e w he n c o mp a re d

w i t h us ua l p a p e r

pro g r a m mi ng s ki l l s t e s t s ?

7 0 % Ye s , I t h i n k so 7 4 % Ye s , I t h i n k so 8 9 %
Ye s , I fo u n d i t

mo r e e n jo ya b l e

1 0 %
I d o n ’ t t h in k i t wa s

u s e fu l
1 2 %

I d o n ’ t t h in k I h a v e l e a r n e d

o r r e v i e we d a n yt h i n g ab o u t

p r o g r a m mi n g a t a l l

5 %
I d id n ’ t en jo y i t a t

a l l

2 0 % I d o n ’ t k n o w 1 4 % I d o n ’ t k n o w 6 % I d o n ’ t k n o w

on doing it, and also require less computing resources (less

processing, less memory).

This way of thinking, even when belonging probably to

a person who has a deep knowledge of programming, could

be considered as a “panoramic understanding” because the

student is also considering a particular way to think about

the program depending on the knowledge he could have.

In addition to the percentage of students that considered

the test useful to know their own programming ability, a

74% of students considered that they learned a lot by

knowing what the right answer was for each one of the

comparisons. And interestingly a 53% of that total of

students belongs to fields learning classic programming

theory and how to do algorithms (namely: Game design, IT

and software development).

This result could indicate that these students who know

programming actually figured out that there are other

different ways to do (or to think) the programs they are

already used to answer, challenging their own

preconception of how a program can be built, and changing

the way to look for the difference between two programs.

In this sense, if a student of programming is capable of

getting out of preconceived knowledge patterns and

consider optimize his solution, this could also be

considered as an ability related to a panoramic

understanding of programming.

By comparing the test based on the proposed method

with a usual programing proficiency test, namely, written

tests or practical “hands-on” tests, an 88% of the evaluated

students found it to be enjoyable.

This result suggests that, the whole experience of

comparing two programming samples, besides giving the

student the possibility to challenge their way to think about

a problem (in this case a programming problem), is varied

enough to provide new contents and new challenges every

time and, since the comparisons are made to be answered

in a fast pace (approximately 2-3 minutes per comparison),

and there is no need to remember language syntax or

structures.

4. Future Work.

Further studies need to be carried out in order to

establish if the proposed Programmed Visual Contents

Comparison Method can effectively measure programming

ability. A greater focus on establishing how to measure

students specific programming abilities could produce

interesting findings that account more to validate this

method.

Future improvement should also focus on building

evaluation standards or scales for each measured ability

related with Panoramic Understanding of Programming,

and enhance question’s classification, probably proposing

different types of tests reaching different level of abilities

for the same school year.

A natural progression of this work is to perform more

tests using each time more complete and precise questions

and keep verifying their effectiveness. Future trials of the

test based on the proposed Programmed Visual Contents

Comparison Method should assess effectively the desired

programming abilities.

References
[1] Kursat Ozenc, F., Miso, K., Zimmerman, J., Oney, S.

and Myers, B.: “How to Support Designers in Getting
Hold of the Immaterial Material of Software”,
Proceedings of the 2010 SIGCHI Conference on
Human Factors in Computing Systems (CHI '10) , pp.
2513-2522 (2010)

[2] Ko, A., Myers, B. and Aung, H.H.: “Six Learning
Barriers in End-User Programming Systems”,
Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing (VLHCC '04) ,
pp. 199-206 (2004)

[3] Martinez Calderon, D., Kin, M., Kiyomitsu, H.,
Ohtsuki, K. and Miyamoto, Y.: “An Evaluation
Method for Panoramic Understanding of
Programming by Comparison with Visual Examples”,
Proceedings of the 2015 Frontiers in Education
Conference (FIE 2015), pp.511-518 (2015)

