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Abstract In recent years, the size of graph data is drastically growing. In contrast to relational databases, most
of graphs do not have their own schemas. If we can extract a schema from a graph efficiently, we can take advantage
of the extracted schema for query optimization, structure browsing, query formulation, and so on. In this paper,
we propose an external memory algorithm for extracting a schema from a graph. The algorithm is designed so that
each file is read sequentially in most cases and very few random accesses are required for schema extraction, which
makes our algorithm I/O efficient.
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1. Introduction

In recent years, graph data has been widely used and var-
ious kinds of new graph data is actively being created. In
contrast to other databases such as relational databases and
XML, most of graphs do not have their own schemas. There-
fore, in many cases we cannot make use of schema to man-
age graphs effectively. Here, if we can extract a schema from
a graph efficiently, we can take advantage of the extracted
schema for query optimization [1], structure browsing, query
formulation [2], and so on. However, extracting schemas from
large graphs are difficult due to the following reasons. Firstly,
most of schema extraction algorithms proposed so far are in-
memory algorithms and thus cannot deal with large graphs
that do not fit in main memory. Secondly, schema extraction
is a complex and time-consuming task. The utility function,
which is a popular function used in schema extraction, re-
quires a large amount of computation cost as the number of
unique edge labels in a graph becomes larger. To address
these problems, we propose a novel schema extraction al-
gorithm for large graphs. This is designed as an external
memory algorithm using parallel processing and our novel
utility function. Our utility function is designed so that less
computation cost is required while schemas are extracted as
appropriately as the original utility function. Experimental
results suggest that our algorithm can extract schemas from
graphs more efficiently and appropriately than the algorithm
using the previous utility function, and that the paralleliza-

tion of the class extraction makes the execution time faster
for a real-world graph with many unique edge labels.

Related Work
A number of schema extraction algorithms for graphs have

been proposed. DataGuide [2] extracts a schema by grouping
nodes reachable from the root via the same label path into
the same class. ApproximateDataguite [3] is the approximate
version of DataGuide. Nestorov et al. proposes an algorithm
for extracting a set of classes by using a clustering approxi-
mation method [4]. Wang et al. proposes an algorithm that
extracts a schema by an incremental clustering method [5].
These algorithms are in-memory algorithms and cannot han-
dle large graphs that do not fit in main memory. Navlakha
et al. proposes a graph summarization algorithm [6]. This is
an in-memory algorithm designed for unlabeled undirected
graphs, while our algorithm is designed for labeled directed
graphs. Luo et al. proposes an external memory algorithm
for k-bisimulation [7]. However, the notion of k-bisimulation
is too strong to extract classes from usual graphs, since under
the condition of k-bisimulation, any two nodes in the same
class must have same label paths whose length is k. On the
other hand, our algorithm assumes a weaker condition under
which nodes having a “similar” set of edges are grouped into
the same class.

Several external memory algorithms have been proposed in
database research field, e.g., graph triangulation [8], strongly
connected components [9], graph reachability [10], and reg-
ular path query [11]. To the best of our knowledge, how-



ever, no external memory algorithm for schema extraction
has been proposed so far.

2. Preliminaries

Let L be a set of labels. A labeled directed graph (graph
for short) is denoted G = (V, E), where V is a set of nodes
and E ⊂ V × L × V is a set of labeled directed edges (edges
for short). Let e ∈ E be an edge labeled by l ∈ L from a
node v ∈ V to a node u ∈ V . Then e is denoted (v, l, u), v

is called source, u is called target of e, and we say that v

has the edge e. The set of outgoing edge labels of v, namely
the set of labels which v has, is denoted L(v). A schema
is a summarization of a graph and it is also represented as
a graph. A node in a schema is called a class. Any node
in a graph is mapped to a class in a schema. We assume
that every text leaf node belongs to a particular class called
LEAF and that every non-text leaf node belongs to another
particular class called LEAF 2. For a node v in a (instance)
graph, by class(v) we mean the class that v belongs to. A
schema is denoted S = (C, Es), where C is a set of classes
and Es is a set of edges between classes.

In this paper, we assume that a graph is stored in a file like
N-Triples format, which is a container for Resource Descrip-
tion Framework (RDF) data. Each line of a file corresponds
to an edge, namely, a line consists of (source, label, target).
We assume that a schema is composed of two files denoted
schema_classes and schema_edges. The former stores pairs
of a node and its class, namely a line consists of (node, class).
The latter stores edges between classes, namely a line con-
sists of (source class, label, target class).

3. The Algorithm

In this section, we first define our utility function, then we
describe the schema extraction algorithm.

3. 1 Utility Function
Wang et al. proposes an algorithm that extracts a graph

schema by grouping nodes having a similar set of edge labels
into the same class using the utility function [5]. However,
the utility function requires a large amount of calculation
cost for graphs containing a large number of unique edge
labels. To cope with the problem, we define a new utility
function, called light utility function, so that we can extract
schemas from such graphs more efficiently.

Let c ∈ C be a class. In this paper, we ignore incoming
edges of v to make our algorithm simple and to reduce cal-
culation cost. The set of edge labels of v is denoted L(v).
By L(c) we mean the set of edge labels of c, that is, L(c) =∪

v∈c
L(v). Let |c| be the number of nodes in c and nodes(c, l)

be the set of nodes in c having an edge labeled by l. By
nodes(C, l) we mean the set of nodes in C having an edge

labeled by l, that is, nodes(C, l) =
∪

c∈C
nodes(c, l). Then

the light utility function (utility function, for short), denoted
U(C, v, ci), is defined as the product of the Dice coefficient
and the mean of the ratio of |nodes(c, l)| to |nodes(C, l)|,
that is,

U(C, v, ci) = Dice(L(v), L(ci))α 1
|L(v)|

∑
l∈L(v)

|nodes(ci, l)|
|nodes(C, l)| ,

where α is a parameter to control which of Dice and the lat-
ter ratio is emphasized when extracting classes. U becomes
higher if nodes having similar edge labels are grouped into
the same class. By this definition we intend to balance how
labels of a node v are similar with labels of a class ci and
how much labels of ci occupy the entire schema. We need to
extract classes so that the classes bring a high value of the
utility function.

3. 2 Schema Extraction Algorithm
In-memory schema extraction algorithms assume that the

entire graph is stored in main memory. However, since re-
cent large graphs are too large to fit in main memory, we
need another approach to handling such large graphs.

In order to deal with such large graphs, we take the fol-
lowing approach. First, our algorithm sequentially reads a
graph, extracts classes with maintaining minimum informa-
tion to extract classes in main memory, and outputs a class
file consisting of the classes of all the nodes. Next our al-
gorithm creates an edge file having information required for
extracting edges between classes. Note that since the infor-
mation for edge extraction must include the all edges, the
files cannot be fit in main memory. Then the algorithm ex-
tracts edges by reading these files sequentially. An outline of
our algorithm is as follows (see Fig. 1).
Input: graph file. Each line of the file represents an edge. In
the following, we call the input graph file file 1.
Output: schema_classes and schema_edges.
（ 1） Preprocessing
（ a） Sort file 1 externally. Let file 1’ be the resulting file.
（ 2） Class Extraction
（ a） Read file 1 ’ sequentially and extract the class of each

node based on the utility function.
（b） Each time the class of a node is extracted, output the

node and the class to schema_classes.
（ 3） Edge Extraction
（ a） Read file 1’and schema_classes concurrently and sequen-

tially, and output the outgoing edges of nodes (source nodes are
replaced by their classes) to another file tmp_file1. The file stores
edges between classes and nodes.
（b） Sort tmp_file1 externally. Let tmp_file1’ be the resulting

file.
（ c） Read schema_classes and tmp_file1’ concurrently and se-

quentially, and replace the target node of each edge in tmp_file1’
with its class. This results in edges between classes, which are
written into schema_edges.
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Figure 1 Outline of our schema extraction algorithm

In the following, we give the details of our class extraction
and edge extraction algorithms.

3. 3 Class Extraction
This algorithm is designed as (1) an external memory al-

gorithm to handle large graphs that cannot fit in main mem-
ory, and (2) a parallel processing algorithm to reduce the
calculation time of utility function. In the class extraction,
calculating utility function requires a large amount of com-
putation cost. Therefore we design the class extraction as
a parallel process algorithm. We first show the non-parallel
version next show the parallel version. Both versions are also
designed as an external memory algorithm.

3. 3. 1 Data Maintained in Main Memory
Values |nodes(c, l)| for each class c ∈ C and |nodes(C, l)|

are kept in memory to calculate utility function until the
classes of all nodes are extracted. That is, we store the num-
ber of nodes having an edge labeled by l (1) in L(c) for each
class c ∈ C, (2) and in C. On the other hand, for a node
v, v’s name and v’s edge labels L(v) is kept in memory un-
til the algorithm outputs the class of v to schema_classes.
When the class of v is extracted, v and L(v) are discarded.

3. 3. 2 Class Extraction Algorithm (non-parallel version)
Algorithm 1 shows the procedure of the single process

(non-parallel) class extraction. An input file, file 1’ is a sorted
file obtained in the preprocessing. Since file 1’ is sorted, edges
having the same source appear consecutively in file 1’. There-
fore, we can obtain the outgoing edges of each node by one
sequential read only.

Let v be the node that is currently read. By reading file
1’ sequentially, we obtain the edges v has and extract the
class of v based on the utility function in Algorithm 2. This
process is repeated until file 1’ reaches the end of file.

3. 3. 3 Class Extraction Algorithm (parallelized version)
Algorithm 3 shows the procedure of the parallelized class

extraction. We parallelize the process of calculating the util-

Algorithm 1 Class Extraction Algorithm (non-parallel ver-
sion)
Input: file 1’
Output: schema_classes

1: C ← ∅.
2: while file 1’ does not reach EOF do
3: L(v) ← the set of outgoing edge labels of v obtained by

reading file 1’.
4: class(v)← ClassDetermination(C, v, L(v)).
5: Add a pair (v, class(v)) to schema_classes.
6: C ← C ∪ {class(v)}.
7: end while

Algorithm 2 Class Determination
1: procedure ClassDetermination(C, v, L(v))
2: for each class ci ∈ C do
3: Calculate U(C, v, ci).
4: end for
5: Let cv be the new class having the same set of outgoing

edges as v (edges having the same label are merged
into one).

6: Calculate U(C, v, cv).
7: Let class(v) be the class such that the value of U is the

highest among C ∪ {cv}.
8: return class(v).
9: end procedure

ity function. Like the non-parallel algorithm, an input file,
file 1’, is a sorted file obtained in the preprocessing. By read-
ing file 1’ sequentially, we read k nodes, obtain the edges of
them. Then we extract classes of k nodes based on the utility
function in k parallel processes. After the parallel processes,
some nodes are assigned to existing classes c ∈ C, and the
other nodes assigned to the new class cv. While we confirm
that nodes assigned to existing classes belong to the classes,
we must determine whether some of nodes assigned to the
new class cv should be merged into or remain. We call this



Algorithm 3 Class Extraction Algorithm (parallelized ver-
sion)
Input: file 1’
Output: schema_classes

1: C ← ∅.
2: k is set to the parallel number.
3: while file 1’ does not reach EOF do
4: Vtmp ← ∅.
5: Repeat k times
6: L(vi) ← the set of outgoing edge labels of vi obtained

by reading file 1’.
7: Vtmp ← Vtmp ∪ {vi}.
8: End Repeat
9: R← ∅.

10: Parallel for each vi ∈ Vtmp

11: class(vi)← ClassDetermination(C, vi, L(vi)).
12: R← R ∪ {(vi, class(vi))}.
13: End Parallel
14: Vone = {v | (v, class(v)) ∈ R such that class(v) = cv}.
15: if |Vone| > 1 then ▷ conflict occurs
16: R′ ← ConflictResolution(C, R, Vone).
17: else
18: C ← C ∪ {class(v1), . . . , class(vk)}.
19: R′ ← R

20: end if
21: For each node vi ∈ Vtmp, add a pair (vi, class(vi)) ∈ R′ to

schema_classes.
22: end while

recalculation process conflict resolution. By doing that, we
finally obtain the classes of k nodes completely. This process
is repeated until file 1’ reaches the end of file.

Let us explain the procedure of ConflictResolution.
We select the class of each node belonging to existing classes
and store them in R′ in line 3. (C, |nodes(c, l)| for each
c ∈ C, and |nodes(C, l)| are updated by these results in
line 7.) The first node whose class is cv is selected in line 4
and add it to R′ in line 5. Then in lines 6 to 7 we update
C, Ctmp, |nodes(c, l)| for each c ∈ C and each c ∈ Ctmp, and
|nodes(C, l)| in main memory assuming that the node v se-
lected in line 4 belongs to class(v). For each node v ∈ Vone,
namely each node in Vtmp assigned to cv except the first
node, we recalculate the utility function. We call ClassDe-
termination2 (Algorithm 5) instead of ClassDetermina-
tion so that the existing classes are computed to Ctmp only.
ClassDetermination2 extracts the class of v ∈ Vone as fol-
lows. We calculate the following utility function and choose
the class for which the maximum value is obtained.

• The utility function assuming that v belongs to c ∈
Ctmp, for each class c extracted so far in a conflict resolu-
tion.

• The utility function assuming that v belongs to a new

Algorithm 4 Conflict Resolution
1: procedure ConflictResolution(C, R, Vone)
2: Ctmp ← ∅.
3: R′ = {(v, class(v)) ∈ R | v /∈ Vone}. ▷ conflict resolution

result
4: Remove the first node of Vone. Let v be the first node.
5: R′ ← R′ ∪ {(v, class(v))}.
6: Ctmp ← Ctmp ∪ {class(v)}.
7: C ← C ∪ {class(v)|(v, class(v)) ∈ R′}.
8: for each v ∈ Vone do
9: class(v)← ClassDetermination2(C, Ctmp, v, L(v)).

10: R′ ← R′ ∪ {(v, class(v))}.
11: Ctmp ← Ctmp ∪ {class(v)}.
12: C ← C ∪ {class(v)}.
13: end for
14: return R′.
15: end procedure

Algorithm 5 Class Determination in Conflict Resolution
1: procedure ClassDetermination2(C, C′, v, L(v))
2: for each class ci ∈ C′ do
3: Calculate U(C, v, ci).
4: end for
5: Let cv be the new class having the same set of outgoing

edges as v (edges having the same label are merged
into one).

6: Calculate U(C, v, cv).
7: Let class(v) be the class such that the value of U is the

highest among C′ ∪ {cv}.
8: return class(v).
9: end procedure

class cv having the same edges as v.
Note that we recalculate cv to obtain the utility value from
the latest schema because the schema is updated and the
resulting utility value may be different. Now the class ex-
traction of v is completed. Each time the class is selected,
we update C, Ctmp, |nodes(c, l)| for each c ∈ C and each
c ∈ Ctmp, and |nodes(C, l)| in main memory assuming that
the node v belongs to class(v) in lines 10 to 12. Extracting
the class of every node in Vone completely, we return R′ and
back to Algorithm 3.

3. 4 Edge Extraction
In this edge extraction step, we replace nodes in the in-

put graph file by their extracted classes. To do that se-
quentially, first we use file 1’ and schema_classes, and create
an intermediate file, in which source nodes are replaced by
their classes (Phase 1). Then by using the intermediate file
and schema_classes, we replace target nodes by their classes
(Phase 2).

Algorithm 6 shows the procedure of the edge extraction
phase 1. file 1’ is a sequence of triples (source, label, target),
and the edge extraction phase 1 is done by replacing source



Algorithm 6 Edge Extraction Phase 1
Input: file 1’ and schema_classes
Output: tmp_file1 ▷ sources are replaced by their class

1: Read a line from schema_classes. Let vs be the node and
class(vs) be the class of the line.

2: while file 1’ does not reach EOF do
3: Read a line from file 1’. Let v, l, u be the source, the label,

and the target of the line, respectively.
4: if v = vs then
5: Add a triple (u, l, class(vs)) to tmp_file1 (u is replaced

by “leaf” if the target u is a leaf node).
6: else
7: Read schema_classes sequentially and find a line

(vs, class(vs)) such that vs = v.
8: Add a triple (u, l, class(vs)) to tmp_file1 (u is replaced

by “leaf” if the target u is a leaf node).
9: end if

10: end while

of each triple by class(source). Since file 1’ is sorted, the
edges having the same source appear consecutively in file 1’,
which enables source nodes to be replaced consecutively. Let
v be the source node of the “current” edge read from file 1’,
and suppose that class(v) is obtained from schema_classes.
Then we can replace the source of every edge whose source is
v by class(v), which can be done by a sequential read from
file 1’.

Algorithm 7 shows the procedure of the edge extraction
phase 2. The phase 2 replaces the target node of each edge
obtained in Phase 1 by the class of the target node. Actually,
this phase is done in a similar way to the phase 1.

3. 5 I/O Cost
We consider the I/O cost of our algorithm. Let G = (V, E)

be a graph. We assume that data is transferred between
external memory and main memory in blocks of size B.
O(sort(|E|)) represents the I/O complexity of external merge
sort. The I/O cost of each step is as follows.
（ 1） Preprocessing
Sorting file 1 externally: O(sort(|E|))
（ 2） Class Extraction
（ a） Reading file 1’: O(|E|/B)
（b） Writing pairs of a node and its class to

schema_classes: O(|V |/B)
（ 3） Edge Extraction Phase 1
（ a） Reading file 1’: O(|E|/B)
（b） Reading schema_classes: O(|V |/B)
（ c） Writing outgoing edges to tmp_file 1: O(|E|/B)
（ 4） Edge Extraction Phase 2
（ a） Sorting tmp_file 1 externally: O(sort(|E|))
（b） Reading tmp_file 1’: O(|E|/B)
（ c） Reading schema_classes: O(|V |/B)

Algorithm 7 Edge Extraction Phase 2
Input: tmp_file 1, schema_classes
Output: schema_edges

1: Sort tmp_file 1. Let tmp_file 1’ be the resulting file.
2: Read a line from schema_classes. Let vt be the node and

class(vt) be the class of the line.
3: Read a line from tmp_file 1’. Let u, l, cs be the target, the

label, and the source of the line, respectively.
4: while tmp_file 1’ does not reach EOF do
5: if u = “leaf” then ▷ u is a text leaf node
6: Add a triple (cs, l, LEAF ) to schema_edges.
7: Read a line from tmp_file 1’. Let u, l, cs be the target,

the label, and the source of the line, respectively.
8: else if u < vt then ▷ u is a non-text leaf node
9: Add a triple (cs, l, LEAF 2) to schema_edges.

10: Read a line from tmp_file 1’. Let u, l, cs be the target,
the label, and the source of the line, respectively.

11: else if u > vt then
12: Read a line from schema_classes. Let vt be the node

and class(vt) be the class of the line.
13: else if u = vt then
14: Add a triple (cs, l, class(vt)) to schema_edges.
15: Read a line from tmp_file 1’. Let u, l, cs be the target,

the label, and the source of the line, respectively.
16: end if
17: end while

（d） Writing edges to schema_edges: O(|E|/B)
Thus, the I/O cost of our algorithm is as follows.

O
(

|E|
B

+ |V |
B

+ sort(|E|)
)

= O
(

|V |
B

+ sort(|E|)
)

The external R-way merge sort algorithm is an efficient
algorithm for sorting large files externally, and we have a
number of implementations of the algorithm, e.g., UNIX sort.
Therefore, the above estimation suggests that our algorithm
extracts a schema from a large graph efficiently, if only such
commands are available.

4. Evaluation Experiment

In this section, we present experimental results on our al-
gorithm. The algorithm was implemented in Ruby 2.4.2.
The parallelized class extraction was implemented by Ruby
Gem parallel (version 1.12.0)（注1）. All the evaluation experi-
ments were executed on a machine with Intel Xeon E5-2623
v3 3.0GHz CPU, 16GB RAM, 2TB SATA HDD, and Linux
CentOS 7 64bit. We used the sort command (GNU coreutils
8.22) in order to sort files externally in the preprocessing and
the edge extraction, and we limited the maximum memory
usage of the sort command to 1GB by using option “-S”.

In our experiments, we use the following two datasets.

（注1）：https://github.com/grosser/parallel



Table 1 Graphs generated by SP2Bench
|E| |V ∗| |L| size (GB)

100,073 19,369 24 0.01
1,000,009 187,066 24 0.10

10,000,457 1,730,250 26 1.04
100,000,380 17,823,525 26 10.35

Table 2 Graphs from DBPedia
|E| |V ∗| |L| size (GB)

50,000 1,077 2,772 0.01
15,373,833 313,036 14,130 2.72
76,868,920 1,177,165 22,147 12.80

153,737,783 1,457,983 23,343 25.11

SP2Bench [12] (SP2B, for short) is a benchmark tool and
generates RDF (N-Triples) files based on DBLP, a computer
science bibliography. We generate four graphs of different
sizes in Table 1. In the following, by V ∗, we mean the non-
leaf nodes in a set V of nodes. Thus classes of nodes in V ∗

are extracted.
The total number of unique RDF types is 12. Nodes whose

RDF type is “Article” are the largest number of nodes. Note
that we regard every edge label rdf:_i as the same regardless
of the value of i, since the number i is not important.

The reason why we use this tool is that (1) it has its ex-
plicit schema and thus we can compare the schema and the
schema extracted by our algorithm and (2) the tool gener-
ates graphs of various sizes, which is useful to investigating
the performance of our algorithm.

DBPedia project extracts structured data from Wikipedia.
Among the real-world graphs, it is one of the datasets with
the largest number of unique edge labels. We downloaded
three benchmark dataset graphs （注2） and created another
graph with |E| = 50, 000, which is the first 50,000 lines of
the smallest graph of the three. Thus we use the four RDF
(N-Triples) graphs in Table 2. The total number of unique
RDF types in the graph with |E| = 15, 373, 833 is 54,736.

In the following, first we give the evaluation of the class ex-
traction since this is the most complex and time-consuming
process. Then, we give the evaluation of the preprocess-
ing and the edge extraction. To evaluate the class extraction
quality, we introduce two scores Score1 and Score2, based on
RDF types assigned to each node. SP2B is an RDF bench-
mark tool and each non-leaf node in graphs generated by
SP2B has one RDF type. On the other hand, each non-leaf
node in DBPedia has one or more RDF types. In the fol-
lowing definition, two particular classes LEAF and LEAF2,
which leaf nodes belong to, are omitted.

Score1 becomes larger as extracted classes contain smaller

（注2）：http://benchmark.dbpedia.org/

Table 3 Execution time of the class extraction (non-parallel and
parallelized versions) for SP2B graphs

SP2B |E|
parallel number k 1,000,009 10,000,457 100,000,380
Light k = 1 (non-parallel) 6.70 64.23 651.07
Light k = 4 (parallelized) 209.31 1,669.85 19,886.80
Original k = 1 (non-parallel) 13.26 111.43 1065.99

Table 4 Execution time of the class extraction (non-parallel and
parallelized versions) for DBPedia graphs

DBPedia |E|
parallel number k 15,373,833 76,868,920 153,737,783
Light k = 1 (non-parallel) 11,242.80 110,555.53 150,143.69
Light k = 4 (parallelized) 4,803.85 42,071.79 58,026.58
Original k = 1 (non-parallel) - - -

Table 5 Class extraction scores for the parallelized and non-
parallel version (α = 1) for the SP2B graph with |E| =
10, 000, 457

parallel number |C| Score 1 Score 2 Mean
1 (non-parallel) 3 72.53 100.00 86.26
4 (parallelized) 3 72.53 100.00 86.26

Table 6 Class extraction scores for the parallelized and non-
parallel version (α = 1) for the DBPedia graph with
|E| = 15, 373, 833

parallel number |C| Score 1 Score 2 Mean
1 (non-parallel) 1,327 70.06 76.97 73.51
4 (parallelized) 1,309 70.60 76.42 73.51

numbers of different types. By types(v) we mean the set of
types assigned to v. The set of nodes having type t in class
c is denoted nodes(t, c). Then Score1 is defined as follows.

Score1 = 1
|V ∗|

∑
v∈V ∗

1
|types(v)|

∑
t∈types(v)

|nodes(t, class(v))|
|class(v)| .

Score2 becomes larger as a type is distributed to smaller
numbers of different classes. Let total(t) be the total number
of nodes having type t, and let max(t) = maxcnodes(t, c).
Then Score2 is the mean of ratio of the two, that is,

Score2 = 1
|T |

∑
t∈T

max(t)
total(t) .

Thus, the more nodes having type t are grouped into the
same class, the higher Score2 is.

Firstly, we give the evaluation of the parallelization. We
measured the execution time and the memory usage of the
class extraction algorithm (non-parallel version and the par-
allelized version), and calculated the class extraction scores.
In this experiment, we set the parameter α to 1 in light utility
function and the parallel number k to 4.

Tables 3 and 4 show the results. Each row whose paral-
lel number is 1 represents a result by the non-parallel class



Table 7 Memory usage of the class extraction algorithm
Dataset non-parallel parallelized

SP2B (|E| = 100, 000, 380) 11.1 MB 7.5 MB
DBPedia (|E| = 153, 737, 783) 116.6MB 89.6 MB

extraction algorithm. Each execution time is in seconds. Ta-
ble 3 shows the execution time of the class extraction (non-
parallel and parallelized versions) for SP2B graphs of differ-
ent sizes. This result can be described as follows. In SP2B,
(1) the execution time is almost linear to the number of edges
|E|. The execution time is also almost linear to the number
of non-leaf nodes |V ∗| since |V ∗| is proportional to |E| in
SP2B. (2) The parallelization makes the execution time sig-
nificantly slow. Since the number of classes extracted for
SP2B is significantly smaller than DBPedia (details are pre-
sented below) and the cost of calculating the light utility
function for each node is considerably small, the overhead of
parallelization is relatively large. Therefore, the execution
time of the parallelized version increased due to the paral-
lelization cost.

Table 4 shows the execution time of the class extraction
(non-parallel and parallelized versions) for DBPedia graphs
of different sizes. This result can be described as follows.
(1) The execution time of DBPedia is much longer than that
of SP2B since |L| is relatively large in DBPedia and thus
the number of extracted classes |C| greatly increases. (2) At
first, the growth rate of execution time of DBPedia rapidly
grows compared to that of |V ∗|. As the size of graph grows,
the growth rate of execution time is getting closer to that of
|V ∗|. (1) and (2) suggest that |L| and |V ∗| mostly affect the
execution time of our algorithm. (3) The parallelized version
is more than two times faster than the non-parallel version
in DBPedia. Since the calculation cost of the utility function
is considerably large, the parallelization is effective to make
the execution time shortened.

Tables 5 and 6 show |C| and the scores for both versions.
This result shows that parallelization does not affect |C| and
the scores, thus we have almost no difference in the class
extraction quality.

We also measured the memory usage of the class extrac-
tion algorithm. Table 7 shows the result. For the SP2B
graph with |E| = 100, 000, 380, maximum memory usage
of the parallelized version is about 7.5MB. On the other
hand, that of the non-parallel version is 11.1MB. We also
measured the memory usage for the DBPedia graph with
|E| = 153, 737, 783. Maximum memory usage of the par-
allelized version is about 89.6MB. On the other hand, that
of the non-parallel version is about 116.6MB. These results
show that the parallelized version was about 10-20 per-
cent less memory usage than non-parallel version. Thus,

Table 8 Class extraction scores for the SP2B graph with |E| =
10, 000, 457

utility function |C| Score 1 Score 2 Mean
Light(α = 1) 3 72.53 100.00 86.26
Light(α = 10) 22 99.45 88.83 94.14

Original 6 97.02 95.32 96.17

Table 9 Class extraction scores for DBPedia graph with |E| =
50, 000

utility function |C| Score 1 Score 2 Mean
Light(α = 1) 179 67.30 73.87 70.58
Light(α = 10) 687 89.74 27.77 58.76

Original 81 43.07 81.69 62.38

Table 10 Class extraction scores for DBPedia graph with |E| =
15, 373, 833

utility function |C| Score 1 Score 2 Mean
Light(α = 1) 1,327 70.06 76.97 73.51
Light(α = 10) 48,631 85.12 3.77 44.44

Original - - - -

our class extraction algorithm is completed with sufficiently
small memory usage to the input graph file.

Secondly, we compare our light utility function and the
original utility function. We also examined how parameter
α in our light utility function affects the class extraction
scores. Let us make a comparison of the following three
cases: extracting classes with (1) the original utility func-
tion [5], (2) our light utility function with α = 1, and (3)
α = 10. We ignore incoming edge labels in all the cases. In
this experiment, we use parallel number k = 1. Tables 8, 9,
and 10 show the results. Table 8 shows the class extraction
scores and the number of classes |C| for the SP2B graph
with |E| = 10, 000, 457. The result shows that both of util-
ity functions achieve high scores. The reason why such high
scores are obtained is that the graphs were generated the
benchmark tool so |L| is small and nodes having the same
RDF type have a similar set of labels.

Tables 9 and 10 show the class extraction scores and the
number of classes |C| for the DBPedia graph with |E| =
50, 000 and |E| = 15, 373, 833, respectively. The maximum
mean of score 70.58 is obtained at α = 1, which is higher
than the value 62.38 obtained by the original. We could not
extract schemas from DBPedia graph with |E| = 15, 373, 833
with the original utility function within reasonable time
(24h) because the computation cost of the function is too
high.

Overall, the above results suggest that the parameter α

introduced in our light utility function works effectively for
extracting classes from graphs having fewer unique edge la-
bels such as SP2B. As shown in the tables, our light utility



Figure 2 Execution time of the preprocessing and the edge ex-
traction (SP2B)

Figure 3 Execution time of the preprocessing and the edge ex-
traction (DBPedia)

function can extract appropriate schemas efficiently.
Finally, we give the evaluation of the preprocessing and the

edge extraction. In this experiment, we used the input files
of the edge extraction algorithm obtained by the class ex-
traction algorithm with the parallel number k = 1 for SP2B
and k = 4 for DBPedia. We measured the execution time of
the preprocessing and the edge extraction. Figs. 2 and 3 plot
the execution time of each step. This result means that the
execution time of the preprocessing and the edge extraction
algorithm are almost linear to |E|.

We also measured the memory usage of each step. We
observed that each edge extraction step except sorting was
executed under 10MB memory usage. External sorting in
the preprocessing and the edge extraction step is the most
memory consuming step, and its maximum memory usage is
about 1.1GB since we limit the maximum memory usage of
the sort command to 1GB. Thus, the memory usage of the
schema extraction mostly depends on external sorting.

5. Conclusion

In this paper, we proposed an external memory algorithm
for extracting a schema from a graph using parallel process-
ing and our novel utility function. Experimental results sug-

gest that our algorithm can extract schemas more efficiently
and appropriately than the previous utility function, that
the parallelization of the class extraction makes the execu-
tion time more than two times faster for DBPedia, and that
the memory usage of the schema extraction mostly depends
on external sorting.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Num-
ber JP17K00150.

References
[1] M.F. Fernandez and D. Suciu, “Optimizing regular path

expressions using graph schemas,” Proceedings of the
Fourteenth International Conference on Data Engineering
(ICDE 1998), pp.14–23, 1998.

[2] R. Goldman and J. Widom, “Dataguides: Enabling query
formulation and optimization in semistructured databases,”
Technical Report 1997-50, Stanford InfoLab, 1997.

[3] R. Goldman and J. Widom, “Approximate Dataguides,”
Proceedings of the Workshop on Query Processing for
Semistructured Data and Non-Standard Data Formats,
pp.436–445, 1999.

[4] S. Nestorov, S. Abiteboul, and R. Motwani, “Extracting
schema from semistructured data,” Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD 1998), pp.295–306, 1998.

[5] Q.Y. Wang, J.X. Yu, and K.F. Wong, “Approximate graph
schema extraction for semi-structured data,” in Proceedings
of EDBT 2000, pp.302–316, Springer, 2000.

[6] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph sum-
marization with bounded error,” Proceedings of the ACM
SIGMOD international conference on Management of data
(SIGMOD 2008), pp.419–432, 2008.

[7] Y. Luo, G.H. Fletcher, J. Hidders, Y. Wu, and P. De Bra,
“External memory k-bisimulation reduction of big graphs,”
Proc. CIKM 2013, pp.919–928, 2013.

[8] X. Hu, Y. Tao, and C.W. Chung, “Massive graph triangula-
tion,” Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2013), pp.325–
336, 2013.

[9] Z. Zhang, J.X. Yu, L. Qin, L. Chang, and X. Lin, “I/O ef-
ficient: Computing sccs in massive graphs,” Proceedings of
the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD 2013), pp.181–192, 2013.

[10] Z. Zhang, J.X. Yu, L. Qin, Q. Zhu, and X. Zhou, “I/O cost
minimization: Reachability queries processing over massive
graphs,” Proceedings of the International Conference on Ex-
tending Database Technology (EDBT 2012), pp.468–479,
2012.

[11] N. Suzuki, K. Ikeda, and Y. Kwon, “An algorithm for all-
pairs regular path problem on external memory graphs,”
IEICE Transactions, vol.99-D, no.4, pp.944–958, 2016.

[12] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel,
“SP2Bench: a SPARQL Performance Benchmark,” Pro-
ceedings of the 25th International Conference on Data En-
gineering (ICDE 2009), pp.222–233, 2009.


