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Abstract Selection of good locations in a map is an indispensable function in many applications. To select specific

locations, we have to specify detailed selection criteria. However, it is not easy especially for users of mobile devices.

Therefore, we used an idea of skyline queries, which are known to be easy and effective to retrieve interesting data

from a database. In our previous work, we have proposed area skyline query that selects good locations in a map.

However, the query is not fast enough for handling ”big data.” We simplify and revise the algorithm of the query

in this paper by using MapReduce framework so that we can use it for big data. Experiments’ results demonstrate

that the performance and scalability are superior to previous area skyline algorithm and can handle big data.
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1. Introduction

Many people are using GPS equipped mobile devices. For

utilizing the GPS function, there are many map applications

for mobile devices. Selection of good locations is an indis-

pensable function for such map applications. In general, we

have to specify detailed selection criteria to select specific lo-

cations. However, it is not easy especially for users of mobile

devices. Therefore, we used an idea of skyline queries, which

are widely used in information retrieval.

Skyline Query

In general, a good location is close to train stations, shop-

ping malls, and sightseeing spots, etc. Furthermore, it should

be far away from the facilities such as factories, noise sources,

etc. Skyline query [5] is known to be effective to retrieve in-

teresting data from a database. Specifically, given a set of

points p1, p2, ..., pn, the skyline query returns a small num-

ber of points P, each point pi ∈ P is not dominated by other

points in the database.

A skyline example is demonstrated in Table 1 and Figure 1.

Table 1 shows the reference price of some hotels and the dis-

tance between hotels and somewhere where customers prefer

to visit such as sightseeing spots or coast, etc. According to

these two numerical attributes of the hotels, we can retrieve

the skyline objects which could help customers to make a

relatively wise choice. In general, customers would like to

choose the hotel with lower price and smaller distance.

ID Price Distance

h1 3 8

h2 5 4

h3 4 3

h4 9 2

h5 7 3

Table 1 A Hotel Example

In Figure 1, {h1, h3, h4} are the skyline objects. The price

and distance are smaller than other hotels. In other words,

skyline objects {h1, h3, h4} are not dominated each other. In

addition, h2 and h5 are dominated by h3.

Figure 1 Conventional Skyline Example

A number of algorithms which have been recorded in

[5], [7], [11], [15], [21] are effective to compute skyline objects

adequately. However, most of the existing skyline algorithms

have not been devised for spatial data and thus do not con-

sider spatial relationships between objects. So it is difficult



for skyline query to calculate two-dimensional data such as

locations.

Spatial Skyline Query

Figure 2 is an example of a map. In the example, star

marks, triangle marks, and square marks are places of fa-

cilities. We annotate “+” mark for the preferable facilities

such as sightseeing spots for a tourist and “−” mark for the

unpreferable facilities such as noisy factories. Star marks,

denoted as F1+ = {f1+1 , f1
+
2 , f1

+
3 }, and triangle marks, de-

noted as F2+ = {f2+1 , f2
+
2 , f2

+
3 }, are preferable facilities

and square marks, denoted as F3− = {f3−1 , f3
−
2 , f3

−
3 }, are

unpreferable facilities.

Figure 2 Some Facilities in a Map

Table 2 shows the closest distances between the candidate

points and facilities. For example, f1+1 , f2
+
1 , f3

−
3 are the

closest facilities to the candidate point p1, which the dis-

tance are 3, 5 and 10 respectively. We multiply -1 for each

distance value of the unpreferable facilities, so that we can

say that the smaller value is better. In the table, point p1

dominates p2. p3 is not dominated by p1 and p2, since p3

is closer to F2+ than p1, p2 and farther to F3− than p2.

Note that the spatial skyline problem can be addressed by

conventional skyline algorithms after calculating Table 2.

Point F1+ F2+ F3+

p1 3 5 -10

p2 4 9 -7

p3 8 1 -8

Table 2 Distance Table

In some practical situations, the point set P does not exist.

It means we have to find a location where should be closer

to all preferable facilities and be far away to all unpreferable

facilities. In our previous work [2], we have proposed area

skyline query that selects good locations in a map to solve

such problems.

Area Skyline Query

Assume a traveler would like to choose a destination which

is closer to good touristic places and is far from unsafe places.

In the situation, we can define dominance relationship be-

tween two places say p1 and p2 as follows:

Definition 1.1. (Area Dominance) We divide a map into

n × n small square grids G = {g1,1, ..., gn,n}. A grid gi is

said to dominate another grid gj in a map if distance to the

nearest touristic place from gi is smaller than that of gj and

distance to the nearest unsafe place from gi is larger than

that of gj.

Definition 1.2. (Area Skyline) Area Skyline is a set of grids,

each of which is not dominated by another grid in a map.

Figure 3 Area Skyline Example

Figure 3 is an example of a map. In the map, shaded grids

are in the area skyline computed by the algorithm proposed

in [2], which we call it grid-based area skyline (GASKY).

Each shaded grid is not dominated by other grids. On the

other hand, the unshaded grids are the dominated grids, and

we can eliminate such grids from candidates.

By using area skyline queries, we can easily select good

areas from a map. However, the complexities of those area

skyline queries are much higher than conventional skyline

queries. The response time of area skyline query [2] increases

linearly with the number of facilities are growing. In this pa-

per, we simplify and revise the algorithm by using MapRe-

duce framework to reduce the response time of area skyline

query.

The rest of this paper is structured as follows. Section II

describes our MapReduce-based algorithm. Section III gives

an overview about related works on skyline queries, spatial

skyline queries, and parallel skyline query algorithms. The

experiments are conducted in section IV. Finally, some con-

clusions and directions for future work are reported in section

V.

2. Area Skyline on MapReduce

In this section, we propose a novel algorithm which is based

on MapReduce framework, called “MRGASKY”, to reduce

the response time of area skyline query.

Division of Grids

We are focused on using a grid structure to divide a map



into n × n grids on average for simplicity. In order to fa-

cilitate the distinction between different grids, we give each

grid an unique ID from bottom-left g1,1 to top-right gn,n (see

Figure 3). We assume that the facilities inside the grids can

be represented by the grids as the grids are small enough.

MRGASKY Algorithm

Our proposed algorithm consists of following two steps:

Step1. Map function computes the distance to the closest

facilities in the same row:

Step1.1 The Map function reads girds in the i-th row from

left and right respectively to compute the distance. We as-

sume that the value of a grid is infinite unless the first facility

is encountered. And the distance of the grid is considered

as 0 when the facility is encountered. Then the next grid is

based on the previous grid plus one until the next facility is

encountered. For example, f1+1 in 7-th row of Figure 3 is

illustrated in Figure 4.

Figure 4 Example of Step 1.1 Process

Step1.2 We select a minimum value of calculated two dis-

tances as the final value of the distance, as illustrated in

Figure 5.

Figure 5 Example of Step 1.2 Process

The algorithm of Map function showed in Figure 6. The

input data stored in Hadoop distributed file system (HDFS)

are formed as a binary image. Specifically, the binary im-

age of size n × n maintained in an array mi,j(1 <= i, j <= n).

mi,j = 1 represents that the grid gi,j is a facility andmi,j = 0

when there is not any facility inside gi,j . The output of Map

function are the key-value pairs. The keys are the column

IDs and row IDs of gi,j , and the values are the distances

calculated in step 1.

Figure 6 Algorithm of Step 1 Process

Figure 7 shows the results of type F1+ of step 1 process.

The distance of every grid in the same row is computed in

Figure 7 Example of Step 1 Process

this step.

Step2. Again, we compute Euclidean Distance to the near-

est facility along with column-wise in Reduce function:

Step2.1 The Reduce function reads grids in the same col-

umn based on the results of step 1(see Figure 7). We map

every i-th column to a two-dimensional coordinate where x-

axis represents the grids which are sorted from bottom to

top, and y-axis represents the distance of step 1. The points

are saved in a stack. It should be clear that each column

has its own corresponding stack. We bisect the adjacent two

points pi, pj , and name the intersection of the perpendicular

bisector line pipj and x-axis as xij . xij can be computed by

formula (1):

xij =
(y2

j − y2
i ) + (x2

j − x2
i )

2(xj − xi)
(1)

where (xi, yi) and (xj , yj) are the coordinates of point pi and

pj . If xij > xjk (i < j < k), the point pj then be deleted

from stack, otherwise point pj is stored into the stack. Figure

8 and 9 showed the two cases whether delete pj or not.

Figure 8 Example of deleting point pj

Figure 10 showed an example of 5-th column in Figure 7 of

step 2.1 process. x12 is larger than x23, so we delete point p2

from the stack. And then we compare x13 and x34. Finally,

all the points except p3 and p7 are deleted from the stack.

Step2.2 For every i-th column, we calculate the Euclidean

Distance of deleted points (e.g., p1, p2, p4, p5, p6, p8 in Figure

11). Specifically, we determine proximate intervals [14] of left

points (e.g., p3 and p7) of step2.1. We bisect p3 and p7, the

intersection of p3p7 and the x-axis is x37 = 5. It means the



Figure 9 Example of maintaining point pj

Figure 10 Example of Step 2.1 Process

point p3 dominate points p1, p2, p4 and p5. Point p7 domi-

nate points p6, p8. Figure 11 showed the two intervals of 5-th

column of Figure 7. Then the Euclidean Distance of every

grid can be calculated in the obvious way.

Figure 11 Example of Step 2.2 Process

The algorithm of Reduce function showed in Figure 12.

The input data of this phase are the key-value pairs which

the keys are column IDs and the values, are sorted distances

computed in Map function. The output data are area skyline

objects such as the shaded grids showed in Figure 3.

Figure 13 shows the results of type F1+ of step 2 process.

Intuitively, the grids with the same color are closest to the

corresponding facility of F1+ type. And the distances of

white girds to f1+1 and f1+3 are same.

Facility type F2+ and F3− can be calculated by the same

process in MapReduce framework. Figure 14 demonstrate

MapReduce data flow of our proposed algorithm of F1+ and

F2+. The input data stored in HDFS are formed as fa-

cility type, row ID, the value of binary image in the same

row. Then the data are sent to Map function by key-value

pairs. The outputs of Map function produced new key-value

pairs. The intermediate key-value pairs are then grouped

and sorted with the same intermediate key. After sorted &

shuffle phase, the values of the same column are grouped

Figure 12 Algorithm of Step 2 Process

together. Then the grouped data are sent to Reduce func-

tion. Reduce function calculate the Euclidean Distance to

the closest facility in column wise.

Figure 13 Example of Step 2 Process

3. Experiments

In this section, we conducted on comparing the perfor-

mance of GASKY and MRGASKY algorithms. Experiments

of GASKY is conducted on Linux operating system with In-

tel Core i7 3.40GHz processor with 4GB of RAM. And us-

ing this PC as one of four compute nodes. The other three

nodes conduct on Linux operating system with Intel Core 2

3.16GHz and 2.13GHz processors, 4GB RAM. MRGASKY

algorithm is implemented on Hadoop 2.5.2. Also, we used

synthetic datasets to evaluate our algorithm. Each experi-

ment is repeated ten times, and we evaluated average pro-

cessing time as the performance indicator. Since the step of

removing dominated areas for both GASKY and MRGASKY

algorithms is same, and the performance of this step is not

different from other conventional skyline algorithms, we ex-

cluded it from the processing time calculation.

Effect on Grid Number

In these experiments, we used two sets of synthetic



Figure 14 MapReduce data flow of MRGASKY algorithm

datasets, said DS A1 and DS A2. DS A1 consists of 32 ob-

jects, and four types of facilities which two types are prefer-

able facilities and the other 2 are unpreferable facilities. We

varied number of grids with 32 × 32, 64 × 64, 128 × 128,

512 × 512 and 1024 × 1024. For DS A2, we fixed the num-

ber of facility types as 2 and fixed the number of objects as

2000. We varied the number of grids as 100× 100, 500× 500

and 1000× 1000. We compared the effect on grid number in

Figure 15 and Figure 16.

In Figure 15, we can observe that the processing time of

GASKY increases faster than MRGASKY when the number

of grids is larger than 256× 256. The reason is GASKY tak-

ing more time in min−max computation when the number

of grids increased.

In Figure 16, when we raised the number of objects to

2000, we can observe that the processing time of GASKY in-

creases faster than MRGASKY. The reason is that GASKY

spent more time on building Voronoi Diagram andmin−max

computation. Thus MRGASKY has better scalability than

GASKY since grid number increasing.

Effect on Facility Types

For experiment DS B in Figure 17, we fixed the number

of objects and grids as 10000 and 128 × 128. Besides, we

varied the number of types to 2, 4, 6 and 8 respectively. And

the number of preferable facility types is set to be same as

the number of unpreferable facility types. Varying with the

number of types, the processing time of GASKY increases

linearly. The curve of MRGASKY is under GASKY and

tends to stable. This result illustrated that performance of

MRGASKY is also better than GASKY varying with facility

Figure 15 Processing time of DS A1

Figure 16 Processing time of DS A2

types.

Effect on Object Number

For the effect on object number, the experiment DS C in

Figure 18, we set the number of types as 2 and the grid

size as 128× 128. We raised the number of objects to 4000,

8000, 12000 and 16000. The results demonstrated that the

processing time of the proposed algorithm is much smaller



than previous works and and maintained stability enough to

handling ”big data”.

Figure 17 Processing time of DS B

Figure 18 Processing time of DS C

4. Related Works

Skyline Query

Skyline queries are focused on filtering out a set of points

from a large set of data points. The points which are not

dominated by other points are interesting. Skyline operator

is firstly proposed by Brozsonyi et al. [5]. They presented

two algorithms, say Block-Nested-Loops(BNL) and Divide-

and-Conquer (D&C). Furthermore, they also discussed B-

trees and R-trees on evaluating skyline queries. Chomicki et

al. proposed a skyline algorithm, Sort-Filter-Skyline (SFS),

based on presorting BNL [7]. Tan at al. presented two pro-

gressive algorithms, Bitmap and Index, to improve the per-

formance of skyline computing [18]. A widely used effective

algorithm nowadays, Brach and Bound Skyline (BBS), which

is based on nearest neighbor search was developed by Papa-

dias et al. [21].

Spatial Skyline Query

Spatial Skyline Queries (SSQ) was firstly proposed by

Sharifzadeh et al. [16]. Two algorithms are focused on static

query points, say B2S2 and V S2, and one algorithm is for

dynamic query points, say V CS2. Lots of literature proposed

that the distance between objects and surrounding facilities

should be considered as a parameter for selecting spatial ob-

jects [4], [8], [10], [12]. Based on previous work, You et al.

considered that sometimes the retrieved data points should

be far away from unpreferable facilities. So they proposed

the farthest spatial skyline queries which is an efficient pro-

gressive algorithm, say Branch-and-Bound Farthest Spatial

Skyline (BBFS), for exploiting spatial locality [22]. In [13],

Lin et al. considered that the retrieved data objects not

only should be close to desirable facilities but also should be

far from undesirable facilities by using EFFN algorithm. Dif-

ferent from previous work, Annisa et al. proposed a method,

Unfixed-Shape Areas Skyline (UASKY), which divided the

target area into several disjoint subareas by using Voronoi Di-

agram. The subareas may be further divided to sub-subareas

by other facility types. For each sub-subareas, they calcu-

lated the maximum and minimum distance to closest facility

for each F+ and F− in [1]. In [2], Annisa et al. proposed

a superior algorithm to UASKY, Grid-based Area Skyline

(GASKY), which divided the target area into several grids

on average. Then they used Voronoi Diagram to divide the

grids, and calculated the maximum and minimum distance

for selecting good locations.

MapReduce Based Query Processing

Distributed skyline computation for big data has received

more attention in recent years. K. Hose et al. provided a

good survey of skyline processing in highly distributed envi-

ronments [9]. Different from traditional more tightly-coupled

parallel platforms, Hadoop MapReduce is becoming more

attractive because of their simplicity. MapReduce is a pro-

gramming model and an associated implementation for pro-

cessing a massive volume of data. It is widely used for com-

puting skyline in recent years [6], [17], [24].

Zhang et al. designed three MapReduce based BNL (MR-

BNL), MapReduce based SFS (MR-SFS) and MapReduce

based Bitmap (MR-Bitmap) algorithms, for processing sky-

line queries [24]. The results outperformed conventional sky-

line algorithms. Chen et al. applied an angular data parti-

tion in the MapReduce-based solution for skyline query eval-

uation [6]. In [17], Siddique et al. proposed k-dominant sky-

line query computation in MapReduce Environment. In [20],

Wu et al. proposed a novel distributed skyline query pro-

cessing algorithm (DSL) that discovers skyline points pro-

gressively based on the grid structure. Zhang et al. adapted

skyline computation to the MapReduce framework, and they

recursively divided the dimensions of data into some parts on

a grid-based partitioning scheme [23]. However, few papers

focus on parallel spatial skyline queries , which motivated us

to propose an efficient algorithm for selecting good locations

by using MapReduce.

5. Conclusions

An area which is close to preferable facilities and far from

undesirable facilities are essential for various applications.



GASKY can help to find such areas which are not domi-

nated by another area. Our proposed MRGASKY is using

MapReduce to implement GASKY which has better perfor-

mance and scalability when increase grid number, facility

types and object number.

In addition to motivating example, some concrete exam-

ples which could utilize this method are:

• In the business field: suppose a real estate developer

would like to find a region to build a community. For attract-

ing customers, the community should be in an area that is

close to train stations, convenient stores, school, and should

be far from factories and open landfill. The proposed method

can help the real estate developer find the potential areas in

a map, thus reducing cost of surveying the whole areas.

• In the travel planning: when tourists travel to some

unfamiliar places or some countries, they would like to en-

joy as many local conditions and customs as possible in the

shortest possible time. So our method can recommend some

areas which are close to all those preferable local conditions

and customs.

This paper addresses a method to improve the performance

of area skyline query using grid data structure. The exper-

iments are conducted to demonstrate the effectiveness and

efficiency of the algorithms.

In future, we will consider selecting k−dominant areas and

utilizing some non-spatial properties such as price and pop-

ulation density, as additional parameters in our proposed

algorithm.
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