

DEIM Forum 2018 A1-3

Detection of mergeable Wikipedia articles based on overlapping topics

Renzhi Wang
 † Mizuho Iwaihara

 ‡

Graduate School of Information, Production and Systems, Waseda University

Kitakyushu 808-0135, Japan

E-mail: †ouninnyui.ips@asagi.waseda.jp, ‡iwaihara@waseda.jp

Abstract Wikipedia is the largest online encyclopedia, in which articles are edited by different volunteers with different thoughts and

styles. Sometimes two or more articles’ titles are different but the themes of these articles are exactly the same or strongly similar.

Administrators and editors are supposed to detect these article pairs and determine whether they should be merged together. In this paper,

we propose a method to automatically determine whether an article pair should be merged together. According to Wikipedia Guidelines for

article merge, in the duplicate case, the article pairs are covering exactly the same contents. In the overlap case, the articles pairs are covering

related subjects that have a significant overlap. The content of an overlapped part is similar but the words in the pair are probably different,

so methods that exploit semantic relatedness are necessary. To deal with this problem we consider both term co-occurrence similarity and

semantic relatedness. We propose combination of multiple embedding results and rebuilding word vectors for evaluating semantic

relatedness. We also deal with overlap cases by computing Jaccard distance between article pairs. Our experiments show that our method

performs better than existing embedding methods.

Keyword Word embedding, Mergeable article, Wikipedia, Text mining

1. Introduction

1 Wikipedia articles are edited by various volunteers from

all over the world. Each article in Wikipedia identifies a

clear concept. Due to diverse culture and cognition

backgrounds, one concept may be written in various styles

by different editors in different articles. Administrators

and editors need to merge these articles to avoid confusing

readers and remove duplications. As stated in the

Wikipedia guidelines for merge[11], there are four reasons

to merge articles: duplicate, overlap, text, and context.

The duplicate and overlap reasons are about identical

content. If two or more articles are exactly the same

content or they have a large overlap, then they should be

merged. The text reason means one article is very short

and has little content, so it should be merged to a larger

inclusive topic. The context reason is that if a short article

needs many background materials, it should be merged

with a broader article. Currently the Wikipedia article

merge task is done by human editors after discussion. For

example, the articles “China Art Museum” and “Shanghai

Art Museum” are suggested to be merged together,

because an identical museum used to be called Shanghai

Art Museum was rebranded as the China Art Museum in

October 2012. The museum is actually the same museum,

but there are two articles in Wikipedia, and the contents of

these articles have a large overlap. It is like near duplicate

text detection problem. But we also need to consider the

semantic similarity between article pairs. In Wikipedia,

near duplicate text detection is necessary for copyright

enforcement and help version management.

Figure 1 Mergeable Wikipedia Articles

For a large collection of documents, comparing a query

with every document in the collection is too costly, so

conventional approaches mainly focus on how to select

small candidates efficiently. After obtaining small

candidates, two documents are compared mainly by term

co-occurrence similarity. Previous researches[1][2][3][4]

[7] focus on dealing with large datasets. On the other hand,

our goal is to detect the articles pairs which are exactly

duplicated or have a significant overlap. Our candidate set

is easily to be selected by Wiki search, so we put more

emphasis on semantic similarity, because in Wikipedia,

different editors often use different words in writing an

identical article, although their intensions are basically

the same. Term co-occurrence similarity is not fit for the

case of diverse wordings with same intension.

In this paper, besides overlap, we mainly consider the

semantic similarity, to extract the semantic meaning of

articles. Because the nonoverlap part of the mergeable

article pair can be regarded as the complement of the

overlap, their semantic similarity is also significant. We

adopt the popular word embedding method,

word2vec[8][9]. The difficulty of our task is that, the

known pre-trained embedding result is based on a very

large corpus. Compared with such a corpus, our target

dataset is just several articles from a part of Wikipedia, so

the distribution of word occurrence can be distinctively

skewed. So directly using pre-trained embedding causes

undesirable results such as words in our target dataset

which have a specific meaning. Directly using our

targetdataset to train a new embedding result is also

undesirable, because compared with large corpora, our

dataset is too small to train a good embedding result. To

solve this problem, we propose utilizing transfer matrixes

like translation matrix in [9] to combine multiple

pre-trained embedding results, and we introduce a new

loss function to fit for the target dataset.

Our approach is motivated by transductive transfer

learning[6]. The definition of transductive transfer

learning is that the source domain (Ds) and source domain

task(Ts) is given and the target domain(Dt) and target

domain task(Tt) is the goal. Here Ts is equal to Tt but Ds

is not equal to Dt. The transductive transfer learning

methods want to use the knowledge in the source domain
and source domain task to improve the predict ion function

in the target domain and target domain task. Usually, the

source domain task has large labeled data, while the target

domain task has only a limited label dataset. In our case,

the pre-trained embedding results are the source domain

and source task. Our mergeable articles dataset is the

target domain. We propose a new loss function to improve

the embedding results in our mergeable article dataset.

Our experiments on real Wikipedia mergeable articles

show that our method predicts better than both local

embeddings trained over just the target dataset and global

embeddings trained over large corpora. As criteria for

mergeable articles in Wikipedia, we utilize both Jaccard

distance and semantic similarity by word2vec in

measuring overlaps.

The rest of the paper is organized as follows: Section 2

introduces related work on related tasks. Section 3 shows

our proposing method. In Section 4 we describe our

datasets in detail, explain our experimental process and

evaluation results. Section 5 is a conclusion .

2. Related Work

For near duplicate text detection task, a variety of

signature selecting methods, encompassing scalability,

have been proposed. Previous researches [2][3][4][7]

separately proposed shingling-based, windowing-based,

simhash-based algorithms to detect near duplicate texts.

But these methods only exploit co-occurring terms, where

semantic relatedness is not considered. These methods

cannot handle texts that use a large number of different

terms but expressing the same topic.

Recent researches consider incorporating semantic

information into document signatures. Alonso et al. [1]

considered TF-IDF weighting in their signature algorithm,

to reflect certain semantic information.

Word embeddings are becoming an effective way to

represent words by relatively low-dimensional vectors,

where semantic relatedness is easily given by cosine

similarity of two word vectors. To integrate different

embedding results, [10] utilized convolutional neural

networks. In their model the target dataset is just for

classification, not participating in training embedding

results.

3. Proposed Method

Recently, the word2vec model has become the most

popular embedding model [8]. Word2vec assumes two

language models, Continuous Bag of Words (CBOW) and

Skip-gram. The CBOW language model assumes that

context words’ vectors should predict the target word.

While the skip-gram model assumes that the target word

should predict the context words. Based on these

assumptions, they define objective functions as products

of all target words’ predicted probabilities. To perform

training efficiently over large datasets, word2vec uses

Huffman tree to maximize the objective function. Here the

objective functions are defined as:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ 𝑙𝑜𝑔𝑃(𝑤|𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑤))𝑤∈𝐶 ------CBOW (1)

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ 𝑙𝑜𝑔𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑤)|𝑤)𝑤∈𝐶 --Skip-gram (2)

After training, we can obtain distributed word vector

representations, which will be used to compute similarities

between article pairs.

Our goal needs to deal with a small training dataset of

mergeable articles. To combine pre-trained embedding

results, we utilize transfer matrixes to fit each embedding

result. We also define the sum of all the embedding results

multiplied by transfer matrixes as the final embedding

result. The formula is as bellow.

𝐸𝑓 = ∑ 𝐸𝑖 ∙ 𝑇𝑖

𝑛

𝑖=1

Here, E i is the pre-trained embedding result and T i is the

transfer matrix, n is the count of pre-trained embedding

results and E f is the final embedding results.

To fit for the target dataset, we define a new loss

function. As the original word2vec model assumed, we

also suppose that context words can predict a target word.

In embedding space, this assumption can be regarded as

the average of context words should be the closest to the

target word and the average of context words should be far

away from the other words.

Based on this assumption, we define the objective

function as follow:

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ 𝐷𝑖𝑠(𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑤), 𝑤)𝑤∈𝐶 ---------------------(3)

Here Dis function is the distance between the sum of

context word vectors and target word vector. C is the

corpus. Here the distance function can be any reseanable

distance such as Manhattan distance, Euclidean distance,

cosine similarity and so on. In our case, we use Euclidean

distance as our Dis function. The different between our

objective function and CBOW is that we use Euclidean

distance as our Dis function. The advantage of using

Euclidean distance is that for small datasets we do not

need to build a softmax layer (in the word2vec model that

is a Huffman tree) to compute the probability, instead we

can directly compute the Euclidean distance between the

context word vector and target word vector. The difference

between our method and the original word2vec model is

that we want to minimize this distance objective function,

but not the product of the predicted probabilities of all the

target words. To minimize the objective function, we can

use stochastic gradient descent (SGD) in computing the

transfer matrix. We can train to obtain the final result by

SGD.

In our experiments, we use tensorflow to achieve the

optimization. We define the pre-trained embedding results

as the placeholder and define transfer matrixes as

variables. Then we apply gradient decent optimizer to

minimize the loss function.

Figure 3: Proposed assumption

Another important difference between our method and

previous work is that our objective function is trained on

the target corpus. Pre-trained embedding results are based

on well-known datasets, such as Wikipedia and Google

News, which can have disagreements in vocabularies and

distributions from the target dataset. Because global

embedding results were trained based on the objective

function over global dataset (Wikipedia, Google News),

our final embedding results were trained over our target

dataset so it is expected that the new embedding result can

fit the target dataset better than pre-trained embedding

results.

 After we obtain the target-final word vectors, we define

document vectors as the sum of all the word vectors in the

document. We compute the cosine similarity between

article pairs as their semantic similarity.

 Besides the word2vec model, we also utilize Jaccard

distance to measure the overlap between two articles.

Jaccard distance is suitable for measuring duplicates and

overlaps. We define Jaccard distance between two articles

as below, here the word set in articles are after removing

stopwords.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) =
(𝑤𝑜𝑟𝑑 𝑠𝑒𝑡 𝑖𝑛 𝐴) 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑤𝑜𝑟𝑑 𝑠𝑒𝑡 𝑖𝑛 𝐵)

(𝑤𝑜𝑟𝑑 𝑠𝑒𝑡 𝑖𝑛 𝐴) 𝑢𝑛𝑖𝑜𝑛 (𝑤𝑜𝑟𝑑 𝑠𝑒𝑡 𝑖𝑛 𝐵)

We do not use the square root over the denominator

because the square root over the denominator is not

normalized and reflect the size of overlaps.

 In our task to detect mergeable articles, we combine

these two features to deal with all the criteria of article

merge. We utilize linear combination to combine these two

features to predict the most probable article pair that

should be merged.

 We show an example of how embedding model and

Jaccard distance fit for the criteria of article merge, the

articles “China Art Museum” and “Shanghai Art Museum” .

In the Wikipedia discussion page

(https://en.wikipedia.org/wiki/Talk:China_Art_Museum#P

roposed_merge_with_Shanghai_Art_Museum) the editors

gives some reasons that “article on former museum could

be merged into history section of current museum.” “The

building may be new but most of the collection will be the

same.” We can find the reason above from text.

 The first paragraphs of both articles describe the same

entities including the museum is in Shanghai and in

October 2012 the museum was rebranded as China Art

Museum, the museum is housed in the former China

Pavilion of Expo 2010. The first paragraphs of both

articles are short but describe three identical facts. The

overlap of these two paragraphs is high. The first

segments in paragraph “History” of two articles also

describe the same key words like “Nanjing

Road”, ”Shanghai Race Club” and area sizes. These two

segments are quite similar with each other and both short.

To handle this case, we think about Jaccard distance is

suitable to measure the similarity between articles.

 The other paragraphs in two articles are not the same

facts, but content still related. They both describe the

famous artworks and events, but due to different times, the

artworks and events are not the same, so the words in

these two parts will not be same, but they are still related

with each other. As they both describe the famous

artworks and events, we expect they have strong semanti c

relatedness. To handle this case, we use embedding model

to measure the semantic relatedness. Thus we deal with

the criteria of article merge by separately compute the

Jaccard distance and semantic relatedness and combine the

two similarities together.

 We show the detail data in my experiments. If we just

see the Jaccard distance, the article “People’s Square” is

most similar with the “Shanghai Art Museum”, the Jaccard

distance is 0.189, larger than the Jaccard distance between

“Shanghai Art Museum” and “China Art Museum” 0.160,

that is because the article “People’s Square” is short, so

Jaccard distance is high. If we just consider the semantic

relatedness between articles, for “Shanghai Art Museum”

the most related article is “Shanghai Museum”, that is

because they are built near each other, and they exhibit

similar artworks. So embedding model gives strong related

between these two articles. But when we combine Jaccard

distance and semantic relatedness together, the “Shanghai

Art Museum” and the “China Art Museum” become the

most mergeable pair. We both consider about overlap and

semantic relatedness. This example shows how our

propose method deal with criteria of article merge.

4. Experiments

We extracted 5460 pairs of articles in total which are

suggested to be merged together from the category page

(https://en.wikipedia.org/wiki/Category:All_articles_to_b

e_merged). These articles in Wikipedia are labeled by “It

has been suggested that this article be merged into …”.

For each of the mergeable articles, we searched the article

title by Wikisearch, and downloaded top 20 results. We

insert the correct answer (the other article of the

mergeable pair) into the search results, if the correct

answer is not already in the search result, so there can be

20 or 21 articles in the candidate set which includes the

correct answer. The corpus totally includes 114574

articles.

 Given one article, our algorithm will select one article

which should be merged together from the candidate set

(select 1 from 21). As baseline models by single features,

we evaluate TF-IDF, Jaccard Distance and simhash on our

dataset. For embedding results, we evaluate three

pre-trained embedding results in Table 1 and we directly

train embeddings on the target mergeable articles dataset.

Table 2 shows the results.

Table 1: Details of pre-trained embeddings

dataset Word count Dataset size Training

method

Wikipedia 400K

vocabulary

6 billion

tokens

Glove

Google News 3M

vocabulary

100 billion

tokens

Skip-gram

Common

Crawl

2.2M

vocabulary

840 billion

tokens

Glove

Table 2: Single model result

Single Method accuracy

TF-IDF 0.024

Jaccard distance 0.436

Simhash 0.070

Embedding(Wikipedia) 0.527

Embedding(Google News) 0.537

Embedding(Common Crawl) 0.534

Directly train embedding result on

dataset

0.435

For combining pre-trained embedding results, we compare

different methods for combining the multiple embedding

results. We adopt linear combination, Autoencoder

combination[5] and our proposed method. These methods

are all unsupervised, for linear combination, each

dimension in final embedding is the average of dimensions

in every pre-trained embedding result. The results are

shown in Table 3

Table 3: Combination model result

Combining embedding result(Common

Crawl and Google News)

accuracy

Linear combination 0.535

Autoencoder combination 0.536

Transfer matrix combination 0.539

The combined embedding results above are just comparing

semantic similarities. When we add Jaccard distance that

is expected to measure overlaps, duplicates and length of

articles pairs, the results are expected to be improved. The

results are shown in Table 4.

Table 4: Combining features

Features accuracy

Embedding(Google News)+ Jaccard 0.608

Embedding(Common Crawl + Google

News)+ Jaccard

0.613

Here, we combine features by linear combination. We just

use the semantic similarity plus Jaccard distance as the

final similarity.

 To test our method on various overlaps of article pairs,

we divide our dataset into three subsets, with low, middle

and high overlaps. The low overlap is the pairs that have

less than 20 co-occurring words. The middle overlap is the

pairs that have between 21 and 60 co-occurring words, and

the high overlap is the pairs having more than 60

co-occurring words. The overlap distributions of our

datasets are shown in Figure 2. The results of the

compared methods over the subsets are shown in Table 5.

Table 5: Accuracy results over different overlaps

Method|Overlap [0,20] (20,60] (60,+∞]

Pair count 192 2204 3064

Jaccard 0.375 0.477 0.385

Embedding(Wikipedia) 0.188 0.344 0648

Embedding(Google

News)

0.192 0.370 0.649

Embedding(Common

Crawl)

0.203 0.363 0.644

Transfer matrix

combination(Google

News + Common

0.188 0.375 0.660

Crawl)

Embedding(Google

News)+ Jaccard

0.297 0.467 0.698

Embedding(Common

Crawl + Google News)+

Jaccard

0.296 0.480 0.704

Figure 2 distribution of word overlapping

From the results shows in Table 5, we observe that the

overlap affects the accuracy results of the Jaccard distance

and embedding-based semantic relatedness measures. As

we employ linear combination of Jaccard distance and

semantic relatedness, we think about overlap size and

article length as parameters to adjust the weight between

Jaccard distance and embedding-based semantic

relatedness. From Table 5, we find in the low overlap size

Jaccard distance perform better, and in high overlap size

the embedding based methods perform better.

 Compared with short article pair, long article pair has

more words so they should probably have high overlap.

For the same reason, short article pair should probably

have low overlap. So our principle is that for long article

pair we will give more weight on embedding based

methods and for short article pair we will give more

weight on Jaccard distance. But for one short article and

one long article pair, compared with both short article pair,

the overlap size is expected not increase much, but the

total article length increases much, so we prefer to put

more weight on semantic relatedness. For one short article

and one long article pair, compared with both long article

pair, the overlap size decrease not so much, and the total

article length decrease much, so compared with both long

article pair, we prefer to put more weight on Jaccard

distance.

 We define two functions to measure the effective of

article length over above the principle. The formula is as

below:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐹(𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑖𝑧𝑒) ∗ 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +

𝐺(𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑖𝑧𝑒) ∗ 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠

 Here F() and G() are two functions to measure the

weight with document length. Our samples are article pair,

we normalize the F() and G() by divide the product of

article length. To fit for our assumption above, we set F as

a decrease function and set G an increase function. We try

some popular functions to modify the weight, and the

result shows as below. And we set our normalize function

as 𝑛𝑜𝑟𝑚(𝑥) = 𝑥 ∙
1

𝑙𝑒𝑛𝑔𝑡𝑕(𝐴)∗𝑙𝑒𝑛𝑔𝑡𝑕(𝐵)
 , different from Jaccard

distance normalize function. In F() the 𝛼 is a static

weight.

Table 6: measure weight function

F() G() accuracy

𝑛𝑜𝑟𝑚(
𝛼

1 + 𝑒𝑥) 𝑛𝑜𝑟𝑚(
1

1 + 𝑒−𝑥)
0.535

𝑛𝑜𝑟𝑚(
𝛼

𝑥
) 𝑛𝑜𝑟𝑚(𝑥) 0.207

𝑛𝑜𝑟𝑚(
𝛼

log(𝑥 + 1)
) 𝑛𝑜𝑟𝑚(Log(x+1)) 0.206

𝑛𝑜𝑟𝑚(arctan (
𝛼

𝑥
)) 𝑛𝑜𝑟𝑚(arctan(𝑥)) 0.389

5. Discussion

 From the results, we can find that the result of the

word2vec-based methods is better than the TF-IDF,

Jaccard-Distance and simhash-based methods. The reason

is that while our goal is to find mergeable articles pair,

simhash focuses on literal similarity. TF-IDF is affected

by the datasets, performing worse in our dataset. Jaccard

distance performs better than TF-IDF and simhash,

because certain mergeable articles have a large overlap,

making the Jaccard method produces high precisions.

From Table 3, we can see the embedding methods

perform better than the conventional methods. It proves

embedding methods fit for this task.

 We compared four single embedding methods. The

embedding model directly trained on the target dataset

performs worst as we expected, since the target dataset is

smaller than other pre-trained models and our combined

model. The single embedding result trained over

Wikipedia is not the best in the single embedding results.

It can be explained as the corpus of Wikipedia is the

smallest in the training datasets. The combined embedding

methods are mostly better than the single embedding

results. It is because the combined embedding supports

more cases than single embedding methods. Usually, more

cases yield a high precision. Another reason is that two

different results will reduce the final vector bias of the

words in target dataset, although the model is the same

with the word2vec model, whose variance is stable. When

we add a new different dataset, the bias will decrease.

That could improve our result. The last reason is that our

objective function is more adopted to a new particular

target dataset, which is not reflected on embedding results

trained over general large corpora.

 For the combination methods, linear combination and

autoencoder combination are totally unsupervised, while

transfer matrixes method reflects given target datasets.

 From Tables 3 and 4, we can find that when we combine

an embedding result and Jaccard d istance, the result can

be significantly improved. It is because embeddings can

evaluate semantic similarity well and Jaccard distance can

evaluate overlaps and duplicates well. They fit well for the

criteria of mergeable articles. Combination of these two

features is expected to achieve a better result. We can also

see combining multiple pre-trained embedding results is

better than directly using only one pre-trained embedding

result.

 From Table 5 we can find the Jaccard distance perform

best in the low overlap pairs, while embedding-based

methods perform better in the high overlap pairs. That can

be because the article pairs with low overlap are short, so

Jaccard distance is much more important.

Embedding-based methods performs better on pairs having

high overlap because those article pairs are usually longer,

so semantic similarities of nonoverlapping parts give more

information.

 We also try to measure the weight of Jaccard distance

and semantic relatedness by the overlap size and article

length, but the results are not improved. That’s may

because the alpha parameter is hard to determine . Also we

find the function sigmoid and arctan gives bet ter results. It

may because sigmoid function and arctan function output

the normalized results again.

6. Conclusion and future work

In this paper, we proposed a combination method of

multiple embedding results. We consider not only term

co-occurrence similarity but also semantic similarity

between article pairs. We discussed the differences

between pre-trained large datasets and target dataset, and

introduced a new objective function. This objective

function can train a model more fitted to a particular target

dataset, reducing the bias of the global model. Focusing

on detecting mergeable article pairs, we discussed

combining pre-trained embedding results for evaluating

sematic similarity and Jaccard distance for evaluating

overlaps and duplicates. Combination of these two

features shows around 10 percent improvement in

accuracy, giving the best results. In the future work,

consider combining different embedding result by transfer

matrixes may not be the best choice, we can have a try on

neural network based method such as Convolutional

Neural Network (CNN) or Long-Short Term Memory

Network (LSTM). These network structures can detect

more information in the context. Compared with transfer

matrixes, CNN can detect relationship between words such

as in phrases. In transfer matrixes the context window

must be fixed but LSTM can detect relationships between

target words with long context. We will try to build new

network structure based on these two neural network

structures.

Reference
[1] Alonso, O., Fetterly, D., & Manasse, M. (2013,

December). Duplicate news story detection revisited.
In Asia Information Retrieval Symposium (pp.
203-214). Springer, Berlin, Heidelberg

[2] Broder, A. Z. (1997, June). On the resemblance and
containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings (pp.
21-29). IEEE.

[3] Broder, A. Z., Glassman, S. C., Manasse, M. S., &
Zweig, G. (1997). Syntactic clustering of the
web. Computer Networks and ISDN
Systems, 29(8-13), 1157-1166.

[4] Charikar, M. S. (2002, May). Similarity estimation
techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory
of computing (pp. 380-388)

[5] Ng, A., 2011. Sparse autoencoder. CS294A Lecture
notes, 72(2011), pp.1-19.

[6] Pan, S.J. and Yang, Q., 2010. A survey on transfer
learning. IEEE Transactions on knowledge and data
engineering, 22(10), pp.1345-1359.

[7] Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003,
June). Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data (pp. 76-85)

[8] Tomas M., Ilya S., Kai C., Greg C., Jeffrey D.:
Distributed Representations of Words and Phrases
and their Compositionality, NIPS '13, Pages 3111 –
3119 (2013)

[9] Tomas M., Kai C., Greg C., Jeffrey D.: Efficient
Estimation of Word Representations in Vector Space,
ICLR '13 Proceedings of Workshop at International
Conference on Learning Representations (2013)

[10] Zhang, Y., Roller, S., & Wallace, B. (2016).
Mgnc-cnn: A simple approach to exploiting multiple
word embeddings for sentence classification. arXiv
preprint arXiv:1603.00968

[11] https://en.wikipedia.org/wiki/Wikipedia:Merging#Re
asons for merger

