

DEIM Forum 2018 E1-6

Discriminative Motif Analysis for Time Series Classification

Chaw Thet Zan and Hayato YAMANA

Graduate School of Fundamental Science and Engineering

Waseda University

Tokyo, Japan

E-mail: chawtzan@fuji.waseda.jp, yamana@waseda.jp,

Abstract Time series classification is one of the major works in data mining community. Classification

generally works on original real-valued time series or transformed time series. The main issue of time series

classification is computational complexity handling with massive amount of time series. In this work, time

series are classified using motifs as feature vectors. Variable length motifs are discovered on symbolic

representation with our proposed positional inverted index. We further investigated on the candidate motifs

with Information Gain (IG) measure for its discriminative features. Then, the classification accuracy of

motifs with and without its discriminative features on UCR benchmark datasets are analyzed. As

experimental evaluation, motif with its discriminative features achieved on 7 out of 11 datasets.

Keyword Motif discovery, Time series classification, Symbolic representation

1. Introduction

Massive amounts of time series data are generated day

by day in most of the real-world application domains such

as financial assessment, weather monitoring, medical data

examination, and multimedia systems. Handling such kind

of data efficiently and finding hidden knowledge from long

time series have gotten much attention in data mining

community in these two decades. Discovery of repeated

patterns, known as motifs, from long time series can

provide not only hidden knowledge to each domain but also

be used as features for other time series tasks such as

clustering, classification, anomaly detection and so on.

As the time series classification is one of the major task

in data mining community, many researchers proposed

different classification algorithms in different perspectives.

One nearest neighbor (1NN) classification with a kind of

distance measure is popular choice for its simplicity and

robustness [19]. On the one hand, whenever test data

comes, it requires to compute for all trained data so that it

becomes computationally expensive. As the alternatives,

shapelet-based [1,6,13,15,21] and dictionary-based

[10,16,17] time series classification methods were

proposed. Shapelet is the time series subsequences which

are maximally representative of a class [21]. Shapelet-

based method classifies unlabeled time series by

computing its similarity to the candidate shapelets. Though

it is interpretable and accurate, the original shapelet-based

classification is computationally expensive. In the

dictionary-based classifiers, SAX-VSM [16] classifies

unlabeled time series by calculating tf*idf weight vector s

for each class. Since there are no pruning techniques for

weight vectors in trained data, it has large sparse matrix to

consume large space and time.

In this paper, we propose a motif based time series

classification method based on the following ideas.

1. Variable length motifs are discovered on the

Symbolic representation with our proposed

positional inverted index [23].

2. Candidate motifs are analyzed with information

gain (IG) for its discriminative features.

3. Discriminative motif patterns are classified with

MNB and SVM classifiers on UCR time series

benchmark.

The rest of the paper is organized as follows. Section 2

briefly discusses related work for motif discovery and time

series classification. Section 3 describes background of

our approach and its notations. Section 4 explains our

motif discovery approach, i.e., how it works and how to

apply motifs as feature vector for time series classification.

In section 5, we perform the evaluation of classification

accuracy on UCR [2] time series data and compare with

1NN (Nearest Neighbor) classification result. Finally, we

conclude our work by discussing future directions in

section 6.

2. Related Work

2.1 Motif Discovery

In the time series domain, algorithms for motif

discovery are classified into two types: exact and

approximate. Solving a problem exactly is always more

desirable than solving it approximately [12]. Exact motif

discovery performs on real data directly with pre -defined

motif length which requires significant domain knowledge.

Even we can find out the different length of motifs

iteratively by varying the length, the computational

complexity for such kind of solution is considerable. On

the other hand, Approximation methods transform the

original time series data into low dimensional space to

speed up the discovery of motifs.

Mueen et al. [14] proposed efficient exact motif

discovery algorithm called “MK” based on Brute Force

(BF) motif discovery. Brute force (BF) calculates

similarity distance between two-time series and maintains

the distance. It is updated whenever the algorithm finds out

the smaller distance of another pair of time series. As BF

calculates every possible combination of time series pair s,

its time complexity is quadratic. MK speeds-up the BF by

randomly picks up multiple time series called reference

(refs) points among a set of time series. Distances between

refs and a set of time series are pre-computed and stored

as an array. Even MK reduced the computation time, its

performance varies on data distribution and numbers of

reference points. Dau and Keogh proposed motif discovery

in cooperation with domain knowledge called Matrix

Profile V [5] in recent. They claimed that there is a gap

between user expectations and the outcomes of motif

discovery. The reasons behind are explained and proposed

a guided motif search framework based on [22].

Annotation Vector (AV) is created for a guided motif

search which encodes the user’s domain -dependent bias.

Even it achieves to discover the meaningful motifs as

user’s expected outcomes , respective domain knowledge is

required.

Chiu et al. [4] discovered time series motifs using SAX

with Random Projection (RP). Its time complexity is O(n)

where n is the length of a given time series. Li et al. [8]

developed motif visualization system using grammar

induction. Even through this visualization tool disco vered

variable length motifs, it cannot guarantee the motifs as

significant because of weakness in their rule of ranking

and pruning technique. Besides, the discovered motifs are

fixed length, not variable length motifs. [11] and [18]

discovered motifs on multi-dimensional time series data

using SAX with Minimum Description Length (MDL)

principle and “Trie” data structure. Although different

lengths of motifs are found out on real applications such

as weather prediction and human motion detection, their

approaches do not guarantee the discovered outcomes.

2.2 Time Series Classification

Time series classification generally works on real-

valued time series or transformed time series. Most of the

classification works on real-valued time series performed

on 1NN classifier with different types of distance measures.

As an alternative way, features are extracted on real-valued

data or transformed data and classification works on

extracted features vectors. Shapelet-based classification

[13,15,21] works on time series subsequences as feature

vectors and applied it on classifying multidimensional time

series [1]. Bag-of-word patterns [10] works on SAX word

array by window-size, and constructs a histogram over the

word distribution. Classification of unlabeled time series

is done by 1NN with Euclidean distance with histogram.

3. Background and Notations

In this section, we briefly describe the backgro und

knowledge of our approach, notations and definitions used

in our proposed approach.

3.1 Symbolic Aggregate Approximation

Symbolic Aggregate approXimation (SAX) is the first

proposed powerful dimensionality/numerosity reduction

and lower bounding approach in the time series domain.

Because of the main characteristics of time series data, i.e.,

curse of dimensionality, it is indispensable to transform

raw time series data into another low dimensional

representation for minimizing computational cost. SAX

transforms a time series of length n into the string of

arbitrary length by using a represented symbol size a (a

2).

SAX operates in two main steps. In the first step, a given

time series is normalized with mean of zero and standard

deviation of one . The normalized time series is

transformed into Piecewise Aggregate Approximation

(PAA) [7]. In PAA representation, time series T of length

n (n-dimensions) is divided into w-dimensional equal-

sized segments where (w << n). In brief, PAA reduces the

data from n-dimensional space to w-dimensional space

represented by segment-wise mean value called PAA

coefficient. In the second step, PAA coefficients are

mapped into alphabetic symbol a of arbitrary size, where

a 2, using a lookup table that contains "breakpoints" for

separating the symbols as shown in Table 1 where the

symbol size is 3 to 7. Breakpoints are a sorted list of

numbers B=<1, …, a-1> such that the area under a N(0,1)

Gaussian curve i to i+1 =1/a (0 to a are defined as -

and , respectively) [9]. Figure 1 illustrates the mapping

of the 2-breakpoints with 3 alphabetic symbols where PAA

coefficients that are below the smallest breakpoints are

mapped with symbol "a", all coefficients greater than or

equal to the smallest breakpoints and less than the second

smallest breakpoints are mapped to the symbol "b" and all

the coefficients greater than or equal to the second smallest

breakpoint are mapped to the symbol "c".

Table 1: Lookup table for breakpoints for separating

the symbols (symbol size is from 3 to 7)

 a 3 4 5 6 7

1 -0.43 -0.67 -0.84 -0.97 -1.07

2 0.43 0 -0.25 -0.43 -0.57

3 0.67 0.25 0 -0.18

4 0.84 0.43 0.18

5 0.97 0.57

6 1.07

Figure 1. An Example of SAX Representation (A

time series of length 128 is mapped to the word

"cccaabba" where the segment size (w) is 8 and

symbol size (a) is 3.)

3.2 SAX Numerosity Reduction

One of the main characteristics of SAX is numerosity

reduction [8]. We explain briefly how it works here. There

is a long-time series T of length n, and the proper

subsequences of length m where (m n) are extracted using

sliding window technique. Each subsequence is discretized

into a SAX word using two parameters (segment size w and

symbol size a). During the discretization process, if a word

occurs repeated consecutively, instead of recording every

same word, the first occurrence of the word and its offset

is only recorded [8]. The word array SA and how it

performs the numerosity reduction are illustrated in Figure

2.

(a)

(b)

Figure 2. SAX numerosity reduction (a) original word

array SA (b) numerosity reduction of (a)

3.3 Notations

Definition 1. Time Series: A time series T of length n,

T=t1,…,tn ,is an ordered set of n real-values.

Most of the time series data is very long due to in order

with real-time time stamps. We put our attention on local

properties of time series data that means dividing sequence

by sequence rather than the entire time series. F inding out

subsequence matching is more interesting than the whole

matching as hidden knowledge can be extracted interval by

interval. To find out the subsequence matching, we define

the term sliding window and time series subsequence

which is extracted by using sliding window shifted by one

by one.

Definition 2. Subsequence: Given a time series T of

length n, a subsequence S of length m of T, where m n,

is a contiguous position starts at p, that is S=tp,…,tp+m-1 for

1 p n-m+1.

Definition 3. Sliding window: Given a time series T of

length n and the sliding window of length m, all possible

subsequences can be extracted by sliding a window of

length m across T and considering each subsequence SP for

1 p n-m+1.

In this work, each subsequence is transformed into SAX

representation using two parameters: word size (or

segment size) (w) and symbol size (a).

Definition 4. Word: Each subsequence of sliding

window is divided into w segments each of which is

represented as an alphabetic symbol. Then a set of

alphabetic symbols that organizes a subsequence of sliding

window is called a word. Thus the number of segments in

a subsequence is equal to the size of word, i.e., the number

of alphabets in a word.

In the definition of matching, there are exact and

approximate matching schemes especially in symbolic

representation. SAX representation uses minimum

distance function [9] between the original time series of

two words, which we call approximate matching.

Definition 5. Match: Given a string array SA containing

two subsequences p i , l and q j , l of the same length l, starting

from different positions (ij) and is not allowed

overlapping positions each other, it is called non -

overlapping. If both words are exactly same with the above

non-overlapping condition, we called it as exact match or

non-trivial match.

On the contrary, trivial match is defined as follows:

Definition 6. Trivial Match: Given a string array SA

containing two subsequences p i , l and q j , l of the same

length l, there is overlapping each other on different

positions once or more even their starting positions are

different (ij), it is called overlapping. If both words are

exactly same with above overlapping condition, we called

it as trivial match.

Definition 7. Word Motif: Given a string array SA and

minimum frequency threshold minfreq (at least 2), a

subsequence p of length of l, where l (|SA |)/2, is defined

as motif if the occurrence frequency of p in SA is minfreq

and above.

4. Our Approach

There are two steps called variable length motifs

discovery and classification with candidate motifs as

feature vectors. Our idea is to find out variable length

motifs using our proposed positional inverted index [23].

Candidate motifs are analyzed for its discriminative

features by adopting Information Gain (IG) measure.

Finally, discriminative motif patterns are trained with

machine learning based classification algorithms SVM and

MNB.

4.1 How SAX was Adopted?

Real-valued time series data is transformed to SAX

representation in pre-processing step. Overlapped

subsequences are extracted by using sliding window of

length m across the original time series data, because non-

overlapping subsequences would result in too much loss in

information [8]. Then, each subsequence whose length of

m is discretized into a set of “symbols” by using two

parameters: word size and symbol size to form a word.

During the discretization step, the main feature of SAX,

numerosity reduction [9], is applied.

Here, we explain how numerosity reduction is applied

by using an example shown in Figure 3. Figure 3(a)

represents real-valued time series of length 25 with sliding

window of length 6, where offset value shows positional

index of original time series data. After adopting sliding

window, we have a set of subsequences whose length is 6.

Then each subsequence is discretized into a set of

“symbols” where word size is 3, which means each

subsequence is discretized into three. Thus, every two real -

valued data forms one symbol and 3 symbols forms a word.

In this example, we set symbol size as 3 and represent real -

values by using three symbols: “a”, “b”, and “c”. Figure

3(b) shows the overlapped SAX representation in which

neighboring words share some original real -valued time

series data where an offset value represents each start

position of SAX word.

The next step is numerosity reduction. As proposed in

[8], neighboring subsequences, i.e., neighboring words,

are likely to be similar to each other because they have

some overlapping. Thus, instead of keeping all the words,

we keep only the first occurrence of each word which

continuously appears in the overlapped SAX

representation as shown in Figure 3(c). By only keeping

them, we can keep away from discovering trivial matches

defined in Section 3.3. Then, we put the positional location

value to each word from its first occurrence offset.

4.2 Motif Discovery with Positional Inverted Index

 Our proposed motif discovery adopts a term-inverted-

index. A term-inverted-index is mainly used in

Information Retrieval (IR) and it was originally designed

for discrete data. To apply it on real -valued time series

data, transformation from real-value to discrete value is

required as preprocessing step.

Let us find out variable lengths motifs using positional

inverted index . At first, we scan the original word array

shown in Figure 3(c) once for building 1-word inverted

index shown in Figure 4(a). In the inverted index, each

start word is kept as a key and its positional locations are

sorted and recorded as values. If the number of positional

occurrence of each start word is less than a pre -defined

minimum occurrence frequency (minfreq=2 in this

example), the key is filtered out from the inverted index.

There is one word “acc” to be filtered out in this example.

For building 2-word inverted index, we have to check

positional locations of every combination of two lists in 1 -

word inverted index. In the example of Figure 4(a), i.e., 1-

word inverted index, al l the permutation to check are: bac-

cab, bac-abb, bac-bbc, cab-bac, cab-abb, cab-bbc, abb-bac,

abb-cab, abb-bbc, bbc-bac, bbc-cab, bbc-abb. Let’s think

about the case where we compare two lists {0,4,10,13} for

“bac” and {1,5,11} for “cab” to extract the candidates for

2-word inverted index. We prepare two pointers: p1 and

p2, where p1 initially points the start positional location

of “bac” list, i.e. {0}, and p2 initially points the start

positional location of “cab” list, i.e. {1}. When the value

of positional location pointed by p1 is just before the value

of positional location pointed by p2, we record the

sequence as a key of 2-word inverted index. Then only the

keys whose occurrences are larger than or equal to minfreq

are kept. Thus, in Figure 4(b), “bacabb”, “cababb”,

“abbbbc”, and “bbcbac” are kept for 2 -word inverted index

before the refinement explained in 4.3.

Now, we can generalize the scheme. For building (n+1) -

word inverted index where n is larger than or equal to 1,

we have to check positional locations of every combination

of (n)-word inverted index and 1-word inverted index. We

use two pointers p_n and p_1 where p_n initially points the

start positional location of each list in (n) -word inverted

index and p_1 initially points the start positional location

of each list in 1-word inverted index. Here, when we

compare two positional locations pointed by p_n and p_1,

it is enough to find out the case where (the value pointed

by p_1) minus (the value pointed by p_n) is equal to (n),

because the key length of (n)-word inverted index is (n).

Then, only the new keys of (n+1)-word inverted index

whose occurrences are larger than or equal to minfreq are

kept.

Table 2. Algorithm for positional index arrangement

Table 2 describes how positional inverted index works.

Figure 4 illustrates how our motif discovery scheme works

with positional inverted indices.

4.3 Motif Refinement

Motif refinement is required to prune off the

overlapped positions both in (n)-word motifs and among

different word-motifs. Two types of refinement are

proposed in this work, called horizontal refinement and

vertical refinement.

Horizontal refinement examines whether there are

overlapped positions within a list of (n) -word key-values

pair. It is an extended version of numerosity reduction to

keep away from discovering trivial matches in the same

(n)-word motif. The algorithm for horizontal refinement is

shown in Table 3.

For clear understanding, an example is presented as

follows. There are four 2-word motifs in Figure 4(b). The

first motif starts with "bac" and its word length (the

number of words) is two. Its occurrence frequency is three

and their positional location starts at {0,4,10}. We then

confirm there are enough gap between their offset values

because we do not want to count the same motif twice in a

same sliding window. According to the original word array

shown in Figure 4(c), for the first motif "baccab", its

positional location of first occurrence starts at "0"(offset

value starts at "0") and ends at "1" (offset value ends at

"2" because we had “cab” at offset 1 and 2.). The

positional location of second occurrence starts at "4"

(offset value starts at "6") and ends at "5" (offset value

ends at "8"). Then the gap between these two same motifs

becomes 4 (i.e., 6-2) which is less than the given window

size 6 so that we can confirm that there exists a trivial

match to prune off. If the gap (subtracting the end offset

value of first occurrence from the start offset value of

second occurrence) is above or equal to the length of

sliding window, we keep it as independent occurrence of

the same motif. Since the trivial match exists between the

first occurrence and second occurrence of the first motif

"baccab”, we discard the second occurrence so that the

occurrence frequency of the motif "baccab" becomes two

which starts at {0, 10} after the horizontal ref inement.

The next step is vertical refinement. Vertical refinement

examines whether there exist overlapping positional

locations or not in two different (n)-word key-values pairs.

Overlapped locations are pruned off after the examination.

At first, we examine whether there exist (n) -word key

pairs: key1 and key2, where the postfix word of key1 is

irm

Input: key_n, key_1, inList_n, inList_1, p_n , p_1,

minFreq
//key_n, inList_n: key and sorted positional locations

for (n)-word key-values

//key_1, inList_1: key and sorted positional locations

for 1-word key-values

//p_n: pointer initially pointed to the start position of

inList_n

//p_1: pointer initially pointed to the start position of

inList_1

//minFreq: minimum occurrence frequency (2 in the
example of Figure 4)

Output: answer //key-values pairs for (n+1) word

1 answer = NIL

2 tKey= key_n + key_1 // (n+1)-word key

tmpList = NIL

3 while(p_1 NIL and p_n NIL) do

4 if((inList_1(p_1) – inList_n(p_n)) == n)

5 then add(tmpList, inList_n(p_n))

 p_n next(p_n)

 p_1 next(p_1)

6 else if(inList_n(p_n) > inList_1(p_l))

 then p_1 next(p_1)

 else p_n next(p_n)

 end if

end if

7 end while

8 if (|tmpList| minFreq)

 then add(answer, (tKey, tmpList))

end if

 9 return answer

(a)

(b)

(c)

Figure 3. SAX representation scheme (a) Real -valued time series of length 25 with sliding window of length 6 (b) SAX

representation for each subsequence with wordSize of 3 and symbolSize of 3 (c) Numerosity reduction of (b)

(a)

(c)

(b)

Figure 4. Motif discovery using positional inverted index (a) 1 -word inverted index (b) 2-word inverted index with

refinement scheme (c) 3-word inverted index

same as the prefix word of key2. If such key pairs exist, in

the next step, we examine their positional locations to

confirm the two motifs are concatenated or not. If

concatenated, we can confirm that their positional

locations are overlapped to prune off the positional

location of the latter motif. It is enough to confirm the

concatenation between postfix words and prefix words,

because only one new word is added to the last position of

(n-1)-word keys, which do not have any concatenations, to

build (n)-word keys as described in Section 4.2.

For clear understanding, as an example in Figure 4(b)

for 2-word motif, key pairs of "baccab" and "cababb"

shares the word “cab” that means the postfix word of

“baccab” is same as the prefix word of “cababb”. Then,

their locations lists {0,10} and {1,11} are examined for

overlapping. Because of 2-word motif, "bac" starts from

positional location 0 and ends at 1 while "cab" starts from

positional location 1 and ends at 2. Both words overl ap at

the position “1” and again overlap at position 10. Thus, the

motif “cababb” is able to be totally pruned off because all

the positional locations of “cababb” are overlapped with

another motif “baccab”. If some of the positional locations

were overlapped to be pruned off but not all, “cababb”

might be still candidate motif. In that case, occurrence

frequency of positional locations for “cababb” must be

greater than or equal to pre-defined minimum occurrence

frequency (in this example, it is set as 2). Then, “baccab”

is kept as a candidate motif but “cababb” is discarded. The

procedure for vertical refinement is described in Table 4.

Table 3: Algorithm for horizontal motif refinement

4.4 Discriminative Motifs Selection

We discovered different length of candidate motifs from

our motif discovery method. There would be a lot of

candidate motifs based on data sets. Our idea is to find out

the discriminative features from candidate motifs and

trained the resultant motifs as feature vectors using

Multinomial Naïve Bays (MNB) and Support Vector

Machine (SVM).

In order to find out discriminative motif patterns , we

adopted Information Gain (IG) which is mostly used in

feature selection for text categorization [3,20]. It measures

the number of bits of information obtained for category

prediction by knowing the presence or absence of a term in

a document [20]. The information gain of a term t is defined

as follows:

𝑮(𝒕) = − ∑ 𝑷𝒓(𝒄𝒊)𝒍𝒐𝒈𝑷𝒓(𝒄𝒊) +𝒎
𝒊=𝟏

 𝑷𝒓(𝒕) ∑ 𝑷𝒓(𝒄𝒊|𝒕)𝒍𝒐𝒈𝑷𝒓(𝒄𝒊|𝒕) +𝒎
𝒊=𝟏

 𝑷𝒓(�̅�) ∑ 𝑷𝒓(𝒄𝒊|�̅�)𝒍𝒐𝒈𝑷𝒓(𝒄𝒊|�̅�) .𝒎
𝒊=𝟏 (1)

where the first term P r(c i) is the probability of a category

in the target data set. The second and third term are the

conditional probability of a category given a term t with

and without including in it.

We calculate the IG for each term in the target data set

and sorted them in descending order. Information gain

threshold (for example: top 70 out of 100) is set based on

the dataset. We analyzed the effectiveness of information

gain on different target data sets on training time and

classifies the unlabeled time series data.

Table 4: Algorithm for vertical motif refinement

5. Experimental Evaluation

 In this section, we report experimental result of our

motif discovery by using UCR [2] time series benchmarks.

We compare the classification accuracy of our approach

with 1NN classifier with Euclidean distance. Our method

is implemented in Java and all experiments have been done

on a machine with a 2.2GHz core i7 processor and 8GB

RAM running the 64-bit Windows operating system.

5.1 Analysis of motif based classification accuracy

Variable length motifs are discovered on symbolic

representation using our proposed motif discovery method.

We analyzed the candidate motifs with and without using

information gain for its discriminative features.

Discriminative motif patterns are trained with MBN and

SVM classifiers, and then unlabeled time series are

classified with them. Table 5 shows the characteristic of

datasets used in the evaluation. Table 6 shows the

comparison of classification accuracy with 1NNED

classifier and our proposed method with MNB and SVM

classifier with and without IG.

As shown in Table 6, we have evaluated classification

accuracy on 11 UCR datasets [2]. 1NNED based

classifier performed on real-valued time series data. On the

other hand, our motif based classifiers worked on symbolic

representation with motif as feature vectors. We analyzed

the classification accuracy of motif-based approach on two

Input: inList_n, wordList, windowSize
//inList_n: sorted positional locations for (n)-word key-
values, where inList_n(i) returns i -th positional location of
(n)-word key.

//wordList: SAX word array with offset values , where
wordList(i) returns the offset value of i -th positional location

of (n)-word key.
//windowSize: sliding window length

Output: answer //set of positional locations

1 answer = NIL

add (answer, inList_n(0))

2 for i = 0 to length(inList_n) -1

3 end_idx=inList_n(i)+n //(end pos it ion+1)of current

motif

 st_idx = inList_n(i+1) //s tart posit ion of next motif

4 midx1= wordList(end_idx)–1 // last offset va lue of

current motif

 midx2 = wordList(st_idx) //offset va lue of next motif

5 if ((midx2 – midx1) windowSize)

 then add(answer , inList(i+1))

 end if

6 end for

7 return answer

Input: key1_n, key2_n, inList1_n, inList2_n, p1, p2,

minFreq
/ / (key1_n, inList1_n) , (key2_n, inList2_n): two pairs of key and sorted

posit ional locations from (n)-word key-values
/ /p1: pointer init ial ly pointed to the start posit ion of inList1_n

/ /p2: pointer init ial ly pointed to the start posit ion of inList 2_n

/ /minFreq: minimum occurrence frequency (2 in the example of Figure

4)

Output: answer / /a set of (key and sorted posit ional location l ist)

1 answer = NIL

2 if(postfix_word(key1_n) == prefix_word(key2_n))
 then add (answer, (key1_n, inList1_n))

3 while (p1< |pList1_n| and p2< |pList2_n|) do

4 if(inList2_n(p2) == (inList1_n(p1) +n-1))

 then delete (inList2_n(p2))

 p1 next(p1)

 p2 next(p2)

 else if(inList2_n(p2) > (inList1_n(p1)+n-1))

 then p1 next(p1)

 else p2 next(p2)

 end if

 end if

5 end while

6 if (|inList2_n| minFreq)

 then add (answer, (key2_n, inList2_n))

 end if

7 end if

8 return answer

ways: with and without discriminative measure called

information gain (IG).

Here, there are 3-parameters called window size, word

size and symbol size for our motif discovery method.

Window size mostly depends on the time series length . In

this experiment, we defined word size and symbol size

between (3 to 8). The best parameters are shown in Table

6.

We calculated IG on candidate motifs and reduced the

number of candidate motifs for its discriminative features.

Among the 11 datasets, 3 datasets gained its classification

accuracy nearly 100 percent with IG and reduced its

training data size. ECG 200 datasets cannot be applied IG

because its category distribution is skewed and spike noise

signals are included in it . The other datasets can classify

well with IG measures. In comparison with 3 methods, i.e.,

1NNED, motif with IG and without IG, 1NNED wins on 5

datasets, motif without IG wins on 6 datasets and motif

with IG wins on 7 datasets. By applying IG on candidate

motifs, both classification accuracy and its training time

boosts up.

Table 5 Characteristics of 11 UCR datasets [2]

6. Conclusion

In this work, we presented the motif discovery method

with IG for its discriminative features and analyzed its

classification accuracy with and without discriminative

feature. As the experimental evaluation, discriminative

motif pattern works well for most of the datasets and it

reduces the size of training data and boosts up training time

and classification accuracy. As the future work, we plan to

analyze our approach on different datasets , massive amount

of times series data and other discriminative features.

Table 6 Comparison of classification accuracy on 1NNED, motif based MNB and SVM with and without information

gain (IG)

No 1NN

ED

Without IG With IG Window

Size

Word

Size

Symbol

Size Motif

based

MNB

Motif

based

SVM

Motif

based

MNB

Motif

based

SVM

Reduced

training

data by IG
(%)

1 0.747 0.840 0.841 0.840 0.864 50 20 5 3

2 0.880 0.710 0.780 0.710 0.780 0 20 5 3

3 0.797 0.730 0.816 0.720 0.810 10 20 5 3

4 0.897 0.860 0.867 0.814 0.847 50 40 5 4

5 1.000 0.964 0.893 1.000 1.000 20 48 5 3

6 0.852 0.964 0.942 0.956 0.931 20 32 4 5

7 0.995 0.976 0.990 0.956 0.977 20 25 5 4

8 0.830 0.700 0.719 0.696 0.729 10 80 6 5

9 0.760 0.830 0.940 0.800 0.930 30 48 4 8

10 0.784 0.977 0.863 0.966 0.852 20 60 5 4

11 0.867 0.933 0.967 0.933 1.000 20 50 5 6

References
[1] A. Bostrom and A. Bagnall. Binary shapelet transform

for multiclass time series classification. In Proc. 17 t h
DaWak, 2015.

[2] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A.
Mueen, and G. Batista. The UCR time series
classification archive, July 2015.
www.cs.ucr.edu/~eamonn/time series data/ .

[3] H.Cheng, X. Yan, J. Han and C. W. Hsu.
Discriminative Frequent Pattern Analysis for
effective Classification. In Proc. of ICDE, 2007.

[4] B. Y. chi Chiu, E. J. Keogh, and S. Lonardi.
Probabilistic discovery of time series motifs. In Proc.
of 9th ACM SiGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, pages 493–498, 2003.

[5] H. A. Dau and E. J. Keogh. Matrix profile v: A generic
technique to incorproate domain knowledge into motif
discovery. In Proc. of the 23rd ACM SIGKDD Int’l
Conf. on Knowledge Discovery and Data Mining,
2017.

[6] J. Grabocka, N. Schilling, M. Wistuba, and L.
Schmidt-Thieme. Learning time-series shapelets, In

No Name #of

class

Train

size

Test

size

Time

series
length

1 Two Lead ECG 2 23 1139 82

2 ECG200 2 100 100 96

3 ECG Five Days 2 23 861 136

4 CinC_ECG_Troso 4 40 1380 1639

5 Coffee 2 28 28 286

6 CBF 3 30 900 128

7 Wafer 2 1000 6174 152

8 Yoga 2 300 3000 426

9 Trace 4 100 100 275

10 Face four 4 24 88 350

11 Olive Oil 4 30 30 570

Proc. 20 t h SIGKDD, 2014.

[7] E. Keogh, K. Chakrabarti, M. Pazzani, and S.
Mehrotra. Dimensionality reduction for fast similarity
search in large time series databases. Knowledge and
Information Systems, 3(3):263–286, August 2001.

[8] Y. Li, J. Lin, and T. Oates. Visualizing variable -length
time series motifs. In Proc. of the 2012 SIAM Int ’l
Conf. on Data Mining, pages 895–906, 2012.

[9] J. Lin, E. Keogh, L. Wei, and S. Lonardi.
Experiencing sax: a novel symbolic representation of
time series. Data Mining and Knowledge Discovery,
15(2):107–144, October 2007.

[10] J. Lin, R. Khade, and Y. Li. Rotation-invariant
similarity in time series using bag-of-patterns
representation. Journal of Intelligent Information
Systems, 39(2):287-315, 2012.

[11] A. McGovern, D. H. Rosendahl, K. K. Droegemeier,
and R. A. Brown. Identifying predictive multi -
dimensional time series motifs: an application to
severe weather prediction. Data Mining and
Knowledge Discovery, 22(1-2):232–258, 2011.

[12] A. Mueen. Time series motif discovery: dimensions
and applications: WIREs Data Mining Knowl Discov,
4(2): 152-159, 2014.

[13] A. Mueen, E. Keogh, and N.Young. Logical -
shapelets: An expressive primitive for time series
classification. In Proc. 17 t h SIGKDD, 2011.

[14] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B.
Westover. Exact discovery of time ser ies motifs. In
Proc of the 2009 SIAM Int’l Conf. on Data Mining,
pages 473–484, 2009.

[15] T. Rakthanmanon and E. Keogh. Fast -shapelets: A fast
algorithm for discovering robust time series shapelets.
In Proc. 13 t h SDM, 2013.

[16] P. Schaffer. The BOSS is concerned with time series
classification in the presence of noise. Data Mining
and Knowledge Discovery, 29(6): 1505-1530, 2015.

[17] P. Senin and S. Malinchik. SAX-VSM: interpretable
time series classification using sax and vector space
model. In Proc. 13 t h IEEE ICDM, 2013.

[18] Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of
time-series motif from multi-dimensional data based
on mdl principle. Machine Learning, 58(2-3):269–300,
2005.

[19] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P.
Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance
measures for time series data. Data Mining and
Knowledge Disovery, 26(2): 275-309, 2013.

[20] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proc. of
ICML, pages 412-420, 1997.

[21] L. Ye and E. Keogh. Time series shapelets: a novel
technique that allows accurate, interpretable and fast
classification. Data Mining and Knowledge Discovery,
22(1-2): 149-182, 2011.

[22] C.C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding,
H. A. Dau, D. F. Silva, A. Mueen, and E. J. Keogh.
Matrix profile i: All pairs similarity joins for time
series: A unifying view that includes motifs, discords
and shapelets. In Proc. of the IEEE 16th Int ’l Conf.
on Data Mining (ICDM), pages 1317–1322, December
2016.

[23]C. T. Zan and H. Yamana. A Variable-Length Motifs

Discovery Method in Time Series using Hybrid
Approach. In Proc. of 19 t h Int’l Conf. on Information
Integration and Web-based Applications & Services,
December 2017.

