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Abstract Cloud database services have become attractive among organizations, governments, or individuals with the 
increasing number of data to be analyzed. Outsourcing sensitive data and delegating data processing to the cloud services, 
however, cause security and privacy issues because they are not always trustable. In this paper, we address the problem of 
answering join queries across outsourced private databases while maintaining the data confidentiality. This query model is 
common in a study field where a researcher is willing to know a certain correlation between databases owned by different 
enterprises. We especially present a protocol that allows secure join operation toward datasets on a cloud server, introducing a 
new functionality of outsourced private set intersection cardinality with fully homomorphic encryption and bloom filters.  
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1. Introduction 

In an outsourced database model, it is significant to 
provide a way to securely execute queries while protecting 
data privacy. The outsourced data confidentiality itself can 
be achieved by encrypting the whole data. Once data are 
encrypted by traditional encryption schemes, however, no 
query processing can be performed without their 
decryption. In this case, in order to execute outsourced 
queries, the data have to be decrypted on the cloud-side, 
which causes security issues. A way to solve this problem 
is to adopt fully homomorphic encryption (FHE) [1], which 
allows one to compute arbitrary functions on encrypted 
data. Although a cloud service provider can process any 
queries while maintaining data confidentiality, FHE 
requires large time and memory complexities, which 
results in inefficient processing. 

In this study, we focus on join operations in database 
queries, which are used in many systems in the real world. 
For example, it is necessary to join databases when a 
researcher wants to find a certain correlation between 
multiple databases. We especially assume the case where 
two datasets maintained by different entities are 
outsourced to a cloud service, and the cloud service counts 
the number of elements in the intersection of the datasets. 
In this situation, computing the result without revealing the 
content of the data to the cloud service is required. 

We propose a secure protocol for join operations on the 

cloud by leveraging the idea of outsourced private set 
intersection cardinality (OPSI-CA), adopting bloom filters 
[2] and FHE. The novelty of our proposed protocol is that 
to the best of our knowledge this is the first approach for 
outsourced join processing adopting FHE. 

2. Background 
2.1. Notations 

Table 1 describes notations referred to in this paper. 
Table 1. Notations 

Notation Description 
𝐷" A dataset  of  data owner I .  

𝑁" = 	 𝐷"  Number of elements in 𝐷".  
m, k  Size of bloom fi l ter  and number of hash function,  respectively. 

fp False posit ive rate in bloom fi l ter.  
𝑓𝑝()*  A desirable maximum false posit ive rate in our protocol. 

𝑛,-.  Maximum number of elements that  can be stored on the cloud 
while keeping a false posit ive rate less than 𝑓𝑝()* .  

s  Number of slots  in a single ciphertext .  
𝑝 = 𝑚/𝑠  Number of packed ciphertexts used in a single bloom fi l ter.  
[𝑏4, … , 𝑏7] A bit-vector with length u.  
𝑏4|… |𝑏7  A single packed ciphertext ,  encryption of [𝑏4, … , 𝑏7].  
𝐵𝐹)<<"  A bloom fi l ter  that  represents al l  elements of 𝐷".  
𝐵𝐹=" A bloom fi l ter  that  represents the i- th element of a set  𝐷".  
𝐵𝐹=,>"  The j- th spli ted bloom fi l ter  of 𝐵𝐹=".  
𝐵𝐹?,@"  A packed ciphertext ,  which is  the encryption of 𝐵𝐹=,>" .  
𝐵𝐹?" Concatenation of ciphertexts representing i- th element of 𝐷".  
⨁ Addit ion over the packed ciphertexts.  
⨂ Multiplication over the packed ciphertexts.  

 

2.2. Fully Homomorphic Encryption (FHE) 
 Fully homomorphic encryption (FHE) [1] supports an 

arbitrary number of computations in both addition and 
multiplication over encrypted data. We here present a high-
level overview of a BGV-style FHE scheme [3] and 
introduce SV packing technique [4]. 



 

 

2.2.1. The BGV-Style FHE Scheme 
The BGV-style FHE scheme consists of the following 

five algorithms: 
• 𝐹𝐻𝐸. 𝑆𝑒𝑡𝑈𝑝 1K 	: Given a security parameter 𝜆, outputs 

a set of encryption parameters: 𝑝𝑎𝑟𝑎𝑚𝑠. 

• 𝐹𝐻𝐸. 𝐾𝑒𝑦𝐺𝑒𝑛 𝑝𝑎𝑟𝑎𝑚𝑠 : Generates public key pk / 
secret key sk pair, and evaluation keys ek. 

• 𝐹𝐻𝐸. 𝐸𝑛𝑐 𝑝𝑘,𝑚 : Given the public key pk and a 
message m , produces a ciphertext c. 

• 𝐹𝐻𝐸. 𝐷𝑒𝑐 𝑠𝑘, 𝑐 : Given the secret key sk and a 
ciphertext c, produces a message m . 

• 𝐹𝐻𝐸. 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, (𝑐4, … , 𝑐W) : Given the evaluation key ek, 
an arithmetic circuit f, and ciphertexts 𝑐4, … , 𝑐W, where 
t is the number of inputs to f, outputs a ciphertext 𝑐Y. 

2.2.2. SV Packing 
In [4], Smart and Vercauteren propose SIMD style 

operations on packed ciphertexts based on polynomial-CRT 
(Chinese Remainder Theorem) that allows one to encrypt 
vector of plaintexts in a single ciphertext. Since FHE 
schemes generally encrypt small plaintexts in the large 
ciphertexts, using FHE with this packing technique is 
efficient in memory space and computational resources. 

2.3. Bloom Filter 
A bloom filter (BF) [2] is a well-known space-efficient 

probabilistic data structure used to test whether an element 
is a member of a set. The structure facilitates efficient 
search, which never generates false negatives but may yield 
a small probability of false positives: 	𝑓𝑝 = (1 − (1 − 4

,
)[\)[ 	≈

	(1 − 𝑒^
_`
a )[, where k is the number of hash functions, n is 

the number of elements in a set, and m is the size of bloom 
filter. The basic operations are adding elements to a set and 
processing membership queries in probabilistic set 
representation. To answer the membership queries, bloom 
filter requires only constant time to the size of the set. 

3. Related Work 
Private Set Intersection (PSI) [5] is a cryptographic 

technique that allows two parties to compute the 
intersection without revealing anything except the 
intersection. In this section, we present existing studies of 
PSI whose computation is delegated to an untrusted cloud 
server. In the delegated PSI setting, the cloud server is 
required to learn nothing about outsourced data content and 
computation results while computing set intersection. 

In [6], computation of private set intersection can be 
outsourced to an oblivious service provider adopting bloom 
filter and homomorphic encryption. However, since a client 
encrypts and outsources a bloom filter of a set rather than 

that of elements, the protocol does not support data storage 
outsourcing. In [7], the protocol allows clients to outsource 
their datasets to a cloud server by hashing the datasets and 
randomizing the hashed data. In order to compute the set 
intersection collaborative operations of the clients and the 
server are required. Thus, the protocol is not the case of 
fully delegated set intersection operation. Furthermore, in 
this protocol, the server can know the cardinality of the 
intersection, which is not fully private. The protocol in [8] 
allows two clients to outsource their datasets and delegate 
the set intersection operation to an untrusted cloud server 
with a verifiable mechanism to faithfully conduct set 
intersection operation. This protocol, however, leaks the 
cardinality of the intersection. Recently, Abadi et al. [9] 
have proposed a new delegated private set intersection 
scheme by adopting additive homomorphic encryption and 
point-value polynomial representation. In this protocol, 
clients outsourced their datasets by representing them as 
blinded polynomials. Later, they proposed a more efficient 
protocol with hash tables and point-value polynomial 
representation [10]. Both protocols are secure in that the 
cloud server learns nothing about the exact number of the 
set elements and the cardinality of the intersection. The set 
intersection operations in these protocols, however, are not 
fully delegated because both clients participate in the 
computation delegation phase. 

We summarize these related works and compare to our 
protocol in Table 2. PSI-CA private means that the cloud 
does not learn the size of a set intersection. Fully 
delegation means that clients do not participate in the 
delegation phase. Data storage outsourcing means that each 
element is outsourced to the cloud. In our protocol, set 
intersection cardinality is protected from the cloud and our 
scheme supports data storage outsourcing and fully 
delegation. 

Table 2. Property comparison of OPSI-related work 
Property [6] [7] [8] [9] [10] Ours  

PSI-CA privacy ✓    ✓  ✓  ✓  
Fully delegation ✓   ✓    ✓  

Data storage 
outsourcing  ✓  ✓  ✓  ✓  ✓  

4. Model 
We present our problem setting in this section. In our 

scenario (see Fig. 1), there are four players: data owner A, 
data owner B, querier Q, and cloud server S. Data owner A 
owns dataset 𝐷)  and data owner B owns dataset 𝐷) 
respectively, and they outsource the datasets to cloud 
server S. Querier Q later asks cloud server S to perform a 
join operation to retrieve the size of the data common to 

both datasets, 𝐷) and 𝐷b.  



 

 

 

 

 
Fig. 1. Our scenario  Fig.2 Overview of our approach 

In this scenario, we consider honest-but-curious cloud 
service providers as adversaries and require the cloud 
server does not collude with any other parties. For security 
requirements in each entity are follows: The querier learns 
only the query result and no information about the content 
of the outsourced data; The data owner learns nothing 
about the query results and the content of the outsourced 
data which are owned by the other data owner; The server 
learns nothing about the query result and the content of the 
outsourced data. In our protocol, however, we accept 
leakage of data size that is stored in the cloud server. 

5. Proposed Method 
We adopt a new functionality of outsourced private set 

intersection cardinality (OPSI-CA) with FHE and bloom 
filter. We define the OPSI-CA functionality as a protocol 
where the cloud computes set intersection of outsourced 
datasets and returns the cardinality of the intersection. 

5.1. Protocol 
Fig. 2 depicts the overview of our approach and Fig. 3 

explains our whole protocol. 
 

Input:  Data owner A’s dataset  𝐷) of  size 𝑁);  data owner B’s dataset  𝐷b  
of  size 𝑁b .  𝑁),𝑁b ≤ 𝑛,-.. 

Output:  Querier  outputs 𝐷) 	∩ 	𝐷b .  

1.  Querier Setup :  Querier  performs the following: 
 [Create FHE parameters]  Generates a public-secret  key pair.   
 [Send the FHE public key]  Sends the public key to the data owner 

A, B, and the server.   
 [Send BF parameters]  Sends desirable 𝑓𝑝,-.  and 𝑛,-.  to the   

  data owner A and B. 
2.  Data Owner Setup and Data Outsourcing:  Each data owner I∈

{𝐴, 𝐵} performs the following: 
 [Create BFs]  Creates bloom fi l ters for each element.  

∀𝑖. 𝐵𝐹=" = 𝑏=,4" , … , 𝑏=,," 1 ≤ 𝑖 ≤ 𝑁" .  
[Split  each BF]  Spli ts  each BF into p  vectors,  where 𝑝 = 𝑚/𝑠 .  
  ∀𝑖. 𝐵𝐹=" = 𝐵𝐹=,4" , . . , 𝐵𝐹=,k"  
																				= 𝑏=,4" , … , 𝑏=,l" , … , [𝑏=,,∙k^ln4

" , … , 𝑏=,,∙k
" ](1 ≤ 𝑖 ≤ 𝑁").  

 [Encrypt the BFs]  Encrypts the BFs in batch.  
∀𝑖, 𝑗. 𝐸𝑛𝑐k[ 𝐵𝐹=,>" = 𝐵𝐹?,@" 	 1 ≤ 𝑖 ≤ 𝑁", 1 ≤ 𝑗 ≤ 𝑝 . 
A single encrypted bloom fi l ter  𝐵𝐹?"is  composed of p  ciphertexts 
as follows.  
∀𝑖. 𝐵𝐹?" = 𝐵𝐹?,4" , … , 𝐵𝐹?,k"  
														= 𝑏?,4" 	… |𝑏?,," , … , 𝑏?,,∙k^ln4

" … |𝑏?,,∙k
" 1 ≤ 𝑖 ≤ 𝑁" .  

 [Send the encrypted BFs]  Sends the 𝑁" ∙ 𝑝 ciphertexts to the cloud 
server.  

3.  Cloud Server Set Intersection Operation :  Define X  and Y as 
follows: If  	𝑁) ≥ 𝑁b ,  𝑋 = 𝐴, 𝑌 = 𝐵.  Otherwise,  𝑋 = 𝐵, 𝑌 = 𝐴.  

 [Aggregate the encrypted BFs]  Cloud server aggregates al l  the 
encrypted bloom fi l ter  of  data owner X  by bit-wise OR operation  
𝑂𝑅 with a SIMD technique. 
∀𝑗. 𝐵𝐹)<<,@* = 𝐵𝐹4,@* 	𝑂𝑅	… 	𝑂𝑅	𝐵𝐹uv,@

*  1 ≤ 𝑗 ≤ 𝑝 . 
 [Perform inclusion check]  Cloud server checks if  each element of 

the data owner Y  is  included in the set  of the data owner X .   
∀𝑖, 𝑗. 𝐵𝐹wxly,@

z = ((𝐵𝐹)<<,@* 	⨂𝐵𝐹?,@z) ⊕ 𝐵𝐹?,@z 	) ⊕ 1 1 ≤ 𝑖 ≤ 𝑁z, 1 ≤ 𝑗 ≤ 𝑝 . 
If  the element is  included in the other set ,  the result  is  1.  
Otherwise,  the result  ciphertext is  distr ibuted in {0,1}.  

 [Send the result]  Sends the 𝑁z ∙ 𝑝 ciphertexts to the querier.  
4.  Querier result  retrieving :  
 [Decrypt the result]  Querier  decrypts the encrypted BFs and count 

up # of BFs where al l  the bits  within the single bloom fi l ter  are 
set  to 1.  

Fig. 3. Our proposed protocol 

5.2. Security Proof 
We now discuss the security of our protocol in an honest-

but-curious model. By adopting FHE scheme, the cloud 
server does not learn data contents and query results since 
all the data are encrypted and it does not hold a secret key 
to decrypt them. For the same reason, the data owner A 
does not learn data contents of data owner B and vise versa. 
Additionally, since bloom filters are built with one way 
hash functions, the querier does not learn data content of 
the data owners even if encrypted bloom filters are 
decrypted by a secret key. Thus, security requirements for 
each party in our model are satisfied. 

6. Implementation and Evaluation 
6.1. Implementation 

We implemented the protocol shown in Fig.1 with c++. 
For FHE, we used the homomorphic encryption library 
HElib [11] [12], which is based on the BGV scheme. For 
bloom filter, we implemented by ourselves and used 
MurmurHash3 [13] as a hash function.  

6.2. Experimental Setup 
Our experiment is run on CentOS 6.7, Intel Xeon CPU 

E7-8880 v3 @ 2.3GHz, and 1TB memory. The FHE 
parameters for HElib that we used are given in Table 3. In 
all experiments, we fix 𝑓𝑝,-. = 0.001  and 𝑛,-. = 100 , 
namely the false positive rate of a bloom filter is at most 



 

 

𝑓𝑝,-.  if the input data size is less than 𝑛,-.. Thus, in 
order to keep the false positive rate at most 0.001, we vary 
the number of elements up to 100, which determines the 
performance of our protocol. Each party’s computation is 
executed with either single thread or multi-thread as shown 
in Table 4.  

Table 3. FHE parameter sets for HElib 
Message Space m  s L security 

ℤ~ 9773 112 10 133 
m: ring modulus, s: # of slots, L: # of ciphertext moduli. 

Table 4. Number of threads in each party 
Querier Data Owner Cloud Server 

1 4 20 

6.3. Performance Evaluation 
In this section, we show the experimental results of our 

protocol and evaluate the performance. We measured the 
computation time in each party.  

 (1) Data Owner: The result of the data owner-side in 
Fig. 5 shows the running time of creating encrypted bloom 
filter. In our experiments, the length of bloom filter m  and 
the number of hash functions k are 1437 and 9, respectively. 
Since m  and k are determined by two fixed values: 
maximum false positive rate 𝑓𝑝,-.  and maximum 
elements 𝑛,-., the computation time on the data owner-
side increases linearly with the number of elements. 

(2) Cloud Server: The result of the cloud server-side in 
Fig. 5 shows the running time of calculating the set 
intersection cardinality. We here emphasize that the 
important algorithm in our cloud-side protocol is the 
aggregate operation, which makes efficient in the inclusion 
check operation, namely the computation becomes linear 
with the number of elements. Otherwise, it requires 
quadratic time in the inclusion check operation.  

(3) Querier: The result of the querier-side in Fig. 5 
shows the running time of decrypting the OPSI-CA result. 
The time increases linearly with the number of elements. 

 

 
Fig. 5. Computation time in each party 

7. Conclusion 
In this paper, we proposed a protocol that allows secure 

join operations toward outsourced datasets in a cloud 
environment. Our protocol adopts a new functionality of 
outsourced private set intersection cardinality (OPSI-CA) 
by combining the BGV-style FHE scheme with bloom 
filters. Our results show that computation overhead in each 
party scaled linearly in the number of elements. For 
example, with 100 element sets, it requires 22.5s for the 
cloud to calculate OPSI-CA. In our protocol, our FHE 
scheme enables the cloud to process the join query with 
strong security guarantees. We believe that our study can 
be a help in developing practical applications with FHE.  
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