
   

DEIM Forum 2018 G3-1 

 

Entity Disambiguation Based on LSTM-CNN and Sparse Features 

Yuxuan CHENG† and  Mizuho IWAIHARA‡ 

†早稲田大学大学院情報生産システム研究科  

〒808-0135 福岡県北九州市若松区ひびきの２－７ 

E-mail:  †lingualcyx@toki.waseda.jp,  ‡iwaihara@waseda.jp 

Abstract Entity linking is the task to link a named entity retrieved in the web text with a corresponding entity in a knowledge 

base such as Wikipedia, which can be uti-lized in various NLP tasks, such as text understanding, question answer and in-

formation retrieval. The main challenge of entity linking is name ambiguity and context dependencies. In this paper, we propose 

a long short-term memory recur-rent neural network (LSTM-CNN) model for entity disambiguation, which inte-grates LSTM-

CNN and sparse features such as link-popularity and PageRank values extracted from the whole Wikipedia. The CNN part 

extracts high-level phrase representations from words, which can reduce noise caused by noisy mentions. The LSTM part can 

obtain sentence representation from phrase repre-sentations. We train our model with the dump of Wikipedia, and demonstrate 

pre-cision, recall and F1 scores of our model on several datasets, showing significant performance improvement over 

conventional LSTM-CNN models. 

Keyword  Entity linking，Entity disambiguation，LSTM，CNN 

 

1. Introduction 

1.1. Entity disambiguation 

With the development of Internet and the rapid increase 

of Internet information resource, entities linking and 

disambiguation have become a fundamental task for 

information retrieval.  An entity is an objective thing in 

the real world, which includes not only specific things such 

as names, place names, organization names, but also 

abstract things such as concepts and relationships. 

However, a named entity may have multiple names, and 

names can represent several different entities. Entity dis -

ambiguation refers to the process of linking entities in the 

document to entries in a specific knowledge base, such as 

Wikipedia.  

With millions of active online users, hundreds of 

millions of new web postings are published every day, 

which contain billions of mentions of entities. Connecting 

web data with a knowledge base is beneficial to annotate a 

large number of raw and often noisy texts on the web, 

which helps readers to deepen their understanding of the 

entity, thus helping people or computers to better 

understand and deal with the texts.  

The main challenge of the entity disambiguation lies in 

two aspects, namely multiple names of entities and word 

polysemy. Multi-name refers to an entity that has multiple 

alias. Word polysemy means that a mention can refer to 

more than one entity. For example,  as we can see in Figure 

1, given a sentence: "Eclipse is written mostly in Java and 

it may also be used to develop applications in other 

programming languages via plug-ins, including C++, C#, 

JavaScript, Python, Ruby ." How can a computer 

distinguish what the Eclipse, Python  and Ruby means? How 

does it know the Ruby is a programming language or a kind 

of jewel?  

  

Figure 1 Illustration of entity disambiguation task 

The aim of entity disambiguation is to discover mentions 

of entities within a text and to link them to the most 

suitable entries in a reference knowledge base.  

1.2. RNN and LSTM 

The Recurrent Neural Network (RNN) [2] sequence 

model learns mapping of an input sequence to an output 

sequence with intermediate hidden states estimated by a 

continuous vector. It analyzes a text word-by-word and 

stores the semantics of all the previous texts in a fixed-

sized hidden layer. The advantage of RNN is the ability to 

better capture the contextual information, which could be 

beneficial to capture semantics of long texts. The basic 

RNN is difficult to train because of the  problem of the so-

called vanishing gradient. The gradient signals used to 

train the network are often close to Zero (“vanishing”) or 

divergent (“explosion”) because it propagated back 



 

 

through time steps during learning [18]. LSTM is widely 

used in NLP since it can deal with arbitrary-length 

sequences of input. It introduces a memory cell and solves 

the problem of exploding and vanishing gradients in RNN. 

The LSTM model and its different variants have achieved 

impressive performance in different sequence learning 

problems in speech, image, music and text analysis, where 

it is useful in capturing long-range dependencies in 

sequences [19]. 

1.3. CNN 

Convolutional Neural Network (CNN) [8] have been 

accredited for major breakthroughs in image classification 

and are the core of most of recent computer vision systems. 

But we can also use CNNs in NLP tasks. Instead of image 

pixels, the input to most of NLP tasks are sentences or 

documents represented as a matrix by word embeddings 

like word2vec. The convolutional layers apply one-

dimensional filters across each row of features in the 

sentence matrix to obtain high-level representations [1]. 

With a long sentence, computation will be slow and 

expensive. Convolutional filters can learn good 

representations automatically, without representing the 

whole vocabulary, which can speed up the training process . 

1.4. Task 

Given a text which contains several mentions of entities 

which are identified in advance and a knowledge base 

containing a set of entities, the goal of entity linking is to 

map each textual entity mention to its corresponding entity 

in the knowledge base [20]. The process can be divided into 

two steps: 

 Candidate generation: The entity linking system 

tries to find all possible entities which a mention 

may refer to in the entity set of the knowledge base. 

 Candidate ranking : For candidate entities of a 

mention, the entity linking system needs to 

incorporate different kinds of evidence to rank the 

candidate entities and find the entity which is 

mentioned. This is the most important part of entity 

linking. 

1.5. Our contribution 

In this paper, we propose a deep learning model which 

combines LSTM-CNN and sparse features such as 

PageRank and link-popularity extracted from the whole 

Wikipedia dump.   

The rest of the paper is organized as follows. Section 2 

presents a brief review of related work. Section 3 discusses 

the architecture of our framework of integrating LSTM-

CNN model and sparse features. Section 4 presents 

experimental results on performance comparison.  Section 

5 concludes this paper. 

2. Related Work 

Existing entity disambiguation methods are mainly 

based on machine learning methods, graph-based methods, 

probabilistic methods, unsupervised learning method, and 

integration method. Ganea et al. proposed a probabilistic 

bag-of-hyperlinks model which improves bag-of-words 

model with arising probabilities of entities in hyperlinks in 

context, but they considered only pairwise potentials, 

which will be weak when a text has many entities . Han et 

al. [5] proposed a graph-based method which can model 

and exploit the global interdependence between different 

entity linking decisions, which only considered relation 

between entities, not the meaning of context . Shen et al. 

[19] resented a novel framework which leverages the rich 

semantic information derived from Wikipedia and the 

taxonomy of the knowledge base to deal with the entity 

linking task.  

Deep learning models have recently made remarkable 

progress in various NLP tasks. For example, word 

embedding [12], question answering [21], sentiment 

analysis [22] and so on. Lai et al.  [9] proposed a Recurrent 

Convolutional Neural Network (RCNN) and appl ied it to 

the task of text classification, which shows a good result 

for different types of datasets in English and Chinese. 

Ouyang, Liubo, et al.  [15] presented a hybrid model of B-

LSTM and showed reasonable results on labeled People’s 

Daily in January 1998 dataset in Chinese.  

From the above description, we can see that the 

traditional way for entity linking is mainly using 

probabilistic or graph model, where the meaning of context 

is not eagerly captured. On the other hand, with the pre-

trained word embeddings, neural networks demonstra te 

their great performance in many NLP tasks and  show great 

results in context comprehension. In the following sections, 

we describe how we apply an LSTM-CNN to entity linking 

task, and augment with sparse features.  

3. Proposed Method 

In this section, we first describe our input formation and 

introduce the full architecture of our LSTM-CNN. Then we 

describe each layer in detail. Finally, we introduce a 

techniques to avoid overfitting in our model .  



 

 

An overall illustration of our architecture is shown in 

Figure 2.  The full model is composed of several sub -

models, which are trained on a sub-dataset extracted from 

Wikipedia-dump. We divide the dataset into three parts: 

mention part, original text part, target text part. As the 

original text and target text are long, we add the LSTM-

CNN layer in our text sub-model. Figure 3 shows the 

function of the three kinds of neural network layers. CNN 

extracts high-level phrase representations from words, 

which can reduce noise caused by  noisy mentions. LSTM 

can obtain sentence repre-sentation from phrase 

representations. The last sigmoid layer makes the entity 

dis-ambiguation task into a binary classification task. 

 

Figure 3 The structure of text sub-model 

3.1. Pre-training Word Embeddings 

Word embeddings are a type of word representation that 

allows words with similar meaning to have a similar 

representation. Distributed representations of words in a 

vector space help learning algorithms to ach ieve better 

performance in natural language processing tasks by 

grouping similar words. Traditional representations, such 

as one-hot representation, will lead to the curse of 

dimensionality. Recent research shows that neural 

networks like word2vec or GloVe can converge to a better 

local minima with suitable unsupervised pre-training 

vectors [13]. 

In this paper, we use the publicly available GloVe 

vectors that were provided by Pennington et al.[17]. GloVe 

is an unsupervised learning algorithm for obtaining vector 

representations for words. Training is performed on 

aggregated global word-word co-occurrence statistics from 

a corpus, and the resulting representations showcase 

interesting linear substructures of the word vector space .  

3.2. CNN 

As we introduced early in this paper, in order to generate 

a feature map, the convolution layer will take a filter (an 

array of weights) and slide it over the sentence matrix. For 

this task, we use a 1D convolutional layer. The size of 

convolutional filters and the number of kernel  cores are 

important parameters. 

3.2.1. Activation units 

The purpose of the activation unit is to introduce non -

linear function to a system that just has been computing 

linear operations in the convolutional neural layers , to 

learn non-linear decision boundaries. The choice of the 

activation unit has been shown to affect the convergence 

rate and the quality of the obtained solution. The rectified 

linear unit (ReLu) has become very popular in the last few 

years. It was found to work far better because the network 

is able to train much faster without making a signi ficant 

difference to the accuracy. The purpose of the activation 

unit is to introduce non-linear function to a system that just 

has been computing linear operations in the convolutional 

neural layers, to learn non-linear decision boundaries. The 

Figure 2 full architecture  



 

 

choice of the activation unit has been shown to affect the 

convergence rate and the quality of the obtained solution. 

The rectified linear unit (ReLu) has become very popular 

in the last few years. It was found to work far better 

because the network is able to train  much faster without 

making a significant difference to the accuracy  [14]. In this 

paper, we will also use ReLu as our activation unit for CNN. 

It computes the function  𝑓(𝑥) = 𝑚𝑎𝑥 (0 , 𝑥) to ensure that 

feature maps are always positive. 

3.2.2. Pooling 

The output from the convolutional layer is then passed 

to the pooling layer, whose function is to progressively 

reduce the spatial size of the representation, and to reduce 

the number of parameters and amount of computation in the 

network, hence controlling overfitting. The max pooling 

we are using is the most commonly used, applying a max 

filter to non-overlapping sub-regions of the initial 

representation. For each of the regions represented by the 

filter, max pooling will take the maximum of that region 

and create a new output matrix where each element is the 

maximum of a region in the original input.  

3.3. LSTM 

As we mentioned earlier, RNN suffer from the problem 

of vanishing gradients. It can be resolved by using LSTM 

blocks instead of sigmoid cells in the hidden layer s. The 

gates of LSTM blocks are a way to optionally let 

information through, which can choose to retain their 

memory over arbitrary periods of time or forget if 

necessary, which is shown in Figure 4 .   

 

Figure 4 Structure of LSTM  

We use the B-LSTM network [3] to acquire bidirectional  

word sequence for making predictions . The bidirectional 

LSTM can present each training sequence forwards and 

backwards to two separate recurrent nets, both of  which are 

connected to the same output layer.  This means that for 

every point in a given sequence, the network has complete, 

sequential information about all points before and after it.  

There is no information flow between the forward and 

backward hidden layers, which ensures that the expansion 

graph is non cyclic. The structure of BLSTM is shown in 

Figure 5. We add 0.2 dropout to BLSTM layer to prevent it 

from overfitting. 

 

Figure 5 Structure of BLSTM  

3.4. Sparse Feature 

3.4.1. PageRank 

PageRank is proposed by Lawrence Page and Sergey 

Brin in 1999, which is a method for ranking nodes in a 

graph according to their relative structural  importance [16]. 

The main idea of PageRank is that  whenever a link from 𝑉𝑖 

to 𝑉𝑗  exists in a network graph, a vote from node i to node 

j is produced, and the rank of node j increases,  which makes 

pages important when it is linked by other important pages.  

The PageRank score of a page A is given as follows：  

𝑃𝑅(𝐴) = (1 − 𝑑) + 𝑑(
𝑃𝑅(𝑇1)

𝐶(𝑇1)
+ ⋯ +

𝑃𝑅(𝑇𝑛)

𝐶(𝑇𝑛)
) 

Here, pages 𝑇1...  𝑇𝑛 point to page A. C(A) is defined as 

the number of links going out from page A. In entity linking, 

important entities are considered to be more frequently  

mentioned. Thus we introduce PageRank scores computed 

from links on entity pages in Wikipedia as a sparse feature . 

3.4.2. Link-popularity 

Entity popularity found to be an effective feature in 

entity linking, which is the popularity of a candidate entity 

with regard to its entity mention, defined as the prior 

probability of the appearance of a  candidate entity given 

the entity mention. Each mention has a number of 

candidates, while each candidate has different popularity. 

For example, for the anchor Walt Disney we might consider 

as candidates both the person Walt Disney  and the film Walt 

Disney. While both are valid candidates worthy of 

consideration, the person Walt Disney appears more 

frequently, so we can say it is more likely to be men tioned 

in documents. 

3.5. Optimization Algorithm 

In this paper, we use Adam [9] which is an optimization 

algorithm that can be used instead of the classical 

stochastic gradient descent procedure to update network 

weights in iteration on training data. The method computes 

individual adaptive learning rates for different parameters 

from estimates of first and second moments of the gradients; 

the name Adam is derived from adaptive moment 



 

 

estimation. 

3.5.1. Early Stopping 

When training neural networks, numerous decisions 

need to be made regarding the settings (hyper-parameters) 

used, in order to obtain good performance.  But we often do 

not know how many full passes of the data set (epochs) 

should be used. If we use too many epochs, the model might 

become overfit. With early stopping we need not to set this 

value manually. Early stopping rules have been employed 

in various machine learning methods, with varying 

amounts of theoretical foundation.  In this paper we set it 

to supervise the accuracy of the validation set. 

3.5.2. Sigmoid 

The sigmoid function is used for the two-class logistic 

regression, defined by the formula: 

𝑆(𝑥)  =  
𝑒𝑥

𝑒𝑥 + 1
 

The sigmoid classifier ’s output is a value between 0 and 

1, having a characteristic "S"-shaped curve. In the entity 

linking task, we just need to classify our result into true or 

false. So we just need to use the sigmoid function as our 

classifier.  

 

Figure 6 "S"-shaped curve  

4. Experiment and Evaluation 

4.1. Dataset 

We train our model on a sub-dataset of Wikipedia dump 

exported on Nov. 3rd, 2017. We extracted all inner-links 

from the dump. Then, we select 6000 pairs of inner-links 

randomly as our positive examples. Then we select top n (n 

= 5, 13, 20, 50) ambiguous pages as negative examples by 

searching the mention in Wikipedia’s page titles with  

Apache Lucene, which returns the most similar entity by 

its algorithm, consisting of  a combination of the Vector 

Space Model (VSM) of Information Retrieval and the 

Boolean model. When the original text part and target text 

part are too long, we extract the first 200 words of long 

text as our model’s input. We train our model in a 128 batch 

size and 30 epochs with early stopping. We evaluate our 

model on the following datasets:  

 AQUAINT This dataset, introduced by Milne and 

Witten [11], contains documents from a news 

corpus from the Xinhua News Service, the New 

York Times and the Associated Press. It has 50 

articles with over 700 mentions. Each art icle has 14 

mentions in average.  

 KORE50 This dataset is a subset of the larger 

AIDA dataset, which is introduced by Hoffart et al.  

[7]. It has 50 hand-crafted, difficult sentences 

containing a large number of very ambiguous 

mentions. 

4.2. Experiment Settings 

For the AQUAINT dataset, we also use Lucene to obtain 

top n (n = 5, 13, 20, 50) candidates to do our experiment. 

When the correct entities are not retrieved, we add them 

manually. However, we find that the top-10 candidates can 

already retrieve 84% correct entities from Wikipedia. So 

we choose our 1:10 result for comparing with other models.  

We use the Gerbil testing platform [24] version 1.2.5 

with the Disambiguate to Knowledge Base (D2KB) task, 

which is focused on the input an annotator obtains and the 

output that is expected. We run additional experiments that 

allow us to com-pare against more recent approaches, such 

as:  

 The AGDISTIS is a novel NED approach and 

framework, achieved by combining the HITS 

algorithm with label expansion and string similarity 

measures [23]. 

 The AIDA is a performant graph-based model, 

placing emphasis on state-of-the-art ranking of 

candidate entity sets [6].  

 DBpedia Spotlight  is one of the first semantic 

approaches [12], published in 2011. This 

framework combines NER and NED approaches, 

relying on DBpedia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

We evaluate the quality of entity linking systems by 

measuring standard metrics precision, recall and F1 scores .  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑒𝑛𝑡𝑖𝑡𝑦| ∩ |𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑦|

|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑒𝑛𝑡𝑖𝑦|
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑒𝑛𝑡𝑖𝑡𝑦| ∩ |𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑦|

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑒𝑛𝑡𝑖𝑡𝑦|
 

𝐹1 =
2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

To evaluate micro-averaged F1@MI, we sampled four 



 

 

training datasets from the Wikipedia dump. The proportion 

of positive samples to negative samples is  changed as 1:5, 

1:10, 1:20, 1:50. We also test on the AQUAINT dataset 

with a mention to 5, 10, 20, and 50 candidates. The average 

result of our experiment is our F1@MI.  

First, we compare (1) our model LSTM-CNN combined 

with sparse features (we call LCS),  (2) the LSTM-CNN 

model which contains only the convolutional and BLSTM 

layers (LSTM-CNN), and (3) the model which contains 

only BLSTM (LSTM). The AQUAINT dataset is used here. 

The results are shown in Table 1, in which our proposing 

model LCS is showing the highest F1-score, 0.28-0.35 

points higher than LSTM-CNN and LSTM. We note that 

LSTM, the LSTM-CNN model that only contains BLSTM, 

is quite time-consuming than the other models.

 

Table 1 Comparing F1@MI of LCS ,LSTM-CNN, and 

LSTM models 

In the next experiment, we compare our model LCS with 

AGDISTIS, AIDA, and DBpedia Spotlight, by the 1:10 

dataset of AQUAINT. The results are shown in Table 1, 

where the results of the models except LCS are provided 

by the Gerbil testing plat-form [23]. 

AQUAINT Micro F1 
Micro 

Precision 

Micro 

Recall 

AGDISTIS 0.5213 0.5213 0.5213 

AIDA 0.5543 0.6068 0.5089 

DBpedia 

Spotlight 
0.5252 0.7584 0.4017 

LCS 0.7090 0.7090 0.7090 

Table 2 Micro Precision, F1, recall scores reported by Gerbil 

for AQUAINT dataset compared with LSTM-CNN combining 

Sparse Feature model 

Finally, we compare our model LCS with AGDISTIS, 

AIDA, and DBpedia Spot-light, on the 1:10 dataset of 

KORE50. The results are shown in Table 3, where the 

results other than our LCS model are again provided by the 

Gerbil testing platform. 

KORE50 Micro F1 
Micro 

Precision 

Micro 

Recall 

AGDISTIS 0.3264 0.3264 0.3264 

AIDA 0.6884 0.7197 0.6597 

DBpedia 

Spotlight 
0.5214 0.5929 0.4653 

LCS 0.6923 0.6923 0.6923 

Table 3 Micro Precision, F1, recall scores reported by Gerbil 

for KORE50 dataset compared with LSTM-CNN combining Sparse 

Feature model 

4.3. Results and Discussion 

From the results, we can clearly see that our LCS model 

has a significant improvement by incorporating the sparse 

features to the LSTM-CNN model. On the AQUAINT 

dataset, DBpedia Spotlight shows the highest precision, but 

our LCS mod-el outperforms on recall and F1-score. For 

the KORE50 dataset, we can see that AIDA has the highest 

precision, but it has a drawback on recall, so its F1 -score 

is falling behind of our model. For a practical example, 

there is a sentence “While Apple is an electronics company, 

Mango is a clothing one and Orange is a communication 

one.” in KORE50. We need to link the Mango  to the entity 

in knowledge base. The result of these method are shown 

in table 4. We can see the AGDISTIS all link to the fruit 

mango, the AIDA link it to a company but not mango. Our 

method link the mention to the Mango Company.  

Method Result 

AGDISTIS Mango 

AIDA Island_Records 

DBpedia Spotlight Mango 

LCS Mango_(clothing)  

Table 4 Result of four methods on the mention 

"Mango" 

Overall, our model LCS which combines LSTM-CNN 

with sparse features model showed the best performance 

among the compared models, in both AQUAINT and 

KORE50 datasets. 

5. Conclusion and Future Work 

In this paper, we proposed an entity disambiguation 

model LCS, which integrates the neural network model 

LSTM-CNN and the sparse features of PageRank and 

popularity in a novel way.  Our evaluation results show 

that our model realized significant superiorit y in accuracy 

over conventional LSTM-CNN models, as well as 

traditional approaches.  

0.7147 0.6545
0.5891 0.5392

0.4037
0.3038

0.2353 0.1897

0.4151
0.3195

0.2668 0.1926

0

0.2

0.4

0.6

0.8

1:5 1:10 1:20 1:50

LCS-F1@MI

LSTM-CNN-F1@MI

LSTM-F1@MI



 

 

In future, we plan to enrich the model by incorporating 

more feature s based various contexts, and evaluate our 

model on more datasets. 

 

Reference 
[1] Blunsom, Phil, E.Grefenstette, and N. 
Kalchbrenner. "A convolutional neural network for 
modelling sentences." Proc. 52nd Annual Meeting of 
the Association for Computational Linguistics, 2014 . 

[2] Graves, A. (2012). Supervised sequence 
labelling. In Supervised sequence labelling with 
recurrent neural networks (pp. 5-13). Springer, Berlin, 
Heidelberg. 

[3] Graves, A., Jaitly, N., & Mohamed, A. R. (2013, 
December). Hybrid speech recognition with deep 
bidirectional LSTM. In Automatic Speech 
Recognition and Understanding (ASRU), 2013 IEEE 
Workshop on (pp. 273-278). IEEE. 

[4] Ganea, Octavian-Eugen, et al. "Probabilistic 
bag-of-hyperlinks model for entity linking." Proc . 
25th Int. Conf. World Wide Web, 2016. 

[5] Han, Xianpei, Le Sun, and Jun Zhao. "Collective 
entity linking in web text: a graph-based method." 
Proc. 34th Int. ACM SIGIR Conf. on Research and 
Development in Information Retrieval, 2011. 

[6] Hoffart, Johannes, et al. "Robust disambiguation 
of named entities in text." Proc. Conf. on Empirical 
Methods in Natural Language Processing, Association 
for Computational Linguistics, 2011.  

[7] Hoffart, J., Seufert, S., Nguyen, D. B., Theobald, 
M., & Weikum, G. “KORE: keyphrase overlap 
relatedness for entity disambiguation.” Proc. 21st 
ACM Int. Conf.  Information and Knowledge 
Management (CIKM), pp. 545-554, 2012. 

[8] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey 
E. Hinton. "Imagenet classification with deep 
convolutional neural networks." Advances in neural 
information processing systems. 2012.  

[9] Kingma, Diederik, and Jimmy Ba. “Adam: A 
method for stochastic optimization,” in Proceedings 
of International Conference on Learning 
Representations Workshop, pp. 1–15, 2015 

[10] Lai, Siwei, et al. "Recurrent Convolutional 
Neural Networks for Text Classification." AAAI. Vol. 
333. 2015. 

[11] Milne, David, and Ian H. Witten. "Learning to 
link with wikipedia." Proceedings of the 17th ACM 
conference on Information and knowledge 
management. ACM, 2008. 

[12] Mendes, P. N., M. Jakob, A. Garcia-Silva, and C. 
Bizer. “DBpedia Spotlight: Shedding Light on the 
Web of Documents.” Proc. 7th Int. Conf. Semantic 
Systems (I-Semantics), 2011. 

[13] Mikolov, Tomas, et al. "Distributed 
representations of words and phrases and their 
compositionality." Advances in Neural Information 
Processing Systems. 2013. 

[14] Nair, V., & Hinton, G. E “Rectified linear units 
improve restricted boltzmann machines.” Proc. 27th 
Int. Conf.  Machine Learning (ICML-10), pp. 807-
814, 2010. 

[15] Ouyang, Liubo, et al. "Chinese Named Entity 
Recognition Based on B-LSTM Neural Network with 

Additional Features." International Conference on 
Security, Privacy and Anonymity in Computation, 
Communication and Storage. Springer, Cham, 2017.  

[16]  Page, Lawrence, et al. The PageRank citation 
ranking: Bringing order to the web. Stanford InfoLab, 
1999. 

[17]  Pennington, J., R.  Socher, and C. Manning. 
"Glove: Global vectors for word representation." Proc. 
2014 Conference on Empirical Mmethods in Natural 
Language Processing (EMNLP). 2014. 

[18]  Pichotta, Karl, and Raymond J. Mooney. 
"Learning Statistical Scripts with LSTM Recurrent 
Neural Networks." AAAI. 2016.  

[19]  Shen, Wei, et al. "Linden: linking named entities 
with knowledge base via semantic knowledge." Proc . 
21st Int. Conf. World Wide Web, ACM, 2012. 

[20]  Shen, Wei, Jianyong Wang, and Jiawei Han. 
"Entity linking with a knowledge base: Issues, 
techniques, and solutions." IEEE Trans. Knowledge 
and Data Engineering 27.2 (2015): 443-460. 

[21]  Sukhbaatar, Sainbayar, Jason Weston, and Rob 
Fergus. "End-to-end memory networks." Advances in 
Neural Information Processing Systems. 2015. 

[22]  Tang, Duyu, Bing Qin, and Ting Liu. "Learning 
Semantic Representations of Users and Products for 
Document Level Sentiment Classification." ACL (1). 
2015.  

[23]  Usbeck, Ricardo, et al. “AGDISTIS-graph-based 
disambiguation of named entities using linked data. ” 
Int.  Semantic Web Conf., Springer LNCS, 2014 

[24]  Usbeck, Ricardo, et al. “GERBIL: general entity 
annotator benchmarking framework." Proc .  24th Int. 
l Conf. World Wide Web”, 2015. 

[25]  Yosef, Mohamed Amir, et al. "Aida: An online 
tool for accurate disambiguation of named entities in 
text and tables." Proceedings of the VLDB 
Endowment 4.12, 2011. 

[26]  Zhou, Qianrong, et al. "A hierarchical lstm 
model for joint tasks." China National Conference on 
Chinese Computational Linguistics. Springer 
International Publishing, 2016. 

 


