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Abstract This paper proposes methods of finding relevant entities from RDF data for a given sentential query

(e.g. “Cars 3”, “Toy Story 4”, or “The Incredibles 2” for the query “upcoming animated films pixar”) by leveraging

different types of modifiers in the query through identifying corresponding properties (e.g. released and studio’s

industry for the modifiers “upcoming” and “animated”, respectively). While a major search engine like Google

provides a function that shows a list of entities with respects to users’ queries on their search result page, the

entities are neither presented for a large fraction of users’ queries, nor in the order that users expect. To enhance

the efficiency of this function, we propose a method of finding entities based on the similarity between a query and

entity type names together with the frequency of entities in search results returned in response to the query. We

also propose a method of identifying a property corresponding to each modifier in a query based on the frequency

of property values containing the modifier and co-occurrence of the modifier and property names. Moreover, the

proposed method utilizes the difference in property value distributions of entities in the search results for a query

with and without the modifier. The experimental results showed that our proposed methods could predict relevant

entities based on relevant entity types for more queries than the existing function and achieved the best performance

for identifying relevant properties when all of the criteria were combined.
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1. Introduction

Users often search using entity type names as a query in a

Web search according to our survey which was performed by

randomly sampling 100,000 queries from a query log. The

result shows that approximately 36% of queries contained

entity type names (the details are reported in Section 4.).

Entity type names usually refer to a collection of entities.

For example, the entity type name “Retail stores in Amer-

ica” refers to the entities “Walmart”, “Costco”, and “The

Home Depot”. This moderate fraction of queries suggests

that many users want to find entity type related information

that includes a list of entities from Web search results. To

satisfy this information need, major search engines such as

Google have started to provide a function that presents a list

of entities at the top of the search engine result page for a

given search query. Thus, providing entities in response to

users’ search queries becomes important as users can imme-

diately find entity information without browsing among the

search results.

However, since search queries are as varied as users’ need,

it is crucial for this kind of function to handle a wide vari-

ety of search queries such as “highest profitable companies

japan”, “upcoming american mystery movies” and “recent

<producedBy>	 <location>	
movie x	 company c	 U.S.	

producedIn	

query = latest   american   comedy movies	

Figure 1: Example of multiple predicates as a property.

fantasy novels”. Furthermore, queries sometimes contain

modifiers such as “highest profitable”, “upcoming”, and “re-

cent” that modify other components in the queries like entity

type names. These modifiers are useful to narrow down the

list of entities, yet the existing function does not select or

sort entities by taking into account such modifiers. Accord-

ingly, it is necessary to interpret modifiers in queries and sort

entities in the order of their relevance to the modifiers.

To overcome these limitations, we propose methods that

utilize RDF (Resource Description Framework) data from a

large-scale knowledge base (e.g. DBpedia（注1）) for 1) finding

a set of entities for a larger fraction of Web search queries

and 2) identifying properties that are relevant to the mod-

ifier terms in the query for entity ranking. The structure

of RDF data is a collection of triples where each triple con-

（注1）：http://wiki.dbpedia.org/



sists of a subject, a predicate, and an object. Predicates

within triples denote the relationship between pairs of sub-

jects and objects. A set of such RDF triples can be viewed

as a graph in which predicates are edge labels connecting

subjects with objects. By utilizing the RDF data, we can

easily capture the relationship among subjects and objects.

For example, the subject “Japanese bands” and the object

“Nintendo” are associated by the predicate <is a subject of>

that represents the relationship between “Japanese bands”

as the entity type and “Nintendo” as the entity. Likewise, the

subject “Nintendo” as the entity is connected by the predi-

cates <founder>, <numEmployees> and <revenue>. These

predicates represent the different essences and link the sub-

ject “Nintendo” as the entity with different objects. By using

these kinds of relationship, we can identify which entities are

associated with entity types and which properties relevant to

modifiers with respect to a given query. For example, given

the query “highest profitable companies japan”, we find a set

of companies in Japan based on their entity types along with

the property corresponding to the term “highest profitable”,

which is the property revenue derived from the predicate

<revenue> that describes the amount of money earned by

the companies. In addition, the corresponding properties can

consist of one or more predicates. For example, the predi-

cates (<producedBy>, <location>) as the property pro-

ducedIn for the modifier “american” in the query “latest

american comedy movies” as shown in Figure 1.

Our proposed method for finding a set of entities is based

on the similarity between a query and entity type names

as well as the document frequency of entities in the search

results returned in response to the query. We identify a rele-

vant property for a given modifier based on three criteria: 1)

the frequency of property values including the modifier, 2)

the co-occurrence of the modifier and property names, and

3) the difference in property value distributions of entities in

the search results for a query with and without the modifier.

In the experiments, we used 40 queries to evaluate the

effectiveness of our proposed methods. The experimental

results showed that our methods could predict relevant enti-

ties for more queries than the existing function provided by a

major search engine, and achieved the best performance for

identifying relevant properties when all criteria were com-

bined. The contributions of this paper are:

• We introduced two fundamental tasks: entity set re-

trieval and property identification for entity ranking.

• We proposed methods for the two tasks, which utilize

the RDF data with some statistics that can be computed by

performing a Web search.

• We conducted two experiments to evaluate the per-

formance of the methods and demonstrated the effectiveness

over the existing system.

The rest of the paper is organized as follows. Section 2.

surveys related work on finding relevant entities and prop-

erties. Section 3. introduces our proposed methods, and

Section 4. presents experimental results. Finally, Section 5.

concludes the paper by outlining future work.

2. Related Work

This section introduces some related works to the problem

of finding relevant entities and properties. One of the most

related works is entity ranking, which has been addressed in

some tracks in INEX and TREC [2], [4], [5], [7]. The INEX

entity ranking track is comprised of two tasks: entity rank-

ing and entity list completion tasks. The entity ranking task

expects systems to return relevant Wikipedia articles (or en-

tities) in response to a given query where there is assumption

that all entities have the corresponding pages in Wikipedia.

There are some proposed approaches for this task. Kaptein

et al. proposed methods to rank Wikipedia entities by esti-

mating relevant Wikipedia categories for a given query, and

rank entities based on the query likelihood model with esti-

mated categories [11]. Demartini et al. expanded queries for

the entity ranking task in many different ways such as us-

ing hierarchical relationship in the ontology and synonyms,

and extracting named entities from the queries [6]. Balog et

al. proposed a probabilistic framework for the entity ranking

task, which can model not only keyword queries, but also

the other input such as categories in which relevant entities

should belong to and examples of relevant entities [1].

The entity track in TREC 2010 introduced another task

called related entity finding. This task is related to the entity

ranking tracks in INEX although it is different in many ways:

the main input is an entity name or a homepage of an entity

and output is a list of homepages of entities. There are also

some works that proposed methods for this task. For ex-

ample, Bron et al. proposed methods to reduce problems in

ranking by using four components including co-occurrence,

type filtering, context modeling, and homepage finding [3].

Moreover, there are some related works about finding and

ranking a set of RDF subgraphs by considering relevant pred-

icates (or properties) based on keyword queries [9], [12]. The

basic idea of the keyword search over graph-structured data

is to match keywords with the elements in the graph, and to

rank a set of related subgraphs containing the matching ele-

ments using the predicates. If the keyword often appears in

relation to the predicates, its subgraphs would rank higher.

Therefore, the top ranked subgraphs contains the related el-

ements (or entities).

Similar to the keyword search problem, the question an-

swering over RDF graph is also considered as one of related

works [13], [15]. These works attempted to find answers (or

entities) based on questions (or queries). The authors of

these works also consider the modifier in the questions in

which they finds the corresponding properties for the modi-

fier terms. Zou et al. proposed methods to find relevant pred-

icates or predicate paths (or properties) using supporting en-

tity pairs for the relation phase (or modifier). For example,

the relation phase “play in” has the supporting pairs such as

Julia Roberts with Runaway Bride, while Unger et al. pro-

posed methods that use of the pattern library extracted by

the BOA framework [10] besides string matching for finding

relevant properties.



More study related to the problem of finding properties

corresponding to modifiers was authored by Zhang et al. [14].

In this work, relevant properties (of facets) were estimated

for a given query in order to provide better snippets for struc-

tured documents. While a machine learning approach was

employed for finding relevant properties, most of the features

were textual similarity that often used for learning to rank

for Web search (e.g. TF-IDF or BM25).

The problem of finding relevant entities is almost the same

as the entity ranking tasks, keyword search and question an-

swering over RDF except for types of queries in which we

are interested in. The query type that we target includes the

modifiers that are not necessarily included in the Wikipedia

articles or the elements in the RDF graphs (e.g. “latest” or

“most profitable”). Moreover, we use not only textual sim-

ilarity based on a knowledge base, but also Web search en-

gine results for finding relevant entities. This means that we

make use of both structured and unstructured information

for finding relevant entities.

The existing approaches for finding relevant properties and

sequences of properties such as the textual similarity are

not suitable for modifiers that represent numerical attributes

(e.g. “oldest”, “newest”, and “latest” ), for which we propose

methods based on the co-occurrence of terms on the Web and

property value distributions of entities.

3. Methodology

In this section, we propose two fundamental tasks and

methods for these tasks. The first task is entity set retrieval

where given a query, we need to find a set of relevant entities.

The second task is property identification, i.e. identifying the

most appropriate properties for modifier terms in a query.

3. 1 Problem Definition

Before going through each method, we formally define our

problem in this subsection. Our problem is to return a

ranked list of entities for a given query q ∈ Q. We are specif-

ically interested in queries Q that contain entity type names

and modifiers. A modifier is an attributive term that de-

scribes a typical feature of entities. Examples of modifiers are

“oldest”, “american”, “comedy”, and “private”. Examples

of queries Q are “ancient temples” ([modifier] [type]), “latest

comedy movies” ([modifier] [modifier] [type]), and “universi-

ties new york” ([type] [modifier] [modifier]), where [modifier]

and [type] in parentheses indicate that the term in the query

is a modifier and entity type name, respectively.

As was mentioned earlier, we build on RDF data from a

knowledge base that indicate a relationship between entities

E and entity types T and properties P . Entities of the entity

type t ∈ T are denoted by Et, entity types to which entity

e ∈ E belongs are denoted by Te, and a set of properties

of entity e ∈ E are denoted by Pe. This set of properties

consists of kth-distant properties which are the edge labels

of the k-edge far from entity e ∈ E in the RDF graph where

k ∈ [1,K]. In our work, the problem is addressed through

two tasks: 1) finding a set of entities E∗
q ⊂ E for query q and

q: upcoming animated movies pixar	
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(b) Relevant property identification

Figure 2: Overview of Two Fundamental Tasks

2) finding a set of relevant properties P ∗
q ⊂ PE∗

q
=

∪
e∈E∗

q
Pe

for query q, where E∗
q should belong to entity types relevant

to the entity type names in query q, and P ∗
q should corre-

spond to the modifiers in query q. Having obtained E∗
q and

P ∗
q , we get a ranked list of entities by ranking E∗

q based on

properties P ∗
q .

In the following subsections, we describe methods for each

of the two tasks for finding a set of candidate entities and

a set of relevant properties. The overview of both tasks is

illustrated in 2a and 2b.

3. 2 Finding Set of Candidate Entities

Since we assume that a given query contains entity type

names, entity types and their entities should be relevant if

the name of the entity types is similar to the query. Here, we

use the Okapi BM25 to measure their similarity. In addition,

relevant entities may frequently appear in Web search results



returned in response to the query as some Web pages list up

entities that belong to a certain entity type.

3. 2. 1 BM25 Score between Query and Entity Type

We measure the similarity between query q ∈ Q and entity

type t ∈ T using the Okapi BM25 as sim(q, t). We regard

entity types whose sim(q, t) is θ% (0.8 in our experiments) of

the maximum score or larger as a set of entity types denoted

as Tq:

Tq = { t | sim(q, t) >= θmax
t′∈T

(sim(q, t′)) } (1)

The set of candidate entities is Eq =
∪

t∈Tq
Et.

In some cases, even though the BM25 score is high, the

resultant entity types Tq can still be irrelevant to the query.

For example, given the query “suspension bridges in manhat-

tan”, Tq includes “Suspension bridges”, “Bridges in Manhat-

tan”, “Suspension bridges in Japan”, “Suspension bridges in

the United States”, and “Suspension bridges in Hungary”,

of which two are irrelevant to the query. To deal with this

problem, we utilize the Web document frequency of entities.

3. 2. 2 Document Frequency of Entities in Web Search

To exclude irrelevant entities from Tq, we utilize the Web

search results for query q. We issue the original search query

q to a Web search engine and collect the top S search results

Rq (S was set to 20 in our experiments). For each candi-

date entity e ∈ Eq, we count the number of search results

that include the entity name in their content. More for-

mally, the search result frequency is defined as df(e,Rq) =

| { r | r ∈ Rq ∧ e ∈ Er } | where Er is the set of entities whose

name is included in the content of search result r. Entities

that have a high document frequency can be regarded as rel-

evant to query q because they appear many times in the Web

search results for q.

3. 2. 3 Co-HITS Algorithm using BM25 Score and Doc-

ument Frequency

Given the BM25 scores of entity types and document fre-

quency of entities, we utilize the Co-HITS algorithm [8] to

combine these two criteria based on two assumptions: 1)

Entity types are likely to be relevant if they contain relevant

entities. 2) Entities are likely to be relevant if they belong to

relevant entity types. As entities that have a high document

frequency are likely to be relevant to query q, we can infer

that entity types including such entities are also relevant. In

a similar way, we can further infer that entities included in

relevant entity types are also relevant. The Co-HITS algo-

rithm can be used to make these inferences and enables us

to find more relevant entities and entity types that would be

missed when using methods described above.

The Co-HITS algorithm can be described with the follow-

ing equations:

c(q, t) = (1− λT ) sim(q, t) + λT

∑
e∈Eq

wetc(q, e), (2)

c(q, e) = (1− λE) df(e,Rq) + λE

∑
t∈Tq

wtec(q, t), (3)

where c(q, t) and c(q, e) are the Co-HITS scores for entity

types and entities, wet is the edge weight from entity e to

entity type t, wte is the edge weight from t to e, and λT and

λE are the parameters that control the effect of the BM25

score and document frequency on the Co-HITS score. The

edge weights indicate an is-a relationship between the en-

tity types and entities and are defined as wet = 1/|Te| and
wte = 1/|Et| if entity e belongs to entity type t; otherwise,

the edge weights are zero. Entities with the highest Co-HITS

scores are used as E∗
q and are later ranked by properties iden-

tified in the second task.

The Co-HITS score reflects our two assumptions. It be-

comes higher for entity type t if the Co-HITS scores for enti-

ties of t (the rightmost term in Equation 2) become higher,

while it becomes higher for entity e if the Co-HITS scores for

entity types of e (the rightmost term in Equation 3) become

higher.

By using the example query “suspension bridges in man-

hattan”, the top 5 entity types in terms of Co-HITS score are

“Suspension bridges”, “Bridges”, “Suspension bridges in the

United States”, “Bridges in Manhattan”, and “Bridges in

New York City”. This shows that the more relevant entity

types can be ranked higher by combining the BM25 score

and document frequency.

3. 3 Finding Set of Relevant Properties

For this second task, we firstly identify the terms to be

modifiers in a given search query. These modifiers are used

to find corresponding properties based on the three meth-

ods: 1) counting the frequency of property values including

the modifier, 2) measuring the co-occurrence of the modi-

fier and property names, and 3) measuring the difference in

property value distributions of entities in search results for a

query with and without the modifier.

3. 3. 1 Identifying Query Terms to be Modifiers

Since we have found relevant entity types, we assume that

the modifiers are terms that are not used for indicating the

relevant entity types, i.e. ones that do not contribute to the

BM25 scores of the relevant entity types. Specifically, for

each term w in query q, we sum up all the BM25 scores of

the entity types in Tq that contain term w in their entity

type names. Then, we select term w as a modifier only if the

sum of the BM25 scores for term w is relatively low. The

set of modifiers in query q is denoted by Mq and obtained as

follows:

Mq =
{
w

∣∣∣ ∑t∈Tq∧w∈n(t) sim(q, t) <= ϕ
∑

w′∈q

∑
t∈Tq∧w′∈n(t) sim(q, t)

}
, (4)

where n(t) represents a set of terms in the name of entity

type t, and ϕ is a parameter that we set to 0.2 in our exper-

iments. The left term in the inequality is the sum of BM25

scores for term w, while the right term is that for all the

terms in the query.

For each modifier m ∈ Mq, we attempt to find a corre-

sponding property from properties PE∗
q
(=

∪
e∈E∗

q
Pe) that

can appropriately describe the modifier.

3. 3. 2 Counting Frequency of Property Values

The first method to find relevant properties is to count

the frequency of property values for each property p that

contain modifier term m. Some kinds of modifiers indicate a
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Figure 3: Distributions of q and q−m for each property (pj)

where x-axis (v) represents the property value of pj , and y-

axis (P (v)) represents probability density of property value

v. In these examples, largest distribution difference can be

seen with property p2, which is possibly relevant to modifier

m.

certain type of entities (e.g. “zen” is a property value of rel-

evant property <denomination> and “new york” is included

in the property values of the relevant property <address>)

and often specifies the property values of relevant proper-

ties. The frequency of property values including modifier m

is computed as follows:

freq(q,m, p) = | { e | e ∈ E∗
q ∧m ∈ p(e) } |, (5)

where p(e) represents the property value of property p for

entity e, which is represented as a set of terms in this case.

This method can only be applied to modifiers that appear

as a part of property values. Some modifiers such as “latest”,

“oldest”, and “recent” cannot be directly found in their rel-

evant property by only looking at the property value. Thus,

we need to use the second and third methods for these kinds

of modifiers.

3. 3. 3 Measuring the Co-occurrence on the Web

The second method is to measure the co-occurrence of

modifiers and property names on the Web. When people de-

scribe the characteristic of entities by modifiers (e.g. “old”,

“large”, and “highest profitable”), they are likely to show

their property values as evidence that prove the statement is

reliable (e.g. “foundation date”, “area size”, and “income”,

respectively). Thus, a high co-occurrence between a modi-

fier and a property name indicates that the modifier specifies

a certain property value of the property. We compute how

frequently modifier m co-occurs with property p as follows:

co(m, p) =
| Dm ∩Dn(p) |

| Dm | , (6)

where Dm is the set of web pages containing term m, and

n(p) is the name of property p.

3. 3. 4 Measuring KL Divergence between Property

Value Distributions

The third method is to measure the difference in property

value distributions of entities in search results for a query

with and without the modifier. We expect that Web search

engines can return search results containing some entities

whose property values are relevant to modifiers when the

original query is used as a Web search query, but they cannot

do this when modifiers are excluded from the query. Based

on this assumption, we can measure the change in property

value distributions of each property for these cases and esti-

mate that properties that cause big changes are relevant to

modifiers excluded from the query. Figure 3 shows some ex-

amples of pairs of property value distributions. We estimate

that property p2 is relevant to modifier m since the distri-

butions for the original search query (q) and original search

query without modifier term m (q−m) are significantly dif-

ferent.

The property value distribution of property p for query q

can be estimated as follows:

P q
p (v) =

| { e | e ∈ ERq ∧ p(e) = v } |∑
v′∈Vp

| { e | e ∈ ERq ∧ p(e) = v′ } | , (7)

where v is a property value (v ∈ Vp; Vp is the set of all

possible property values for property p), and ERq is a set of

entities included in the search results for query q (formally

defined as ERq =
∪

r∈Rq
Er).

Letting q−m be query q with modifier m excluded (i.e. q−
{m} if q is represented as a set of terms), the difference be-

tween property value distributions for queries q and q−m is

measured by Kullback-Leibler divergence as follows:

diff(q,m, p) = D(P q
p ∥ P

q−m
p ) =

∑
v∈Vp

logP q
p (v)

Pq
p (v)

P
q−m
p (v)

. (8)

3. 3. 5 Combination of Three Criteria for Identifying Rel-

evant Properties

Lastly, after applying all three methods to every property p

for each modifier m ∈ Mq, we need to find most appropriate

property by linearly combining these methods:

f(q,m, p) = α1freq(q,m, p) + α2co(m, p) + α3diff(q,m, p), (9)

where parameter α1 should be higher than the other param-

eters α2 and α3 according to our preliminary experiments.

Thus, we opted to use α1 = 0.8, α2 = 0.1, and α3 = 0.1 in

our experiments described in the next section.

We selected the property with the highest f(q,m, p) for

each modifier m ∈ Mq and finally obtained a set of prop-

erties P ∗
q = { argmaxp∈PE∗

q
λe,pf(q,m, p) | m ∈ Mq } where

λe,p = 1
d(e,p)

. d(e, p) denotes the distance of property p from

entity e ∈ E since the nearer the property is to the entity,

the more relevance it can be for the modifier.

4. Experiments

In this section, we explain our survey on the entity type

names in queries, introduce evaluation methodology for our

proposed methods, and show and discuss our experimental

results.

In the experiments, we used RDF data from DBpedia as

knowledge base to evaluate our methods. We obtained a

set of entity types, entities, properties and property values

from DBpedia, which contains structured information de-

rived from Wikipedia. We extracted pairs of an entity and

an entity type by using the predicate <is a subject of> as the

property, where the subjects and objects are treated as entity

types and entities, respectively. For extracting properties

and property values, we retrieved all triples whose the sub-

jects are the entities, and treated the predicates as the prop-

erty names and the objects as the property values. After the



Table 1: Precision, Recall and F-score for entity types for 25 combinations of λE and λT .
(a) Precision

λE

λT
0.00 0.25 0.50 0.75 1.00

0.00 0.659 0.553 0.554 0.552 0.569

0.25 0.517 0.554 0.560 0.554 0.571

0.50 0.517 0.543 0.549 0.562 0.571

0.75 0.517 0.540 0.547 0.552 0.550

1.00 0.517 0.504 0.499 0.493 0.494

(b) Recall

λE

λT
0.00 0.25 0.50 0.75 1.00

0.00 0.260 0.443 0.445 0.441 0.456

0.25 0.198 0.448 0.452 0.446 0.457

0.50 0.198 0.429 0.442 0.449 0.453

0.75 0.198 0.438 0.446 0.446 0.438

1.00 0.198 0.413 0.406 0.398 0.371

(c) F-score

λE

λT
0.00 0.25 0.50 0.75 1.00

0.00 0.325 0.449 0.451 0.448 0.463

0.25 0.254 0.453 0.457 0.451 0.465

0.50 0.254 0.439 0.449 0.458 0.464

0.75 0.254 0.442 0.448 0.450 0.446

1.00 0.254 0.413 0.408 0.400 0.391

Table 2: Examples of top five entity types obtained by best

parameter values for λE (0.25) and λT (1.00) with the Co-

HITS algorithm.

Query Entity Types

upcoming animated films pixar

Films directed by John Lasseter

Films featuring anthropomorphic characters

Films directed by Rob Zombie

Films directed by Andrew Stanton

2000s science fiction films

newest video games 2016

Upcoming video games scheduled for 2016

PlayStation 4 games

Video games set in 2016

Video games featuring female protagonists

Dinosaurs in video games

private business schools europe

Business in Europe

Education in Budapest

Europe Business Schools

Business schools in Germany

Universities and colleges in Cyprus

large companion dog breeds

Dog breeds

Dog breeds originating in Germany

Companion dogs

Spaniels

Sighthounds

extraction, we got 974,417 entity types including 4,811,226

entities and 60,252 properties from all the entities in total.

4. 1 Survey on Entity Type Names in Queries

To find out that how many search queries issued by users

contain an entity type name, we randomly picked 100,000

queries from an AOL query log and found queries contain-

ing entity type names from DBpedia. We used the BM25

score to measure the similarity between queries and entity

type names and selected queries with high scores using the

same criterion as that used in finding relevant entity types.

Queries were considered as ones including an entity type

name only if they were retrieved by BM25 and satisfied the

criteria shown below:

∃t ∈ T

(
|q ∩ n(t)|

|q|
>= β1 ∧

|n(t)|
|q|

>= β2

)
, (10)

where q represents the set of terms in the query, n(t) is a set

of terms in the name of entity type t, and β1 and β2 were set

to 0.65 and 0.5, respectively. These two criteria guaranteed

that 65% or more terms in the queries were terms in an en-

tity type name, and the number of terms in the queries was

double or less than that in the entity type name. For ex-

ample, “retail stores america” and “taylor swift songs” were

counted because of entity types “Retail stores in America”

and “Songs written by Taylor Swift”, whereas “walmart” and

“taylor swift” were not. As a result, we found that approxi-

mately 36% of the search queries contain entity type names,

and conclude that our methods can be applied to a moderate

fraction of Web queries.

4. 2 Evaluation Methodology

We separately evaluated resultant entities and properties

for measuring the performance of our proposed methods in

detail. In the experiments, we used 40 search queries that

contain modifiers and an entity type name (examples of the

queries can be found in Table 2).

4. 2. 1 Evaluation of Entities

To evaluate the performance of the proposed methods for

finding candidate entities, for simplicity, we opted to eval-

uate entity types rather than entities since the relevance of

retrieved entity types usually indicates that of entities in our

problem setting.

For each query, we evaluated 10 entity types with the high-

est Co-HITS scores (c(q, t)) for 25 possible combinations

of the two parameters involved in the Co-HITS algorithm,

where λT and λI were set to 0.00, 0.25, 0.50, 0.75, and 1.00.

Parameter λT controls the effect of the BM25 score of entity

types, while parameter λI controls the effect of document

frequency of entities on the Co-HITS score.

As a result, we obtained 25 sets of entity types for each

query, and pooled the results for evaluation. The relevance

assessment was carried out by three assessors including two

of the authors. An entity type was considered relevant if at

least one of its entities was relevant for a given query. The

inter-rater agreement was measured by Fleiss’ Kappa and

was considered to be moderate at 0.601. We used majority

voting to decide the relevance of each entity type.

We computed the precision, recall, and F-measure based

on the relevance given by three assessors. Moreover, we com-

pared our methods with the existing function provided by

Google. We computed the percentage of queries for which

the top ranked entity type was relevant for our methods and

percentage of queries for which Google’s function can present

a list of entities. Note that these results are not perfectly

comparable due to the difference in the metrics, but they

can still show the coverage of queries achieved by our meth-

ods and Google’s function.

4. 2. 2 Evaluation of Properties

This part of the evaluation was designed for evaluating the

performance of the three methods for finding properties rele-



vant to modifiers in queries. In this part, we initially set K to

1 for finding a set of properties of entities with the same set of

queries as that used in the evaluation of entities. We detected

49 modifiers from 40 queries by the method explained in Sec-

tion 3. 3, and evaluated the top five properties for each mod-

ifier using the following methods: Method I: Counting the

frequency of property values (Equation 5), Method II: Mea-

suring the co-occurrence on the Web (Equation 6), Method

III: Measuring KL divergence (Equation 8), and Method IV:

Combination of Methods I, II, and III (Equation 9). No

baseline method was used due to lack of existing methods.

The relevance of each property was assessed by the same

assessors as those involved in the evaluation of entities. They

were required to judge a property as relevant only if a given

modifier seemed to specify a certain type of entity by prop-

erty values of the property in a sequence. The inter-rater

agreement was measured by Fleiss’ Kappa and was consid-

ered to be substantial at 0.745. Majority voting was used to

decide the relevance of each property.

We compared the results by Mean Reciprocal Rank

(MRR), which is defined as follows: MRR = 1
M

∑M
i=1

1
ri
,

where M is the number of modifiers in our experiment

(i.e. 49), and ri denotes the rank of the first relevant property

for the i-th modifier. The MRR is often used for evaluating

ranked lists where only the first relevant result matters and

is suitable for this evaluation since we expect only a relevant

property can be used for each modifier.

4. 3 Experimental Results for Entities

Table 1a and 1b show the precision and recall of the re-

sultant entity types for 25 combinations of parameter λE

and λT , respectively. We noticed that the highest precision

(0.659) was achieved when λE = 0.00 and λT = 0.00. Al-

though the highest precision was achieved when λT = 0.00,

the lowest recalls were obtained (0.198) with the same set-

ting. Since λT = 0.00 indicates that the Co-HITS score was

determined solely by the BM25 score, this result suggests

that only the BM25 score can achieve high precision but low

recall.

We achieved high performance for both of the precision

and recall with 0.00 <= λE <= 0.50 and λT = 1.00. Among

these parameter values, the highest recall was achieved when

λE = 0.25 and λT = 1.00. Moreover, we obtained the high-

est F-measure for λE = 0.25 and λT = 1.00 as shown in

Table 1c. Table 2 shows examples of entity types obtained

by the best parameter values. This result suggests that we

should not rely much on the similarity, but we should give a

high weight to the document frequency in the Co-HITS al-

gorithm. Note, however, that this does not mean the BM25

score is not necessarily used in our method as the BM25 score

is still required to retrieve entities used in the Co-HITS al-

gorithm. We could get more irrelevant entities if we directly

found entity names from Web search results without know-

ing the candidate entities by the entity types, since irrelevant

but common entity names may appear in the search results

(e.g. “I” (a song title) or “IT” (a film title)).

We also compared our method with Google’s function. To

Table 3: MRR for results of identifying relevant properties.

Method I Method II Method III Method IV

MRR 0.326 0.223 0.194 0.426

Table 4: Examples of properties ranked at top by each

method for identifying relevant properties.

Method Modifier Properties Example of property values

I

kyoto address Fushimi-ku, Kyoto

italian foodType Italian cuisine

II

ancient founded 1049-11-22

recent time 1200.0

latest year 1999

III

ancient founded 1049-11-22

large femaleheight 75.0

oldest established mid 10th century

IV

ancient founded 1049-11-22

kyoto address Fushimi-ku, Kyoto

oldest established mid 10th century

recent time 1200.0

this end, we computed the percentage of queries whose top

ranked entity type was relevant with the best combination

of parameters (λT = 1.00 and λE = 0.25) and percentage

of queries for which Google’s function can present a list of

entities. We founded that our methods (57.5%) performed

approximately twice as well as Google’s (25.0%). Again, note

that different metrics were used for ours and Google’s, and

this comparison could be an over- or under-estimation of the

performance of our method.

4. 4 Experimental Results for Properties

Table 3 shows the MRR achieved by each method for iden-

tifying relevant properties and indicates that combining all

of the three methods (Method IV) could achieve the best

performance.

To drill down the results in Table 3, Figure 4 illustrates the

performance in terms of the RR achieved for each modifier,

where the x-axis represents the modifiers, and the height of

each portion of the stacked bars represent the MRR achieved

by each method. Note that the total height of the stacked

bars does not represent the overall performance: it simply

means the average performance of all the methods. It can be

seen that the different methods could identify relevant prop-

erties for different types of modifiers. For some modifiers,

relevant properties could be found at high ranks by Method

I, while Methods II and III could not rank them near the top

(e.g. 10th and 20th modifiers from the left). On the other

hand, if relevant properties could be ranked high by Meth-

ods II or III, Method I could not rank them near the top

in some cases (e.g. 14th and 16th modifiers from the left).

These observations suggest that the combination of the three

methods (Method IV) could identify relevant properties most

accurately by complementing each other.

Table 4 shows examples of relevant properties found at the

top by each method. It suggests that if the modifier speci-

fies a categorical value such as “kyoto”, “zen”, and “italian”,

their properties can be successfully found by Method I. If the
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Figure 4: Reciprocal Rank (RR) of four methods for identifying relevant properties.

modifier specifies a certain range of numerical values or a

certain order by numerical properties (e.g. “latest”, “recent”

and “oldest”), their properties can be identified by either

Method II or Method III. These results are also consistent

with our observation in Figure 4 that different methods could

identify relevant properties for different modifiers, and they

suggest that Method IV achieved the best performance be-

cause the three different methods complemented each other.

5. Conclusions

This paper proposes methods of finding relevant entities for

a given sentential query by leveraging different types of mod-

ifiers in the query using RDF data. We proposed a method of

finding entities based on the similarity between a query and

entity type names together with the frequency of entities in

search results returned in response to the query. We also

proposed a method of identifying a property corresponding

to each modifier in a query using the methods 1) counting

the frequency of property values including the modifier, 2)

measuring the co-occurrence of the modifier and property

names, and 3) measuring the difference in property value

distributions of entities in search results for a query with

and without the modifier. Experimental results showed that

our proposed methods could predict relevant entity types

for more queries than the existing function and achieved the

best performance for identifying relevant properties when all

of the criteria were combined.

Our implementation mainly focused on finding the rele-

vant entities and properties for a given sentential query with

attributive terms. In addition, for our future works, we aim

to find other property identification methods that can handle

the properties which are derived from multiple predicates in

the RDF data. After that, we are going to apply those rele-

vant properties as for ranking the resultant relevant entities.

To actually rank the entities, it may also requires various

kinds of methods.
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