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Abstract  Time series classification is one of the major works in data mining community. Classification 

generally works on original real-valued time series or transformed time series. The main issue of time series 

classification is computational complexity handling with massive amount of time series. In this work, time 

series are classified using motifs as feature vectors. Variable length motifs are discovered on symbolic 

representation with our proposed positional inverted index. We further investigated on the candidate motifs 

with Information Gain (IG) measure for its discriminative features. Then, the classification accuracy of 

motifs with and without its discriminative features on UCR benchmark datasets are analyzed. As 

experimental evaluation, motif with its discriminative features achieved on 7 out of 11 datasets.  
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1. Introduction 

Massive amounts of time series data are generated day 

by day in most of the real-world application domains such 

as financial assessment, weather monitoring, medical data 

examination, and multimedia systems. Handling such kind 

of data efficiently and finding hidden knowledge from long 

time series have gotten much attention in data mining 

community in these two decades. Discovery of repeated 

patterns, known as motifs, from long time series can 

provide not only hidden knowledge to each domain but also 

be used as features for other time series tasks such as 

clustering, classification, anomaly detection and so on.  

As the time series classification is one of the major task 

in data mining community, many researchers proposed 

different classification algorithms in different perspectives.  

One nearest neighbor (1NN) classification with a kind of 

distance measure is popular choice for its simplicity and 

robustness [19]. On the one hand, whenever test data 

comes, it requires to compute for all trained data so that it 

becomes computationally expensive. As the alternatives, 

shapelet-based [1,6,13,15,21] and dictionary-based 

[10,16,17] time series classification methods were 

proposed. Shapelet is the time series subsequences which 

are maximally representative of a class [21]. Shapelet-

based method classifies unlabeled time series by 

computing its similarity to the candidate shapelets. Though 

it is interpretable and accurate, the original shapelet-based 

classification is computationally expensive. In the 

dictionary-based classifiers, SAX-VSM [16] classifies 

unlabeled time series by calculating tf*idf weight vector s 

for each class. Since there are no pruning techniques for 

weight vectors in trained data, it has large sparse matrix to 

consume large space and time.  

In this paper, we propose a motif based time series 

classification method based on the following ideas.  

1. Variable length motifs are discovered on the 

Symbolic representation with our proposed 

positional inverted index [23].  

2. Candidate motifs are analyzed with information 

gain (IG) for its discriminative features.  

3. Discriminative motif patterns are classified with 

MNB and SVM classifiers on UCR time series 

benchmark.        

The rest of the paper is organized as follows. Section 2 

briefly discusses related work for motif discovery and time 

series classification. Section 3 describes background of 

our approach and its notations. Section 4 explains our 

motif discovery approach, i.e., how it works and how to 

apply motifs as feature vector for time series classification. 

In section 5, we perform the evaluation of classification 

accuracy on UCR [2] time series data and compare with 

1NN (Nearest Neighbor) classification result. Finally, we 

conclude our work by discussing future directions in 

section 6.  

 

2. Related Work 

2.1 Motif Discovery 

In the time series domain, algorithms for motif 



 

 

discovery are classified into two types: exact and 

approximate. Solving a problem exactly is always more 

desirable than solving it approximately [12]. Exact motif 

discovery performs on real data directly with pre -defined 

motif length which requires significant domain knowledge. 

Even we can find out the different length of motifs 

iteratively by varying the length, the computational 

complexity for such kind of solution is considerable. On 

the other hand, Approximation methods transform the 

original time series data into low dimensional space to 

speed up the discovery of motifs.   

Mueen et al. [14] proposed efficient exact motif 

discovery algorithm called “MK” based on Brute Force 

(BF) motif discovery.  Brute force (BF) calculates 

similarity distance between two-time series and maintains 

the distance. It is updated whenever the algorithm finds out 

the smaller distance of another pair of time series.  As BF 

calculates every possible combination of time series pair s, 

its time complexity is quadratic. MK speeds-up the BF by 

randomly picks up multiple time series called reference 

(refs) points among a set of time series. Distances between 

refs and a set of time series are pre-computed and stored 

as an array. Even MK reduced the computation time, its 

performance varies on data distribution and numbers of 

reference points. Dau and Keogh proposed motif discovery 

in cooperation with domain knowledge called Matrix 

Profile V [5] in recent. They claimed that there is a gap 

between user expectations and the outcomes of motif 

discovery. The reasons behind are explained and proposed 

a guided motif search framework based on [22]. 

Annotation Vector (AV) is created for a guided motif 

search which encodes the user’s domain-dependent bias. 

Even it achieves to discover the meaningful motifs as 

user’s expected outcomes, respective domain knowledge is 

required. 

Chiu et al. [4] discovered time series motifs using SAX 

with Random Projection (RP). Its time complexity is O(n) 

where n is the length of a given time series. Li et al. [8] 

developed motif visualization system using grammar 

induction. Even through this visualization tool disco vered 

variable length motifs, it cannot guarantee the motifs as 

significant because of weakness in their rule of ranking 

and pruning technique.  Besides, the discovered motifs are 

fixed length, not variable length motifs. [11] and [18] 

discovered motifs on multi-dimensional time series data 

using SAX with Minimum Description Length (MDL) 

principle and “Trie” data structure. Although different 

lengths of motifs are found out on real applications such 

as weather prediction and human motion detection, their 

approaches do not guarantee the discovered outcomes.    

2.2 Time Series Classification 

Time series classification generally works on real-

valued time series or transformed time series. Most of the 

classification works on real-valued time series performed 

on 1NN classifier with different types of distance measures. 

As an alternative way, features are extracted on real-valued 

data or transformed data and classification works on 

extracted features vectors. Shapelet-based classification 

[13,15,21] works on time series subsequences as feature 

vectors and applied it on classifying multidimensional time 

series [1]. Bag-of-word patterns [10] works on SAX word 

array by window-size, and constructs a histogram over the 

word distribution. Classification of unlabeled time series 

is done by 1NN with Euclidean distance with histogram.       

 

3. Background and Notations  

In this section, we briefly describe the backgro und 

knowledge of our approach, notations and definitions used 

in our proposed approach.  

3.1 Symbolic Aggregate Approximation 

Symbolic Aggregate approXimation (SAX) is the  first 

proposed powerful dimensionality/numerosity reduction 

and lower bounding approach in the time series domain.  

Because of the main characteristics of time series data, i.e., 

curse of dimensionality, it is indispensable to transform 

raw time series data into another low dimensional 

representation for minimizing computational cost. SAX 

transforms a time series of length n into the string of 

arbitrary length by using a represented symbol size a (a  

2). 
 

SAX operates in two main steps. In the first step, a given 

time series is normalized with mean of zero and standard 

deviation of one. The normalized time series is 

transformed into Piecewise Aggregate Approximation 

(PAA) [7]. In PAA representation, time series T of length 

n (n-dimensions) is divided into w-dimensional equal-

sized segments where (w << n). In brief, PAA reduces the 

data from n-dimensional space to w-dimensional space 

represented by segment-wise mean value called PAA 

coefficient. In the second step, PAA coefficients are 

mapped into alphabetic symbol a of arbitrary size, where 

a  2, using a lookup table that contains "breakpoints" for 

separating the symbols as shown in Table 1 where the 

symbol size is 3 to 7. Breakpoints are a sorted list of 

numbers B=<1, …, a-1> such that the area under a N(0,1) 

Gaussian curve  i to  i+1 =1/a (0 to a are defined as - 



 

 

and , respectively) [9]. Figure 1 illustrates the mapping 

of the 2-breakpoints with 3 alphabetic symbols where PAA 

coefficients that are below the smallest breakpoints are 

mapped with symbol "a", all coefficients greater than or 

equal to the smallest breakpoints and less than the  second 

smallest breakpoints are mapped to the symbol "b" and all 

the coefficients greater than or equal to the second smallest 

breakpoint are mapped to the symbol "c".  

 

Table 1: Lookup table for breakpoints for separating 

the symbols (symbol size is from 3 to 7)  

  a 3 4 5 6 7 

1 -0.43 -0.67 -0.84 -0.97 -1.07 

2 0.43 0 -0.25 -0.43 -0.57 

3   0.67 0.25 0 -0.18 

4     0.84 0.43 0.18 

5       0.97 0.57 

6         1.07 

 

Figure 1. An Example of SAX Representation (A 

time series of length 128 is mapped to the word 

"cccaabba" where the segment size (w) is 8 and 

symbol size (a) is 3.) 

 

3.2 SAX Numerosity Reduction 

One of the main characteristics of SAX is  numerosity 

reduction [8]. We explain briefly how it works here. There 

is a long-time series T of length n, and the proper 

subsequences of length m where (m  n) are extracted using 

sliding window technique. Each subsequence is discretized 

into a SAX word using two parameters (segment size w and 

symbol size a). During the discretization process, if a word 

occurs repeated consecutively, instead of recording every 

same word, the first occurrence of the word and its offset 

is only recorded [8]. The word array SA and how it 

performs the numerosity reduction are illustrated in Figure 

2. 

 

 

 

 

 

 

(a) 

 

 

(b) 

Figure 2. SAX numerosity reduction (a) original word 

array SA (b) numerosity reduction of (a)  

 

3.3 Notations 

Definition 1.  Time Series:  A time series T of length n, 

T=t1,…,tn ,is an ordered set of n real-values. 

Most of the time series data is very long due to in order 

with real-time time stamps. We put our attention on local 

properties of time series data that means dividing sequence 

by sequence rather than the entire time series. F inding out 

subsequence matching is more interesting than the whole 

matching as hidden knowledge can be extracted interval by 

interval. To find out the subsequence matching, we define 

the term sliding window and time series subsequence 

which is extracted by using sliding window shifted by one  

by one. 

Definition 2. Subsequence:  Given a time series T of 

length n, a subsequence S of length m of T, where m  n, 

is a contiguous position starts at p, that is S=tp,…,tp+m-1 for 

1  p  n-m+1.  

Definition 3. Sliding window:  Given a time series T of 

length n and the sliding window of length m, all possible 

subsequences can be extracted by sliding a window of 

length m across T and considering each subsequence SP for 

1  p  n-m+1.  

In this work, each subsequence is transformed into SAX 

representation using two parameters: word size (or 

segment size) (w) and symbol size (a).  

Definition 4. Word:  Each subsequence of sliding 

window is divided into w segments each of which is 

represented as an alphabetic symbol. Then a set of 

alphabetic symbols that organizes a subsequence of sliding 

window is called a word.  Thus the number of segments in 

a subsequence is equal to the size of word, i.e., the number 

of alphabets in a word.   

In the definition of matching, there are exact and 

approximate matching schemes especially in symbolic 

representation. SAX representation uses minimum 

distance function [9] between the original time series of 

two words, which we call approximate matching.  

Definition 5. Match:  Given a string array SA containing 

two subsequences p i , l and q j , l of the same length l, starting 



 

 

from different positions (ij) and is not allowed 

overlapping positions each other, it is called non -

overlapping. If both words are exactly same with the above 

non-overlapping condition, we called it as exact match or 

non-trivial match. 

On the contrary, trivial match is defined as follows:  

Definition 6. Trivial Match:  Given a string array SA 

containing two subsequences p i , l and q j , l of the same 

length l, there is overlapping each other on different 

positions once or more even their starting positions are 

different (ij), it is called overlapping. If both words are 

exactly same with above overlapping condition, we called 

it as trivial match.   

Definition 7. Word Motif:  Given a string array SA and 

minimum frequency threshold minfreq  (at least 2), a 

subsequence p of length of l, where l  ( |SA |)/2, is defined 

as motif if the occurrence frequency of p in SA is minfreq 

and above. 

 

4. Our Approach 

There are two steps called variable length motifs 

discovery and classification with candidate motifs as 

feature vectors. Our idea is to find out variable length 

motifs using our proposed positional inverted index [23]. 

Candidate motifs are analyzed for its  discriminative 

features by adopting Information Gain (IG)  measure. 

Finally, discriminative motif patterns are trained with 

machine learning based classification algorithms SVM and 

MNB.  

4.1 How SAX was Adopted?  

Real-valued time series data is transformed to SAX 

representation in pre-processing step. Overlapped 

subsequences are extracted by using sliding window of 

length m across the original time series data, because non-

overlapping subsequences would result in too much loss in 

information [8]. Then, each subsequence whose length of 

m is discretized into a set of “symbols” by using two 

parameters: word size and symbol size to form a word. 

During the discretization step, the main feature of SAX, 

numerosity reduction [9], is applied. 

Here, we explain how numerosity reduction is applied 

by using an example shown in Figure 3. Figure 3(a) 

represents real-valued time series of length 25 with sliding 

window of length 6, where offset value shows positional 

index of original time series data.  After adopting sliding 

window, we have a set of subsequences whose length is 6. 

Then each subsequence is discretized into a set of 

“symbols” where word size is 3, which means each 

subsequence is discretized into three. Thus, every two real -

valued data forms one symbol and 3 symbols forms a word. 

In this example, we set symbol size as 3 and represent real -

values by using three symbols: “a”, “b”, and “c”. Figure 

3(b) shows the overlapped SAX representation in which 

neighboring words share some original real -valued time 

series data where an offset value represents each start 

position of SAX word.  

The next step is numerosity reduction. As proposed in 

[8], neighboring subsequences, i.e., neighboring words,  

are likely to be similar to each other because they have 

some overlapping. Thus, instead of keeping all the words, 

we keep only the first occurrence of each word which 

continuously appears in the overlapped SAX 

representation as shown in Figure 3(c). By only keeping 

them, we can keep away from discovering trivial matches 

defined in Section 3.3. Then, we put the positional location 

value to each word from its first occurrence offset.  

4.2 Motif Discovery with Positional Inverted Index  

 Our proposed motif discovery adopts a term-inverted-

index. A term-inverted-index is mainly used in 

Information Retrieval (IR) and it was originally designed 

for discrete data. To apply it on real -valued time series 

data, transformation from real-value to discrete value is 

required as preprocessing step.  

Let us find out variable lengths motifs using positional 

inverted index . At first, we scan the original word array 

shown in Figure 3(c) once for building 1-word inverted 

index shown in Figure 4(a). In the inverted index, each 

start word is kept as a key and its positional locations are 

sorted and recorded as values. If the number of positional 

occurrence of each start word is less than a pre -defined 

minimum occurrence frequency (minfreq=2 in this 

example), the key is filtered out from the inverted index. 

There is one word “acc” to be filtered out in this example.  

For building 2-word inverted index, we have to check 

positional locations of every combination of two lists in 1 -

word inverted index. In the example of Figure 4(a), i.e., 1-

word inverted index, al l the permutation to check are: bac-

cab, bac-abb, bac-bbc, cab-bac, cab-abb, cab-bbc, abb-bac, 

abb-cab, abb-bbc, bbc-bac, bbc-cab, bbc-abb. Let’s think 

about the case where we compare two lists {0,4,10,13} for 

“bac” and {1,5,11} for “cab” to extract the candidates for 

2-word inverted index. We prepare two pointers: p1 and 

p2, where p1 initially points the start positional location 

of “bac” list, i.e. {0}, and p2 initially points the start 

positional location of “cab” list, i.e. {1}. When the value 

of positional location pointed by p1 is just before the value 



 

 

of positional location pointed by p2, we record the 

sequence as a key of 2-word inverted index. Then only the 

keys whose occurrences are larger than or equal to minfreq 

are kept. Thus, in Figure 4(b), “bacabb”, “cababb”, 

“abbbbc”, and “bbcbac” are kept for 2 -word inverted index 

before the refinement explained in 4.3.  

Now, we can generalize the scheme. For building (n+1) -

word inverted index where n is larger than or equal to 1, 

we have to check positional locations of every combination 

of (n)-word inverted index and 1-word inverted index. We 

use two pointers p_n and p_1 where p_n initially points the 

start positional location of each list in (n) -word inverted 

index and p_1 initially points the start positional location 

of each list in 1-word inverted index. Here, when we 

compare two positional locations pointed by p_n and p_1, 

it is enough to find out the case where (the value pointed 

by p_1) minus (the value pointed by p_n) is equal to ( n), 

because the key length of (n)-word inverted index is (n). 

Then, only the new keys of (n+1)-word inverted index 

whose occurrences are larger than or equal to minfreq  are 

kept. 

Table 2. Algorithm for positional index arrangement  

Table 2 describes how positional inverted index works. 

Figure 4 illustrates how our motif discovery scheme works 

with positional inverted indices.  

4.3 Motif Refinement 

Motif refinement is required to prune off the 

overlapped positions both in (n)-word motifs and among 

different word-motifs. Two types of refinement are 

proposed in this work, called horizontal refinement and 

vertical refinement.  

Horizontal refinement examines whether there are 

overlapped positions within a list of (n) -word key-values 

pair. It is an extended version of numerosity reduction to 

keep away from discovering trivial matches in the same 

(n)-word motif. The algorithm for horizontal refinement is 

shown in Table 3.  

For clear understanding, an example is presented as 

follows. There are four 2-word motifs in Figure 4(b). The 

first motif starts with "bac" and its word length (the 

number of words) is two. Its occurrence frequency is three 

and their positional location starts at {0,4,10}. We then 

confirm there are enough gap between their offset values 

because we do not want to count the same motif twice in a 

same sliding window. According to the original word array 

shown in Figure 4(c), for the first motif "baccab", its 

positional location of first occurrence starts at "0"(offset 

value starts at "0") and ends at "1" (offset value ends at 

"2" because we had “cab” at offset 1 and 2.).  The 

positional location of second occurrence starts at "4" 

(offset value starts at "6") and ends at "5" (offset value 

ends at "8"). Then the gap between these two same motifs 

becomes 4 (i.e., 6-2) which is less than the given window 

size 6 so that we can confirm that there exists a trivial 

match to prune off. If the gap (subtracting the end offset 

value of first occurrence from the start offset value of 

second occurrence) is above or equal to the length of 

sliding window, we keep it as independent occurrence of 

the same motif. Since the trivial match exists between the 

first occurrence and second occurrence of the first motif 

"baccab”, we discard the second occurrence so that the 

occurrence frequency of the motif "baccab" becomes two 

which starts at {0, 10} after the horizontal ref inement.   

The next step is vertical refinement. Vertical refinement 

examines whether there exist overlapping positional 

locations or not in two different (n)-word key-values pairs. 

Overlapped locations are pruned off after the examination.  

At first, we examine whether there exist (n) -word key 

pairs: key1 and key2, where the postfix word of key1 is  

irm

Input: key_n, key_1, inList_n, inList_1, p_n , p_1, 

minFreq 
//key_n, inList_n: key and sorted positional locations 

for (n)-word key-values 

//key_1, inList_1: key and sorted positional locations 

for 1-word key-values 

//p_n: pointer initially pointed to the start position of 

inList_n 

//p_1: pointer initially pointed to the start position of 

inList_1  

//minFreq: minimum occurrence frequency (2 in the 
example of Figure 4) 

Output: answer     //key-values pairs for (n+1) word 

1 answer = NIL 

2 tKey= key_n + key_1     // (n+1)-word key  

tmpList = NIL 

3 while(p_1  NIL and p_n  NIL) do 

4  if((inList_1(p_1) – inList_n(p_n)) == n) 

5    then add(tmpList, inList_n(p_n)) 

      p_n  next(p_n) 

      p_1  next(p_1) 

6     else if(inList_n(p_n) > inList_1(p_l))  

           then p_1  next(p_1) 

           else p_n  next(p_n)  

        end if   

end if 

7 end while 

8  if ( |tmpList|  minFreq)  

   then add(answer, (tKey, tmpList))  

end if 

 9 return answer  



 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. SAX representation scheme (a) Real -valued time series of length 25 with sliding window of length 6 (b) SAX 

representation for each subsequence with wordSize of 3 and symbolSize of 3 (c) Numerosity reduction of (b)  
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Figure 4. Motif discovery using positional inverted index (a) 1 -word inverted index (b) 2-word inverted index with 

refinement scheme (c) 3-word inverted index 

 

 

same as the prefix word of key2. If such key pairs exist, in 

the next step, we examine their positional locations to 

confirm the two motifs are concatenated or not. If 

concatenated, we can confirm that their positional 

locations are overlapped to prune off the positional 

location of the latter motif.  It is enough to confirm the 

concatenation between postfix words and prefix words, 

because only one new word is added to the last position of 

(n-1)-word keys, which do not have any concatenations, to 

build (n)-word keys as described in Section 4.2.  

For clear understanding, as an example in Figure 4(b) 

for 2-word motif, key pairs of "baccab" and "cababb" 

shares the word “cab” that means the postfix word of 

“baccab” is same as the prefix word of “cababb”. Then, 

their locations lists {0,10} and {1,11} are examined for 

overlapping. Because of 2-word motif, "bac" starts from 

positional location 0 and ends at 1 while "cab" starts from 

positional location 1 and ends at 2. Both words overl ap at 

the position “1” and again overlap at position 10. Thus, the 

motif “cababb” is able to be totally pruned off because all 

the positional locations of “cababb” are overlapped with 

another motif “baccab”. If some of the positional locations 

were overlapped to be pruned off but not all, “cababb” 

might be still candidate motif. In that case, occurrence 

frequency of positional locations for “cababb” must be 

greater than or equal to pre-defined minimum occurrence 

frequency (in this example, it is set as 2). Then, “baccab” 

is kept as a candidate motif but “cababb” is discarded. The  

procedure for vertical refinement is described in Table 4.  

 



 

 

Table 3: Algorithm for horizontal motif refinement  

4.4 Discriminative Motifs Selection 

We discovered different length of candidate motifs from 

our motif discovery method. There would be a lot of 

candidate motifs based on data sets. Our idea is to find out 

the discriminative features from candidate motifs and 

trained the resultant motifs as feature vectors using 

Multinomial Naïve Bays (MNB) and Support Vector 

Machine (SVM).   

In order to find out discriminative motif patterns , we 

adopted Information Gain (IG) which is mostly used in 

feature selection for text categorization [3,20]. It measures 

the number of bits of information obtained for category 

prediction by knowing the presence or absence of a  term in 

a document [20]. The information gain of a term t is defined 

as follows:  

𝑮(𝒕) =  − ∑ 𝑷𝒓(𝒄𝒊)𝒍𝒐𝒈𝑷𝒓(𝒄𝒊)  +𝒎
𝒊=𝟏

                          𝑷𝒓(𝒕) ∑ 𝑷𝒓(𝒄𝒊|𝒕)𝒍𝒐𝒈𝑷𝒓(𝒄𝒊|𝒕) +𝒎
𝒊=𝟏

                          𝑷𝒓(𝒕̅) ∑ 𝑷𝒓(𝒄𝒊|𝒕̅)𝒍𝒐𝒈𝑷𝒓(𝒄𝒊|𝒕̅) .𝒎
𝒊=𝟏           (1) 

 

where the first term P r(c i) is the probability of a category 

in the target data set.  The second and third term are the 

conditional probability of a category given a term t with 

and without including in it.  

We calculate the IG for each term in the target data set 

and sorted them in descending order. Information gain 

threshold (for example: top 70 out of 100) is set based on 

the dataset.  We analyzed the effectiveness of information 

gain on different target data sets on training time and  

classifies the unlabeled time series data.  

Table 4: Algorithm for vertical motif refinement 

 

5. Experimental Evaluation 

 In this section, we report experimental result of our 

motif discovery by using UCR [2] time series benchmarks. 

We compare the classification accuracy of our approach 

with 1NN classifier with Euclidean distance. Our method 

is implemented in Java and all experiments have been done 

on a machine with a 2.2GHz core i7 processor and 8GB 

RAM running the 64-bit Windows operating system.    

5.1 Analysis of motif based classification accuracy  

Variable length motifs are discovered  on symbolic 

representation using our proposed motif discovery method. 

We analyzed the candidate motifs with and without using 

information gain for its discriminative features.  

Discriminative motif patterns are trained with MBN and 

SVM classifiers, and then unlabeled time series are 

classified with them. Table 5 shows the characteristic of 

datasets used in the evaluation. Table 6 shows the 

comparison of classification accuracy with 1NNED 

classifier and our proposed method with MNB and SVM 

classifier with and without IG.  

As shown in Table 6, we have evaluated classification 

accuracy on 11 UCR datasets [2].  1NNED based 

classifier performed on real-valued time series data. On the 

other hand, our motif based classifiers worked on symbolic 

representation with motif as feature vectors. We analyzed 

the classification accuracy of motif-based approach on two 

Input:  inList_n, wordList, windowSize   
//inList_n: sorted positional locations for (n)-word key-
values, where inList_n(i) returns i -th positional location of 
(n)-word key.  

//wordList: SAX word array with offset values , where 
wordList(i) returns the offset value of i -th positional location 

of (n)-word key.  
//windowSize: sliding window length  

Output:  answer       //set of positional locations  

1 answer = NIL 

add (answer, inList_n(0)) 

2 for i = 0 to length(inList_n) -1 

3   end_idx=inList_n(i)+n //(end pos it ion+1)of current   

motif      

  st_idx = inList_n(i+1) //s tart posit ion of next motif  

4   midx1= wordList(end_idx)–1 // last offset va lue of          

current motif 

  midx2 = wordList(st_idx) //offset va lue of next motif  

5   if ((midx2 – midx1)   windowSize) 

    then add(answer , inList(i+1)) 

 end if 

6 end for 

7 return answer  

Input: key1_n, key2_n, inList1_n, inList2_n, p1, p2, 

minFreq 
/ / (key1_n,  inList1_n ) , (key2_n,  inList2_n):  two pairs of key and sorted 

posit ional  locations from (n)-word key-values  
/ /p1: pointer init ial ly pointed to the start posit ion of inList1_n  

/ /p2: pointer init ial ly pointed to the start posit ion of inList 2_n  

/ /minFreq: minimum occurrence frequency ( 2 in the example of Figure 

4) 

Output: answer / /a  set of (key and sorted posit ional location l ist)  

1 answer = NIL 

2 if(postfix_word(key1_n) == prefix_word(key2_n))  
  then add (answer, (key1_n, inList1_n))  

3  while (p1< |pList1_n| and p2< |pList2_n|) do 

4    if(inList2_n(p2) == (inList1_n(p1) +n-1))  

   then delete (inList2_n(p2)) 

         p1 next(p1) 

         p2 next(p2) 

   else if(inList2_n(p2) > (inList1_n(p1)+n-1)) 

        then p1 next(p1) 

        else p2  next(p2)    

       end if  

 end if 

5  end while 

6   if (|inList2_n|  minFreq)  

  then add (answer, (key2_n, inList2_n))  

  end if 

7 end if 

8 return answer  



 

 

ways: with and without discriminative measure called 

information gain (IG).   

Here, there are 3-parameters called window size, word 

size and symbol size for our motif discovery method. 

Window size mostly depends on the time series length . In 

this experiment, we defined word size and symbol size 

between (3 to 8). The best parameters are shown in Table 

6.      

We calculated IG on candidate motifs and reduced the  

number of candidate motifs for its discriminative features. 

Among the 11 datasets, 3 datasets gained its classification 

accuracy nearly 100 percent with IG and reduced its 

training data size. ECG 200 datasets cannot be applied IG 

because its category distribution is skewed and spike noise 

signals are included in it . The other datasets can classify 

well with IG measures.  In comparison with 3 methods, i.e., 

1NNED, motif with IG and without IG, 1NNED wins on 5 

datasets, motif without IG wins on 6 datasets and motif 

with IG wins on 7 datasets.  By applying IG on candidate 

motifs, both classification accuracy and its training time 

boosts up. 

 

Table 5 Characteristics of 11 UCR datasets [2] 

 

6. Conclusion 

In this work, we presented the motif discovery method 

with IG for its discriminative features and analyzed its 

classification accuracy with and without discriminative 

feature. As the experimental evaluation, discriminative 

motif pattern works well for most of the datasets and it 

reduces the size of training data and boosts up training time 

and classification accuracy. As the future work, we plan to 

analyze our approach on different datasets , massive amount 

of times series data and other discriminative features.    

 

 

Table 6 Comparison of classification accuracy on 1NNED, motif based MNB and SVM with and without  information 

gain (IG) 

No 1NN 

ED 

Without IG With IG Window 

Size 

Word 

Size 

Symbol 

Size Motif 

based 

MNB 

Motif 

based 

SVM 

Motif 

based 

MNB 

Motif 

based 

SVM 

Reduced 

training 

data by IG 
(%) 

1 0.747 0.840 0.841 0.840 0.864 50 20 5 3 

2 0.880 0.710 0.780 0.710 0.780 0 20 5 3 

3 0.797 0.730 0.816 0.720 0.810 10 20 5 3 

4 0.897 0.860 0.867 0.814 0.847 50 40 5 4 

5 1.000 0.964 0.893 1.000 1.000 20 48 5 3 

6 0.852 0.964 0.942 0.956 0.931 20 32 4 5 

7 0.995 0.976 0.990 0.956 0.977 20 25 5 4 

8 0.830 0.700 0.719 0.696 0.729 10 80 6 5 

9 0.760 0.830 0.940 0.800 0.930 30 48 4 8 

10 0.784 0.977 0.863 0.966 0.852 20 60 5 4 

11 0.867 0.933 0.967 0.933 1.000 20 50 5 6 
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