

DEIM Forum 2018 F7-2

Privacy-Preserving Join Processing over outsourced private datasets
with Fully Homomorphic Encryption and Bloom Filters

Arisa TAJIMA† Hiroki SATO‡ and Hayato YAMANA§

†School of Fundamental Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555
Japan

‡Graduate School of Fundamental Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo,
169-8555 Japan

§Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

E-mail: {arisatajima, hsato, yamana}@yama.info.waseda.ac.jp

Abstract Cloud database services have become attractive among organizations, governments, or individuals with the
increasing number of data to be analyzed. Outsourcing sensitive data and delegating data processing to the cloud services,
however, cause security and privacy issues because they are not always trustable. In this paper, we address the problem of
answering join queries across outsourced private databases while maintaining the data confidentiality. This query model is
common in a study field where a researcher is willing to know a certain correlation between databases owned by different
enterprises. We especially present a protocol that allows secure join operation toward datasets on a cloud server, introducing a
new functionality of outsourced private set intersection cardinality with fully homomorphic encryption and bloom filters.

Keyword Private Database，Outsourced join operation，Cloud Computing，FHE，Bloom Filter，PSI

1. Introduction

In an outsourced database model, it is significant to
provide a way to securely execute queries while protecting
data privacy. The outsourced data confidentiality itself can
be achieved by encrypting the whole data. Once data are
encrypted by traditional encryption schemes, however, no
query processing can be performed without their
decryption. In this case, in order to execute outsourced
queries, the data have to be decrypted on the cloud-side,
which causes security issues. A way to solve this problem
is to adopt fully homomorphic encryption (FHE) [1], which
allows one to compute arbitrary functions on encrypted
data. Although a cloud service provider can process any
queries while maintaining data confidentiality, FHE
requires large time and memory complexities, which
results in inefficient processing.

In this study, we focus on join operations in database
queries, which are used in many systems in the real world.
For example, it is necessary to join databases when a
researcher wants to find a certain correlation between
multiple databases. We especially assume the case where
two datasets maintained by different entities are
outsourced to a cloud service, and the cloud service counts
the number of elements in the intersection of the datasets.
In this situation, computing the result without revealing the
content of the data to the cloud service is required.

We propose a secure protocol for join operations on the

cloud by leveraging the idea of outsourced private set
intersection cardinality (OPSI-CA), adopting bloom filters
[2] and FHE. The novelty of our proposed protocol is that
to the best of our knowledge this is the first approach for
outsourced join processing adopting FHE.

2. Background
2.1. Notations

Table 1 describes notations referred to in this paper.
Table 1. Notations

Notation Description
𝐷" A dataset of data owner I .

𝑁" = 	 𝐷" Number of elements in 𝐷".
m, k Size of bloom fi l ter and number of hash function, respectively.

fp False posit ive rate in bloom fi l ter.
𝑓𝑝()* A desirable maximum false posit ive rate in our protocol.

𝑛,-. Maximum number of elements that can be stored on the cloud
while keeping a false posit ive rate less than 𝑓𝑝()* .

s Number of slots in a single ciphertext .
𝑝 = 𝑚/𝑠 Number of packed ciphertexts used in a single bloom fi l ter.
[𝑏4, … , 𝑏7] A bit-vector with length u.
𝑏4|… |𝑏7 A single packed ciphertext , encryption of [𝑏4, … , 𝑏7].
𝐵𝐹)<<" A bloom fi l ter that represents al l elements of 𝐷".
𝐵𝐹=" A bloom fi l ter that represents the i- th element of a set 𝐷".
𝐵𝐹=,>" The j- th spli ted bloom fi l ter of 𝐵𝐹=".
𝐵𝐹?,@" A packed ciphertext , which is the encryption of 𝐵𝐹=,>" .
𝐵𝐹?" Concatenation of ciphertexts representing i- th element of 𝐷".
⨁ Addit ion over the packed ciphertexts.
⨂ Multiplication over the packed ciphertexts.

2.2. Fully Homomorphic Encryption (FHE)
 Fully homomorphic encryption (FHE) [1] supports an

arbitrary number of computations in both addition and
multiplication over encrypted data. We here present a high-
level overview of a BGV-style FHE scheme [3] and
introduce SV packing technique [4].

2.2.1. The BGV-Style FHE Scheme
The BGV-style FHE scheme consists of the following

five algorithms:
• 𝐹𝐻𝐸. 𝑆𝑒𝑡𝑈𝑝 1K 	: Given a security parameter 𝜆, outputs

a set of encryption parameters: 𝑝𝑎𝑟𝑎𝑚𝑠.

• 𝐹𝐻𝐸. 𝐾𝑒𝑦𝐺𝑒𝑛 𝑝𝑎𝑟𝑎𝑚𝑠 : Generates public key pk /
secret key sk pair, and evaluation keys ek.

• 𝐹𝐻𝐸. 𝐸𝑛𝑐 𝑝𝑘,𝑚 : Given the public key pk and a
message m , produces a ciphertext c.

• 𝐹𝐻𝐸. 𝐷𝑒𝑐 𝑠𝑘, 𝑐 : Given the secret key sk and a
ciphertext c, produces a message m .

• 𝐹𝐻𝐸. 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, (𝑐4, … , 𝑐W) : Given the evaluation key ek,
an arithmetic circuit f, and ciphertexts 𝑐4, … , 𝑐W, where
t is the number of inputs to f, outputs a ciphertext 𝑐Y.

2.2.2. SV Packing
In [4], Smart and Vercauteren propose SIMD style

operations on packed ciphertexts based on polynomial-CRT
(Chinese Remainder Theorem) that allows one to encrypt
vector of plaintexts in a single ciphertext. Since FHE
schemes generally encrypt small plaintexts in the large
ciphertexts, using FHE with this packing technique is
efficient in memory space and computational resources.

2.3. Bloom Filter
A bloom filter (BF) [2] is a well-known space-efficient

probabilistic data structure used to test whether an element
is a member of a set. The structure facilitates efficient
search, which never generates false negatives but may yield
a small probability of false positives: 	𝑓𝑝 = (1 − (1 − 4

,
)[\)[≈

	(1 − 𝑒^
_`
a)[, where k is the number of hash functions, n is

the number of elements in a set, and m is the size of bloom
filter. The basic operations are adding elements to a set and
processing membership queries in probabilistic set
representation. To answer the membership queries, bloom
filter requires only constant time to the size of the set.

3. Related Work
Private Set Intersection (PSI) [5] is a cryptographic

technique that allows two parties to compute the
intersection without revealing anything except the
intersection. In this section, we present existing studies of
PSI whose computation is delegated to an untrusted cloud
server. In the delegated PSI setting, the cloud server is
required to learn nothing about outsourced data content and
computation results while computing set intersection.

In [6], computation of private set intersection can be
outsourced to an oblivious service provider adopting bloom
filter and homomorphic encryption. However, since a client
encrypts and outsources a bloom filter of a set rather than

that of elements, the protocol does not support data storage
outsourcing. In [7], the protocol allows clients to outsource
their datasets to a cloud server by hashing the datasets and
randomizing the hashed data. In order to compute the set
intersection collaborative operations of the clients and the
server are required. Thus, the protocol is not the case of
fully delegated set intersection operation. Furthermore, in
this protocol, the server can know the cardinality of the
intersection, which is not fully private. The protocol in [8]
allows two clients to outsource their datasets and delegate
the set intersection operation to an untrusted cloud server
with a verifiable mechanism to faithfully conduct set
intersection operation. This protocol, however, leaks the
cardinality of the intersection. Recently, Abadi et al. [9]
have proposed a new delegated private set intersection
scheme by adopting additive homomorphic encryption and
point-value polynomial representation. In this protocol,
clients outsourced their datasets by representing them as
blinded polynomials. Later, they proposed a more efficient
protocol with hash tables and point-value polynomial
representation [10]. Both protocols are secure in that the
cloud server learns nothing about the exact number of the
set elements and the cardinality of the intersection. The set
intersection operations in these protocols, however, are not
fully delegated because both clients participate in the
computation delegation phase.

We summarize these related works and compare to our
protocol in Table 2. PSI-CA private means that the cloud
does not learn the size of a set intersection. Fully
delegation means that clients do not participate in the
delegation phase. Data storage outsourcing means that each
element is outsourced to the cloud. In our protocol, set
intersection cardinality is protected from the cloud and our
scheme supports data storage outsourcing and fully
delegation.

Table 2. Property comparison of OPSI-related work
Property [6] [7] [8] [9] [10] Ours

PSI-CA privacy ✓ ✓ ✓ ✓
Fully delegation ✓ ✓ ✓

Data storage
outsourcing ✓ ✓ ✓ ✓ ✓

4. Model
We present our problem setting in this section. In our

scenario (see Fig. 1), there are four players: data owner A,
data owner B, querier Q, and cloud server S. Data owner A
owns dataset 𝐷) and data owner B owns dataset 𝐷)
respectively, and they outsource the datasets to cloud
server S. Querier Q later asks cloud server S to perform a
join operation to retrieve the size of the data common to

both datasets, 𝐷) and 𝐷b.

Fig. 1. Our scenario Fig.2 Overview of our approach

In this scenario, we consider honest-but-curious cloud
service providers as adversaries and require the cloud
server does not collude with any other parties. For security
requirements in each entity are follows: The querier learns
only the query result and no information about the content
of the outsourced data; The data owner learns nothing
about the query results and the content of the outsourced
data which are owned by the other data owner; The server
learns nothing about the query result and the content of the
outsourced data. In our protocol, however, we accept
leakage of data size that is stored in the cloud server.

5. Proposed Method
We adopt a new functionality of outsourced private set

intersection cardinality (OPSI-CA) with FHE and bloom
filter. We define the OPSI-CA functionality as a protocol
where the cloud computes set intersection of outsourced
datasets and returns the cardinality of the intersection.

5.1. Protocol
Fig. 2 depicts the overview of our approach and Fig. 3

explains our whole protocol.

Input: Data owner A’s dataset 𝐷) of size 𝑁); data owner B’s dataset 𝐷b
of size 𝑁b . 𝑁),𝑁b ≤ 𝑛,-..

Output: Querier outputs 𝐷) 	∩ 	𝐷b .

1. Querier Setup : Querier performs the following:
 [Create FHE parameters] Generates a public-secret key pair.
 [Send the FHE public key] Sends the public key to the data owner

A, B, and the server.
 [Send BF parameters] Sends desirable 𝑓𝑝,-. and 𝑛,-. to the

 data owner A and B.
2. Data Owner Setup and Data Outsourcing: Each data owner I∈

{𝐴, 𝐵} performs the following:
 [Create BFs] Creates bloom fi l ters for each element.

∀𝑖. 𝐵𝐹=" = 𝑏=,4" , … , 𝑏=,," 1 ≤ 𝑖 ≤ 𝑁" .
[Split each BF] Spli ts each BF into p vectors, where 𝑝 = 𝑚/𝑠 .
 ∀𝑖. 𝐵𝐹=" = 𝐵𝐹=,4" , . . , 𝐵𝐹=,k"
																				= 𝑏=,4" , … , 𝑏=,l" , … , [𝑏=,,∙k^ln4

" , … , 𝑏=,,∙k
"](1 ≤ 𝑖 ≤ 𝑁").

 [Encrypt the BFs] Encrypts the BFs in batch.
∀𝑖, 𝑗. 𝐸𝑛𝑐k[𝐵𝐹=,>" = 𝐵𝐹?,@" 	 1 ≤ 𝑖 ≤ 𝑁", 1 ≤ 𝑗 ≤ 𝑝 .
A single encrypted bloom fi l ter 𝐵𝐹?"is composed of p ciphertexts
as follows.
∀𝑖. 𝐵𝐹?" = 𝐵𝐹?,4" , … , 𝐵𝐹?,k"
														= 𝑏?,4" 	… |𝑏?,," , … , 𝑏?,,∙k^ln4

" … |𝑏?,,∙k
" 1 ≤ 𝑖 ≤ 𝑁" .

 [Send the encrypted BFs] Sends the 𝑁" ∙ 𝑝 ciphertexts to the cloud
server.

3. Cloud Server Set Intersection Operation : Define X and Y as
follows: If 	𝑁) ≥ 𝑁b , 𝑋 = 𝐴, 𝑌 = 𝐵. Otherwise, 𝑋 = 𝐵, 𝑌 = 𝐴.

 [Aggregate the encrypted BFs] Cloud server aggregates al l the
encrypted bloom fi l ter of data owner X by bit-wise OR operation
𝑂𝑅 with a SIMD technique.
∀𝑗. 𝐵𝐹)<<,@* = 𝐵𝐹4,@* 	𝑂𝑅	… 	𝑂𝑅	𝐵𝐹uv,@

* 1 ≤ 𝑗 ≤ 𝑝 .
 [Perform inclusion check] Cloud server checks if each element of

the data owner Y is included in the set of the data owner X .
∀𝑖, 𝑗. 𝐵𝐹wxly,@

z = ((𝐵𝐹)<<,@* 	⨂𝐵𝐹?,@z) ⊕ 𝐵𝐹?,@z) ⊕ 1 1 ≤ 𝑖 ≤ 𝑁z, 1 ≤ 𝑗 ≤ 𝑝 .
If the element is included in the other set , the result is 1.
Otherwise, the result ciphertext is distr ibuted in {0,1}.

 [Send the result] Sends the 𝑁z ∙ 𝑝 ciphertexts to the querier.
4. Querier result retrieving :
 [Decrypt the result] Querier decrypts the encrypted BFs and count

up # of BFs where al l the bits within the single bloom fi l ter are
set to 1.

Fig. 3. Our proposed protocol

5.2. Security Proof
We now discuss the security of our protocol in an honest-

but-curious model. By adopting FHE scheme, the cloud
server does not learn data contents and query results since
all the data are encrypted and it does not hold a secret key
to decrypt them. For the same reason, the data owner A
does not learn data contents of data owner B and vise versa.
Additionally, since bloom filters are built with one way
hash functions, the querier does not learn data content of
the data owners even if encrypted bloom filters are
decrypted by a secret key. Thus, security requirements for
each party in our model are satisfied.

6. Implementation and Evaluation
6.1. Implementation

We implemented the protocol shown in Fig.1 with c++.
For FHE, we used the homomorphic encryption library
HElib [11] [12], which is based on the BGV scheme. For
bloom filter, we implemented by ourselves and used
MurmurHash3 [13] as a hash function.

6.2. Experimental Setup
Our experiment is run on CentOS 6.7, Intel Xeon CPU

E7-8880 v3 @ 2.3GHz, and 1TB memory. The FHE
parameters for HElib that we used are given in Table 3. In
all experiments, we fix 𝑓𝑝,-. = 0.001 and 𝑛,-. = 100 ,
namely the false positive rate of a bloom filter is at most

𝑓𝑝,-. if the input data size is less than 𝑛,-.. Thus, in
order to keep the false positive rate at most 0.001, we vary
the number of elements up to 100, which determines the
performance of our protocol. Each party’s computation is
executed with either single thread or multi-thread as shown
in Table 4.

Table 3. FHE parameter sets for HElib
Message Space m s L security

ℤ~ 9773 112 10 133
m: ring modulus, s: # of slots, L: # of ciphertext moduli.

Table 4. Number of threads in each party
Querier Data Owner Cloud Server

1 4 20

6.3. Performance Evaluation
In this section, we show the experimental results of our

protocol and evaluate the performance. We measured the
computation time in each party.

 (1) Data Owner: The result of the data owner-side in
Fig. 5 shows the running time of creating encrypted bloom
filter. In our experiments, the length of bloom filter m and
the number of hash functions k are 1437 and 9, respectively.
Since m and k are determined by two fixed values:
maximum false positive rate 𝑓𝑝,-. and maximum
elements 𝑛,-., the computation time on the data owner-
side increases linearly with the number of elements.

(2) Cloud Server: The result of the cloud server-side in
Fig. 5 shows the running time of calculating the set
intersection cardinality. We here emphasize that the
important algorithm in our cloud-side protocol is the
aggregate operation, which makes efficient in the inclusion
check operation, namely the computation becomes linear
with the number of elements. Otherwise, it requires
quadratic time in the inclusion check operation.

(3) Querier: The result of the querier-side in Fig. 5
shows the running time of decrypting the OPSI-CA result.
The time increases linearly with the number of elements.

Fig. 5. Computation time in each party

7. Conclusion
In this paper, we proposed a protocol that allows secure

join operations toward outsourced datasets in a cloud
environment. Our protocol adopts a new functionality of
outsourced private set intersection cardinality (OPSI-CA)
by combining the BGV-style FHE scheme with bloom
filters. Our results show that computation overhead in each
party scaled linearly in the number of elements. For
example, with 100 element sets, it requires 22.5s for the
cloud to calculate OPSI-CA. In our protocol, our FHE
scheme enables the cloud to process the join query with
strong security guarantees. We believe that our study can
be a help in developing practical applications with FHE.

Acknowledgment
This work was supported by JST CREST Grant Number
JPMJCR1503, Japan.

Reference
[1] Gentry, C. Fully homomorphic encryption using ideal

lattices. STOC ’09, pp.169-178, 2009.
[2] Bloom, B. H. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM,
pp.422-426, 1970.

[3] Brakerski, Z., Gentry, C., & Vaikuntanathan,
V. (Leveled) fully homomorphic encryption without
bootstrapping. ITCS, pp.309-325, 2012.

[4] Smart, N. P., & Vercauteren, F. Fully homomorphic
SIMD operations. Designs, codes and cryptography.
pp.1-25, 2014.

[5] Freedman, M. J., Nissim, K., & Pinkas, B. Efficient
private matching and set intersection.
EUROCRYPT’04, pp. 1-19, 2004.

[6] Kerschbaum, F. Outsourced private set intersection
using homomorphic encryption. ASIACCS'12, pp.85-
86, 2012.

[7] Liu, F., Ng, W. K., Zhang, W., & Han, S. Encrypted
set intersection protocol for outsourced datasets.
IC2E, pp.135-140, 2014.

[8] Zheng, Q., & Xu, S. Verifiable delegated set
intersection operations on outsourced encrypted data.
IC2E, pp.175-184, 2015.

[9] Abadi, A., Terzis, S., & Dong, C. O-PSI: delegated
private set intersection on outsourced datasets. IFIP
Int’l Information Security Conference, pp.3-17, 2015.

[10] Abadi, A., Terzis, S., Metere, R., & Dong, C. Efficient
delegated private set intersection on outsourced
private datasets. IEEE Trans. on Dependable and
Secure Computing, 2017.

[11] Halevi, S., & Shoup, V. Algorithms in helib.
CRYPTO’14, pp.554-571, 2014.

[12] HElib. https://github.com/shaih/HElib, 2016.8.12.
[13] MurmurHash3. https://github.com/aappleby/smhasher.

0

20

40

60

80

100

120

20 40 60 80 100

Ti
m
e	
(s
)

Number	of	elements	in	each	data	owner's	set

Data	Owner

Cloud	Server

Querier

