
DEIM Forum 2018 I4-4

Random Clustering for Multiple Sampling Units

to Speed Up Run-time Sample Generation

Yuzuru OKAJIMA† and Koichi MARUYAMA†

† NEC Solution Innovators, Ltd. 1-18-7 Shinkiba, Koto-ku, Tokyo, 136-8627 Japan

E-mail: y-okajima@bu.jp.nec.com, kou-maruyama@sx.jp.nec.com

Abstract Random sample generation from a database can be helpful to exploratory data analysis because of its

capability of fast approximate aggregation of large data. For efficient run-time random sample generation, random

clustering, a technique to randomly sort table rows on disk in advance, has been extensively used in previous re-

search. However, this technique can randomize rows of a table only for a single unit. Thus, if data analysts require

sampling for other units than the one used for clustering, traditional single-unit random clustering is no longer of

help and causes a significant slowdown due to many random disk accesses. In this paper, we propose a random

clustering technique for multiple units rather than for a single unit. This technique can randomize table rows for

multiple units on disk. After clustering, a data analyst can select any one of the units and then samples for the

selected unit can be efficiently read from disk until one satisfies the given filtering criteria and size condition. Ex-

periments show that the new random clustering technique for multiple units generated samples significantly faster

than traditional single-unit random clustering.

Key words Random sampling from databases, Exploratory data analysis, Online aggregation

1. Introduction

Random sampling from a database has been studied for

a long time, and it is gaining even more significance owing

to the emerging demand for large data analyses. Calculat-

ing exact aggregates over massive data requires long exe-

cution times and vast amounts of resources. Sampling can

reduce such costs by calculating approximate aggregates over

a small amount of data extracted from the original tables.

Run-time sample generation has been used in approximate

query processing (AQP) as well as sample precomputing.

In precomputing approaches, samples are precomputed and

stored apart from the original data so that approximate ag-

gregates can be calculated from the samples. On the other

hand, run-time generation approaches do not store such pre-

computed samples. They extract rows in random order at

query time and calculate approximate answers from them.

An advantage of run-time approaches is their high adapt-

ability to ad-hoc queries. Run-time approaches can generate

a sample of appropriate size for estimating the answer to a

given query by continuously expanding the sample size un-

til it becomes sufficient. This property has made run-time

sample generation a key component of online aggregation [8],

which is a framework for presenting a running estimate based

on a sample until the user is satisfied with it.

The time efficiency of run-time sample generation depends

on the physical data layout on disk. Without any assump-

tion, randomly sampled rows may be distributed over a large

part of the disk-resident original table, wherein the random

disk accesses substantially slow the sampling process. To

avoid this problem, the first online aggregation paper [8] pro-

posed the random clustering technique, which randomly sorts

rows in a disk-resident table in a pre-processing phase. If

rows are randomly clustered, a sample can be efficiently ob-

tained through a sequential scan because rows in continuous

blocks can be considered a random sample and this sam-

ple is easily expanded by scanning more blocks. Since then,

random clustering has come to be viewed in the online ag-

gregation literature, e.g., [7], [9], [13], as a key technique for

accelerating the run-time sample generation process.

AQP approaches based on sampling have been developed

to present approximate answers by automatically choosing

or generating samples in the background. However, simply

giving approximate answers is not sufficient for data analysts

familiar with advanced statistical analysis tools. Most sta-

tistical analysis tools today have more sophisticated analysis

and visualization functions than the aggregate functions ex-

ecutable in database systems. As analysts would want to

take full advantage of their favorite tools, they would prefer

simply getting samples according to the requirements they

give explicitly for further analysis in their own tools, instead

of only getting approximate answers.



Generating samples according to explicitly given require-

ments is a challenging task, as is AQP. In exploratory data

analysis, analysts need to perform analyses iteratively and

from different perspectives; thus, the sampling unit of con-

cern may be different in each trial. However, random sam-

pling using different sampling units causes a severe slowdown

even if the data are randomly clustered. This is because the

traditional random clustering technique can only random-

ize a table according to a single unit (in most cases, a row)

and so we call the traditional technique single-unit random

clustering. If analysts choose other units for sampling than

the one used for clustering, traditional single-unit random

clustering is no longer of help and causes a significant slow-

down due to many random disk accesses. We call this the

unit mismatch problem. This problem is inherent to single-

unit random clustering, and any online aggregation system

based on traditional random clustering may suffer from this

problem when the aggregation needs to use different units.

In this paper, to avoid the unit mismatch problem, we

propose a random clustering technique for multiple sampling

units rather than a single unit. Our multi-unit random clus-

tering technique can randomize a table for several sampling

units in advance so that samples of different sizes for any one

of the units can be read from disk quickly. If a data analyst

gives her requirements as to the target sampling unit, the

filtering criteria and the size condition, we can iterate the

sample generation by increasing the sample size until the

sample satisfies the given requirements.

Experiments show that our multi-unit random cluster-

ing generate samples for multiple units significantly faster

than traditional single-unit random clustering because the

traditional method is affected by the unit mismatch prob-

lem. By iterative sampling, samples satisfying the given

requirements were efficiently generated from the database

clustered using our technique even though the require-

ments involved sampling of distinct values in a foreign

key (typical examples that suffer from the unit mismatch

problem). The source code of the sampling system is

available online (https://github.com/nec-solutioninnovators-

ilab/sampling-sql).

The rest of this paper is organized as follows. In Section

2, we discuss the unit mismatch problem. Section 3 explains

the multi-unit clustering technique, the iterative sampling al-

gorithm that returns samples according to analytical require-

ments and the system that executes the iterative sampling.

In Section 4, we experimentally evaluate our approach. We

discuss related work in Section 5 and give our conclusions in

Section 6.

��������� �	

��
������� 	

��������� 	

��������� 	

�������

��������


�
������� �	

��	��


���� ��������� �	


������

��������� �	

Figure 1 Example database for illustrating the unit mismatch

problem. PK represents a primary key, and FK repre-

sents a foreign key.

2. Unit Mismatch Problem

The unit mismatch problem is a problem of many ran-

dom disk accesses that occur when the sampling unit differs

from the unit of random clustering. To illustrate this prob-

lem, let us consider the example database shown in Figure 1.

Each row in table lineitem represents a line item of a trans-

actional order and has a primary key l linekey and foreign

keys corresponding to the primary keys of three other tables

that represent orders, parts, and suppliers related to the line

items. lineitem and the other three tables have many-to-one

relationships: An order (part or supplier) may be related to

more than one row in lineitem. In addition, we assume that

all tables are so large that sampling is needed to analyze

them. This means that this database has four entity types

that can be chosen as the sampling unit: a line item, an

order, a part, and a supplier.

Let us see what happens when all the tables are randomly

clustered in the typical way, i.e., when all rows are randomly

shuffled in advance. If the analyst wants to estimate the

average sales per line item by sampling from table lineitem,

the sampling can be done efficiently by making a sequential

scan of the first rows in lineitem. However, If the analyst

next wants to estimate the average total sales per order, she

needs to randomly choose a small number of orders, collect

all line items related to the sampled orders, and then aver-

age the sum of the prices for the orders. The orders can be

efficiently sampled by making a sequential scan of the first

rows in table order. However, the rows related to each order

are randomly distributed over table lineitem because the rows

in lineitem are randomly shuffled and there is no guarantee

that rows having the same l orderkey value can be found in

adjacent disk blocks. Thus, random sampling considering an

order as the sampling unit is slowed down by many random

disk accesses to lineitem.

In general, by using traditional random clustering, a table

can be clustered for only a single unit, and many random disk

accesses can be avoided only if the sampling unit matches the

unit of the clustering. If one of the other units is chosen as



the sampling unit, random disk accesses are not reduced.

Thus, the purpose of this paper is to overcome this problem.

3. Multi-unit Clustering

3. 1 Clustering Procedure

We explain how rows can be randomly clustered for mul-

tiple sampling units. Large tables generally have several at-

tributes such that the distinct values in each of them rep-

resent numerous entities such as IP addresses or URLs and

can be used as sampling units. We call such attributes unit

keys and our multi-unit clustering technique clusters rows in

a table so that we can efficiently sample rows considering the

distinct values of the chosen unit keys as the sampling units.

In Figure 1, for example, l linekey, l orderkey, l partkey and

l suppkey are good choices for the unit keys of lineitem. Our

technique leverages compound clustering indexes, which are

supported by many database systems. First, we designate

several attributes as the unit keys. Then, we set compound

clustering keys in the tables by appending several attributes

derived from the given unit keys. We use a pairwise indepen-

dent hash function h(v) that maps each distinct value v of

the unit keys to [0, 2L−1]. We assigned each distinct value v

of the unit keys a level:Level(v) = L−⌊lg h(v)⌋−1 if h(v) > 0

and Level(v) = L for h(v) = 0. The minimum level is 0, and

the maximum is L. The probability that the level of v is at

least l ∈ [0, L] is Pr(Level(v) >= l) = 2−l. This level function

is the same as the one used in distinct sampling [6] to keep

the sample size small. We use it to cluster the original table

in preparation for sampling using different units. If the table

has U unit keys, we append U level attributes that store the

levels for the unit keys and append a level sum attribute that

stores the sum of the U levels. Then, we cluster the table

by setting a compound clustering key in it. The first compo-

nent of the key is the level sum attribute, and the successive

components are the level attributes. If the table was already

assigned a clustering key, the original clustering key is ap-

pended as the last component of the new clustering key. For

example, if table orders has one clustering key o orderdate and

three unit keys o orderkey, o custkey and o productkey, we set

a new clustering key composed of (level sum, o orderkey level,

o custkey level, o productkey level, o orderdate) after append-

ing the level sum attribute and the three level attributes.

3. 2 Extract Samples of Different Sizes

Let us see how samples of different sizes can be extracted

from a clustered table. First, one of the unit keys of the table

is chosen as the target unit key that represents the sampling

unit. Then, the target level l ∈ [0, L] is chosen to determine

the sample size. All distinct values of the target unit key

that have levels being at least l are sampled. A sample table

s of a target table t is a subset of t that consists of rows in t

that have the sampled values in the target unit key of t. For

example, if the analyst wants to extract a sample from ta-

ble lineitem in Figure 1 considering an order as the sampling

unit, then the target unit key is l orderkey and sample table

l sample is defined as follows:

WITH l sample AS (SELECT * FROM lineitem

WHERE l orderkey level >= l)

l orderkey level stores the levels of l orderkey. The sample for

l = L is the smallest sample, and the sample size increases

exponentially as l decreases. Finally, the sample for l = 0

contains all the rows of the original table.

The distinct values of the target unit key in a sample ta-

ble are selected on the basis of the pairwise independent hash

function h(v) and thus these selected values can be seen as a

random sample of the distinct values of the target unit key

in the original table.Thus, the data analyst can estimate the

properties about the target unit in the original table by only

analyzing a sample table derived from it. For example, the

average total sales per order in lineitem can be estimated us-

ing the average total sales per order in l sample because all

distinct orders are sampled with the same probability.

We will see that the sample tables of different target levels

can be read from disk efficiently. To discuss the efficiency,

we call a set of rows sharing the same set of levels in a clus-

tered table a bucket. A bucket can be viewed as an I/O unit.

All rows in a bucket share the same prefix in their clustering

keys, and thus, they are contiguously clustered. If a row in

a bucket is included in a sample table, all other rows in the

bucket are also included.

The single-unit random clustering suffers from the unit

mismatch problem because rows can be sorted in only one

random order while each row is related to multiple units.

Thus, our approach uses random bucketing rather than or-

dering. The rows related to the units of the same level are

divided into multiple buckets on disk. Given the target unit

at query time, our algorithm restores these rows by selecting

buckets related to the target level.

Sample extraction is surely efficient if the target table has

the target unit key as its only unit key. In that case, all rows

are sorted only by the levels of that key and collecting rows

above a certain level is efficiently done by making a sequen-

tial scan. However, if the table has extra unit keys other

than the target unit key, the rows having the same level of

the target unit key are divided into many smaller buckets

because of the existence of the levels of the other unit keys.

Therefore, we need to estimate the effect of the number

of unit keys on the efficiency of our sample generation. For

a table having N rows, the expected size of a bucket with

levels (l0, l1, ..., lU−1) is N
∏U−1

u=0 2−1−lu = N2−U−
∑U−1

u=0 lu .



�

������

������

������

������

���	��

� � � � � � � � 	 �



������ 
������ 
������

�
�
�
�
��
�
�
�
	


��
��
�
�	�
	�
�
�
�

Figure 2 Upper bound of the probability that a row is in a mini-

bucket

This is a monotonic function of the level sum. Our tech-

nique clusters rows in ascending order of the level sum, i.e.,

their expected size. Thus, the smallest buckets are proba-

bilistically clustered in the blocks at the bottom of the table.

We assume that each disk block stores B rows. Buckets

having at least B rows can be efficiently read from disk be-

cause they are stored in at least one contiguous block. On

the other hand, buckets with fewer than B rows may reduce

the disk-read efficiency. A bucket is called a mini-bucket if

the expected number of its rows is smaller than B. Here, we

show that mini-buckets actually occupy a small fraction of

the whole table and do not significantly reduce efficiency if

the table has many rows and a few unit keys.

Consider a row r in a table t of N rows with U unit keys.

Denote by S the set of all rows in mini-buckets of t. The

probability that r ∈ S is bounded as follows:

Γ(U, ln(N/B))

(U − 1)!
<= Pr(r ∈ S) < Γ(U, ln(N/B)− U ln 2)

(U − 1)!

= Pub(U,N/B)

where Γ(a, x) is the upper incomplete gamma function. The

upper bound Pub(U,N/B) is plotted for varying U and N/B

in Figure 2. This graph shows that the probability is rea-

sonably small if N/B is large and U is small. For example,

the probability is smaller than 4.8 × 10−3 for N/B = 106

and U = 4. The probability is equal to the expected ratio

of the number of rows in the mini-buckets to N . Thus, the

mini-buckets occupy fewer than N/B · Pub(U,N/B) blocks

in expectation. Thus, our algorithm can collect buckets of

the same level with a small overhead caused by reading the

blocks storing mini-buckets.

The expected size of the smallest sample table, which is

obtained at l = L, is N2−L. Thus, L should be at least

O(logN), which makes the expected size of the smallest

sample constant. If L is larger than O(logN), the choice

of L does not affect the efficiency, because the samples for

l > O(logN) are very small and clustered in the blocks stor-

ing mini-buckets and do not cause many random accesses.

3. 3 Iterative Sampling

We showed that sample tables of different target levels can

be efficiently extracted from a clustered table. However, the

sample table probably still includes data irrelevant to the

analyses, and the data analyst needs to filter out such data

by the filtering criteria. If the remaining data after filtering

are too small for statistical analysis, the analyst needs to

get larger samples by setting lower target levels. To reduce

the burden, we give an algorithm that automatically chooses

samples satisfying her requirements, i.e., the filtering criteria

and size condition, as well as the target sampling unit. This

algorithm iteratively extracts samples from multiple tables

by decreasing the target level until the requirements are met.

We define how the analyst can represent her requirements

as the input to the system. First, the target sampling unit is

represented by choosing one of the unit keys for each target

table to be sampled. For example, if sampling of orders is

needed, o orderkey for table orders and l orderkey for lineitem

are chosen as the target unit keys. Next, we introduce the

notion of filtered table to describe the filtering criteria and

size condition. A filtered table is a table derived from sam-

ple tables and, if needed, other tables. The filtering criteria

is described as a selection from the sample tables to the fil-

tered table. If the analyst wants to exclude a certain kind

of unit, she defines the filtered table so that rows related to

such units are excluded. The size condition can be described

as an aggregation over the filtered table because the filtered

table only contains the units that pass the filtered criteria.

Given these requirements, we return a sample of sufficient

size by decreasing the target level until the given require-

ments are satisfied. The pseudo-code is given in Algorithm

1. We are given a query that contains T pairs of clustered

tables and their unit keys (t0, u0), (t1, u1), ..., (tT−1, uT−1),

filtering criteria f , size condition c, and main query q. First,

we initialize the target level l to L. For each clustered ta-

ble ti, we define a sample table si as the set of all rows

in ti whose levels of ui are at least l. Next, we ask the

database system if the size condition c is satisfied by sub-

mitting a query with the definitions of the sample tables

and the filtering criteria (checkCondition in Algorithm 1).

The database system creates the sample tables, filters them

with the given criteria, and returns a truth value indicating

whether the filtered tables satisfy the size condition. If the

condition is not satisfied, we decrement l by one, redefine

the sample tables, and submit a size condition query again.

The size condition check is repeated until the condition is

satisfied or l reaches 0. Finally, we submit the main query q

to the database system with the final definitions of the sam-

ple tables (runMainQuery). If the sampling process reaches

the final step l = 0, the sample tables are the same as their



Algorithm 1 Sampling(pairs of a target table and its unit

key (t0, u0), ..., (tT−1, uT−1), filtering criteria f , size condi-

tion c, main query q)

for l = L to 0 do

for i = 0 to T − 1 do

define sample table si as the set of all rows in ti whose

level of ui is at least l

if checkCondition(c, f, s0, ..., sT−1) then

break

return runMainQuery(q, f, s0, ..., sT−1)

�

������

��������

�	
���

������

���	
���� �����
�


	
���

������	

������

��������

�	
���


������

���	�

������

�����
�


	
���
���������	


���	���

�������

��������	
�����

������	
�����

Figure 3 Overview of our sampling architecture

original tables and the main query is exactly answered.

The distinct values of the target unit keys are randomly

sampled by the hash function. Thus, if one of the values is

included in the sample of one table, all rows related to the

same value must be included in the samples of other tables.

This assures that we can safely join the sample tables on

the sampled values of the target unit keys without lacking

related rows. This capability of joining on sampled values is

a major advantage of our algorithm.

3. 4 Sampling System

We here present a sampling system that can bring out the

strengths of our clustering technique. This system receives

sampling queries from data analysts and runs the iterative

sampling algorithm according to it. An overview is shown in

Figure 3. To simplify the explanation, we assume that we

are given a database system that already stores the data the

analyst wants to examine. Our sampling system works as a

proxy server between the client application the analyst oper-

ates and the database system. It first clusters the data of the

tables in the database system (the clustering phase) and then

waits for sampling queries to be submitted by the analyst

(the sampling phase). In the clustering phase, the analyst

sends a clustering request to the sampling system through

the client application. In this request, the analyst designates

several attributes in large tables as unit keys. Then, the sam-

pling system clusters the data of the tables in the database

system by using multi-unit clustering. After the clustering

finishes, the sampling system waits for sampling queries to

be submitted by the analyst. Once it receives a query, the

sampling system runs the iterative sampling algorithm and

returns the result to the analyst. The clustering process gen-

erally takes a long time, because all rows are sorted on disk.

However, once the clustering is done, subsequent sampling

queries can be answered in shorter amounts of time.

We extend the SQL grammar so that the analyst can de-

scribe her requirements. Figure 4 shows our extended SQL

grammar, and Figure 5 shows an example query. The re-

quirements are represented by SAMPLE, WITH and UNTIL

clauses, and they are inserted before the main query block.

The SAMPLE clause is used to choose which clustered tables

to sample and the target unit key for each of them. The

names of the sample tables are specified as AS clauses. If

they are omitted, the name of the original clustered table is

used to refer to its sample table in the following clauses. The

WITH clause is used to define filtered tables derived from the

sample tables. The filtered tables can be used later in the

UNTIL clause and the main query. The WITH clause can

be omitted if no filtered tables are necessary. The UNTIL

clause specifies the size condition to be satisfied by the sam-

ple and filtered tables. Once the condition is satisfied, the

main query following the sampling requirements is executed

using the sample and filtered tables. Figure 5 shows an ex-

ample query with the sampling requirements. The query is

based on the database schema of the TPC-H benchmark. It

calculates the average total price per customer who lived in

Japan and ordered in 2015.

4. Experimental Evaluation

In the experiments, we compared our multi-unit random

clustering with traditional single-unit random clustering.

4. 1 Setting

The database system used in the experiments was Ama-

zon Redshift dc2.xlarge single node. We used the TPC-H

benchmark datasets with a scale factor of 300. To sim-

plify the explanation, we modified table lineitem so that it

would have a primary key attribute l linekey that stores row

ids because the original lineitem does not have a single pri-

mary key. After that, we created three identical copies of

the TPC-H database in the same system and clustered these

three databases using different clustering techniques. We set

L = 31 because it is large enough to keep the smallest sample

small. All unit keys had integer values, and we used a pair-

wise independent hash function of the form h(v) = (a · v+ b)

mod p mod 2L.

In the first database, MU, each table was clustered using



⟨query⟩ ::= [⟨sampling requirements⟩] ⟨main query⟩
⟨sampling requirements⟩ ::= ⟨sample clause⟩ [⟨with clause⟩] ⟨until clause⟩

⟨sample clause⟩ ::= SAMPLE clustered table [AS sample table] BY target unit key

{”,” clustered table [AS sample table] BY target unit key}
⟨until clause⟩ ::= UNTIL size condition

Figure 4 SQL grammar with sampling requirements

SAMPLE orders AS o sample BY o custkey, customer AS c sample BY c custkey · · · (1)

WITH filtered AS (SELECT * FROM o sample, c sample, nation WHERE o custkey = c custkey AND
}

· · · (2)
c nationkey = n nationkey AND n nation = ’JAPAN’ AND o orderdate BETWEEN ’2015-01-01’ AND ’2015-12-31’)

UNTIL 1000 <= (SELECT COUNT(DISTINCT o custkey) FROM filtered) · · · (3)

SELECT AVG(sum) FROM (SELECT SUM(price) FROM filtered GROUP BY o custkey) · · · (4)

Figure 5 Example query that calculates the average total sales in 2015 per customer who

lived in Japan

multi-unit random clustering. We designated all primary

keys and foreign keys as unit keys for all tables. As a re-

sult, lineitem was assigned four unit keys: l linekey, l orderkey,

l partkey, and l suppkey. Next, level and level sum attributes

were appended to all tables, and the tables were clustered in

the manner explained in Section 3. 1.

In the second database, MU*, each table was clustered us-

ing multi-unit random clustering in the same way as MU

except that the level sum was not included in the clustering

key. This means the buckets in the tables of MU* were not

arranged in order of expected size. Thus, unlike MU, MU*

did not have the benefit of clustering small buckets.

The third database, SU, was a database that shows the

effect of the traditional single-unit random clustering tech-

nique that considers a row as the sampling unit. SU was ba-

sically the same as MU, but we changed the level attributes

* level to hash attributes * hash that stored raw hash val-

ues h(v) instead of Level(v). Each table was clustered using

the hash attribute of the primary key. The tables in this

database can be viewed as having been randomly clustered

because the rows were shuffled according to the hash values.

These three databases contained exactly the same data ex-

cept the newly appended attributes for clustering. In the fol-

lowing experiments, we executed identical queries over these

databases. The databases returned the same results, but

had different query performances because their tables were

clustered using different techniques.

4. 2 Experiment 1: Sample Table Generation

We evaluated the efficiency of extracting a sample table

from a clustered table for different target levels by directly

querying the database system with traditional SQL queries.

We chose lineitem as the target table from which the sample

tables were generated, because lineitem is the largest table

in the TPC-H dataset and it has four unit keys, the largest

number among the tables. Queries were executed with ’cold

cache’; i.e., all selected rows were read from disk. We sub-

mitted the following queries to the three databases.

A SELECT COUNT(DISTINCT unitkey) FROM lineitem

WHERE unitkey level >= l

B SELECT COUNT(DISTINCT unitkey) FROM lineitem

WHERE unitkey hash < 2L−l

where l is an integer in [0, L]. A is for MU and MU*, and B is

for SU. Both queries return the number of units in the sam-

ple table, i.e., the sample size. l is a parameter to control the

sample size. Upon receiving these queries for the same l, the

three databases must return the same sample size because

the rows satisfying unitkey level >= l in the MU and MU* are

equal to the rows satisfying unitkey hash < 2L−l in the SU.

The results are shown in Figure 6. We varied l from L to

0 and plotted the query time versus the sample size. The

graph for l linekey exemplifies the case that the sampling

unit matches the unit of single-unit random clustering. For

this key, the three databases showed almost the same per-

formance. For the other three keys, however, SU performed

significantly worse than l linekey while MU still worked effi-

ciently, as well as l linekey. This result shows how the unit

mismatch problem degrades the efficiency of single-unit ran-

dom clustering and that multi-unit random clustering can

avoid this problem. The difference between SU and MU was

large when the sample size was moderate, but was small

in the minimum and maximum limit because the minimum

sample required a constant query processing cost and the

maximum sample required a full scan of the table.

MU performed more efficiently than MU* for l partkey and

l suppkey. This difference shows the effect of using the level

sum as the first element of the clustering key, which arranges

the smallest buckets in contiguous blocks.

4. 3 Experiment 2: Iterative Sampling

In Experiment 2, we evaluated the efficiency of the itera-

tive sampling algorithm by submitting sampling queries to

our sampling system. We designed the sampling queries on

the basis of three TPC-H queries: Q4, Q13, and Q17. These



������

������

������

������

������

������ ������ �����	 �����
 ������ ������

�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

�

��

�

������

������

������

������

������

������ ������ �����	 �����


�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

�

��

�

������

������

������

������

������

������ ������ �����	 �����
 ������

�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

�

��

�

������

������

������

������

������

������ ������ �����	 �����
 ������

�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

�

��

�

����������	
��
�

������������
� �	�����������
�

�����������
�
�

Figure 6 Query times required to generate sample tables of varying sizes from the three

databases with respect to the four unit keys in lineitem.

�������� ��������	 �
�������

������

������

������

������

������ ������ ������ �����	 �����


�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

��������

��	
���

����

������

������

������

������

������ ������ ������ �����	 �����


�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

��������

��	
���

����

������

������

������

������ ������ ������

�

�

�

�

�

�

�

�

	

�

�




�

�

�



�

�

�

���������	�

��������

��	
���

����

Figure 7 Query times required to answer sampling queries based on TPC-H queries Q4,

Q13, and Q17 for varying sample sizes.

queries are typical examples that suffer from the unit mis-

match problem because their aggregation units are numeri-

cally distinct values in foreign keys. We rewrote these queries

in extended SQL by appending sampling requirements. The

target sampling unit and the filtering criteria were deter-

mined according to the nature of the queries. For all queries,

we set the size condition so as to stop sampling when l = θ,

where θ is an integer scaling parameter in [0, L]. For each θ,

the sampling system ran size condition queries from l = L to

l = θ, then performed the main query for l = θ.

For each θ, we compared the performance of our itera-

tive sampling in the MU database with the performance of

directly running the main query for the final sample with

l = θ in the SU database without running condition queries.

To perform sampling in SU, the main query was executed

with tables restricted by unitkey hash < 2L−l instead of

unitkey level >= l in the same manner as Experiment 1. The

results are shown in Figure 7. Total-MU represents the costs

to run iterative sampling on the MU database, i.e., the to-

tal costs to run the condition queries and the main queries.

Main-SU represents the costs to run the main queries for the

final sample in the SU database. Exact represents the costs

to get exact answers by running the original TPC-H queries.

Although the costs of iteratively running condition queries

were included in Total-MU, Total-MU was still significantly

more efficient than Main-SU except when the sample size was

very large. For Q17, a large number of blocks were read in

Main-SU even when the sample size was small because the

database system chose to join tables to avoid inefficient ran-

dom accesses. Nevertheless, Total-MU still worked well for

Q17 because the sampled rows were clustered well. These

results show that samples can be efficiently extracted from

the tables clustered by multi-unit random clustering.

5. Related Work

Sample generation. There are a number of tech-



niques for randomly sampling rows from disk-resident files

or databases. They can be classified as to whether the disk

access method is a sequential scan or random access. Reser-

voir sampling [12] is a typical example of sequential tech-

niques. Among random techniques, the technique proposed

by Olkan and Rotem generates samples using an indexing

structure like B+-tree [10] or hash file [11]. A drawback of

the sequential-scan-based techniques is to need to process

the whole data to get a random sample. Random techniques

can avoid having to make a whole scan, but still require,

at maximum, as many random block accesses as the sample

size. To reduce I/Os, several studies randomly collect blocks

instead of rows, e.g. [5]. However, rows in the same block

may have a strong correlation with each other and cannot

be seen as an independent random sample.

The most closely related approach to ours is distinct sam-

pling [6], which generates samples by sequential scan con-

sidering distinct values of a target attribute as the sampling

units and using them to answer queries asking for the number

of distinct values. Distinct sampling can deal with different

sampling units, but needs to scan the whole data to generate

samples, and it only deals with distinct value queries.

AQP based on precomputed samples. AQP sys-

tems typically store precomputed synopses including sam-

ples, histograms, and wavelets for approximate aggregation.

AQUA [2] stores join synopses [3] for foreign key joins and

congressional samples [1] for group-by queries. BlinkDB [4]

is an AQP system storing stratified samples.

Online Aggregation. Online aggregation [8] is an AQP

framework based on runtime sample generation. It presents

to the user a running estimate with an error bound based

on the samples retrieved so far. The first online aggrega-

tion paper [8] considered aggregation in a single table. This

approach has been extended to multi-table joins [7], large

tables [9] and nested queries [13]. The single-unit random

clustering technique has been used for online aggregation in

many studies [7], [9], [13], but it cannot work efficiently if the

sampling unit does not match the unit of random clustering.

Our clustering technique is a solution to this problem.

6. Conclusion

We proposed a random clustering technique that enables

fast sample generation from disk-resident tables for multi-

ple sampling units. It is a solution to the unit mismatch

problem inherent to single-unit random clustering, a tradi-

tional technique used for run-time sample generation. Our

technique can be used to help data analysts by generating

a sample until it satisfies their requirements. Experimen-

tal results showed our multi-unit clustering worked equally

efficiently for different sampling units, whereas single-unit

random clustering worked well only for a single unit and

performed significantly worse for other units because of the

unit mismatch problem.

References

[1] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional

samples for approximate answering of group-by queries. In

Proceedings of the 2000 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’00, pages 487–

498, New York, NY, USA, 2000. ACM.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

The aqua approximate query answering system. In Proceed-

ings of the 1999 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’99, pages 574–576, New

York, NY, USA, 1999. ACM.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

Join synopses for approximate query answering. In Proceed-

ings of the 1999 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’99, pages 275–286, New

York, NY, USA, 1999. ACM.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. BlinkDB: Queries with bounded errors and

bounded response times on very large data. In Proceed-

ings of the 8th ACM European Conference on Computer

Systems, EuroSys ’13, pages 29–42, New York, NY, USA,

2013. ACM.

[5] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of

block-level sampling in statistics estimation. In Proceedings

of the 2004 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’04, pages 287–298, New

York, NY, USA, 2004. ACM.

[6] P. B. Gibbons. Distinct sampling for highly-accurate an-

swers to distinct values queries and event reports. In Pro-

ceedings of the 27th International Conference on Very Large

Data Bases, VLDB ’01, pages 541–550, San Francisco, CA,

USA, 2001. Morgan Kaufmann Publishers Inc.

[7] P. J. Haas and J. M. Hellerstein. Ripple joins for online

aggregation. In Proceedings of the 1999 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD

’99, pages 287–298, New York, NY, USA, 1999. ACM.

[8] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online ag-

gregation. In Proceedings of the 1997 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD

’97, pages 171–182, New York, NY, USA, 1997. ACM.

[9] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable

approximate query processing with the dbo engine. ACM

Trans. Database Syst., 33(4):23:1–23:54, Dec. 2008.

[10] F. Olken and D. Rotem. Random sampling from b+ trees.

In Proceedings of the 15th International Conference on Very

Large Data Bases, VLDB ’89, pages 269–277, San Francisco,

CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[11] F. Olken, D. Rotem, and P. Xu. Random sampling from

hash files. In Proceedings of the 1990 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD

’90, pages 375–386, New York, NY, USA, 1990. ACM.

[12] J. S. Vitter. Random sampling with a reservoir. ACM

Trans. Math. Softw., 11(1):37–57, Mar. 1985.

[13] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Sto-

ica. G-OLA: Generalized on-line aggregation for interactive

analysis on big data. In Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of Data,

SIGMOD ’15, pages 913–918, New York, NY, USA, 2015.

ACM.


