
DEIM Forum 2019 I6-1

A Privacy-preserving Query System Model using Fully Homomorphic

Encryption

medicine side effect query system as an example

Yusheng JIANG†, Tamotsu NOGUCHI††, Nobuyuki KANNO†††, and Hayato YAMANA††††

† Department of Computer Science and Communication Engineering, Graduate School of Fundamental

Science and Engineering, Waseda University

11F-06, Building 51, 3-4-1 Okubo, Shinjuku-ku, 169-8555 Tokyo, Japan

†† Bioinformatics Laboratory, Department of Mathematical Sciences, Pharmacology Education Research

Center, Meiji Pharmaceutical University

2-522-1 Noshio, Kiyose-shi, 204-8588 Tokyo, Japan

††† Regional Medicine Laboratory, Department of Clinical Pharmacy, Pharmacology Education Research

Center, Meiji Pharmaceutical University

2-522-1 Noshio, Kiyose-shi, 204-8588 Tokyo, Japan

†††† Department of Computer Science and Communication Engineering, School of Fundamental Science and

Engineering, Faculty of Science and Engineering, Waseda University

11F-05, Building 51, 3-4-1 Okubo, Shinjuku-ku, 169-8555 Tokyo, Japan

E-mail: †{amadeus,yamana}@yama.info.waseda.ac.jp, ††{noguchit,nkanno}@my-pharm.ac.jp

Abstract Privacy preservation during a search has become a serious problem in recent years. There is a need

to make sure that user queries that contain sensitive private information are not abused or misused by a third

party, including the search provider. One way to conduct a privacy-preserving search is to encrypt the user queries.

However, traditional encryption methods are only capable of protecting user privacy during a data transfer because

the query itself is decrypted at the query server. A query server is usually provided by an untrustworthy cloud

provider, and the exposure of data may therefore lead to the risk of a data breach. Fully homomorphic encryption

(FHE), being capable of conducting addition and multiplication over a ciphertext, naturally provides a solution

to this problem. Using FHE, the privacy of both the user queries and the database of the search provider can

be protected. In this paper, we propose a privacy-preserving query system model. We implemented the proposed

model on a real-world medicine side-effect query system. We applied a filtering prior to the query to reduce the

size of the database and used multi-threading to accelerate the search. The system was tested 10,000 times with a

random query over a database of 40,000 records of simulation data and completed 99.71% of the queries within 60

s, proving the real-world application of our system.

Key words privacy-preserving query, fully homomorphic encryption, secured query system

1 Introduction

As a quick and easy way to extract certain information

from the Internet, a search process is an important Internet

service. As improvements to search algorithms [1] and an up-

scaling of hardware features reach a turning point [2], search

service providers are now turning their attention to improv-

ing the search experience of users. One important aspect of

user satisfaction regarding a search is whether the private

information of the users is carefully protected and only used

for query-related purposes. Security issues in many global

companies including Facebook [3] and Google [4] are raising

awareness regarding the importance of personal information

security.

Because users want to hide their query content from leak-

ing to a third party or prevent misuse, they prefer to conduct

a “search in local ,” namely, they would like to access an en-

tire database of a search provider, and choose the information

they need. However, search providers hold their databases as

important assets, and do not want users to have full access.

Instead, they only want to show users a small portion [5].

A dilemma occurs between protecting the privacy of users



and “database’s privacy.” Thus, as a compromise, search

providers allow users to encrypt their query contents. How-

ever, this can only protect user data from leakage during a

transfer. Search providers, however, hold a secret key that

still can decrypt the contents of a user query. The contents

of user queries remain under the threat of leakage or mis-

use. A third party having access to the database of a search

provider, e.g., a cloud server provider, can access the contents

of a user query in decrypted form. In addition, untrustwor-

thy search providers may use such contents in ways other

than the intended query, e.g., selling the query history of the

users to a third party.

In Japan, which is a quickly aging society [6], medical care

is an important topic. According to official data [7], over

3.5 million elderly people over 65 years in age receive out-

patient treatment each year, and more than 0.9 million re-

ceived hospitalization treatment in 2014. When patients suf-

fer from side effects from a particular medicine, they usually

ask pharmacists for help. Although referring to the attached

documentation of a medicine is a way to find the potential

ingredient causing a side effect, situations exist in which the

attached documentation is insufficiently comprehensive. As

a supplementary empirical method, pharmacists may refer

to the medicinal history of other patients and find similar

situations, i.e., patients with the same gender, a similar age,

and who are taking at least one similar medicine and are

suffering from at least one similar symptom.

It is the responsibility of pharmacies to protect the medici-

nal history of their customers from a third party because such

information is private and sensitive. Our goal is to develop

a scheme to ensure that the queried data and full medicinal

history of the patient remain safe during the entire query

process. In this paper, we first introduce basic knowledge

related with fully homomorphic encryption (FHE), followed

by a brief review of related studies. We then describe our

system using detailed algorithms, and show the experiment

results.

2 Preliminaries

2. 1 Fully homomorphic encryption (FHE)

Under traditional encryption methods, decryption must be

performed prior to the calculations. Direct calculations over

a ciphertext are not supported. However, fully homomorphic

encryption (FHE) supports an arbitrary number of additions

and multiplications directly over a ciphertext.

FHE.Dec(FHE.Enc(a)⊕ FHE.Enc(b)) = a+ b

FHE.Dec(FHE.Enc(a)⊗ FHE.Enc(b)) = a× b
(1)

In (1), a, b ∈ Z, FHE.Dec and FHE.Enc are methods used

in FHE, and ⊕ and ⊗ are additions and multiplications over

a ciphertext in FHE.

The idea of homomorphic encryption (HE) was first in-

troduced in 1978 by Rivest el al. [8]. In 2009, Gentry intro-

duced a practical scheme for FHE implementation on arbi-

trary functions and a number of operations using an ideal

lattice [9]. In 2012, Brakerski, Gentry, and Vaikuntanathan

introduced the BGV scheme using ring-learning with errors

(RLWE) [10]. In 2010, Smart and Vercauteren introduced

there SV packing technique to FHE and enabled a single

instruction/multiple data (SIMD) style operation to real-

ize a speed-up and compression [11]. IBM Research released

an open-source library of HElib based on the BGV scheme,

which is one of the most popular FHE libraries available [12].

Herein, we briefly introduce the FHE scheme and SV pack-

ing.

2. 2 FHE scheme

In the FHE scheme, the following algorithms are included

[10]:

• FHE.SetUp(1λ): Given a security parameter λ, out-

put a set of parameters for encryption, params.

• FHE.KeyGen(params): Generate a public/secret

key pair, pk/sk, and evaluation key, ek.

• FHE.Enc(pk,m): Given a public key pk and plain-

text message m, output the corresponding ciphertext, c.

• FHE.Dec(sk, c): Given a secret key sk and ciphertext

c, output the corresponding plaintext message, m.

• FHE.Eval(ek, f, (c1, ..., ct)): Given evaluation key

ek, an arithmetic circuit f that accepts t parameters, and

t ciphertext c1 to ct, output a ciphertext as an encrypted

calculation result, cf .

2. 3 SV packing and SIMD-style calculation

In [13], Smart and Vercauteren introduced a packing

method that allows encrypting a vector of plaintext into a

single ciphertext. These multiple plaintexts are stored sepa-

rately in spaces called slots. The authors introduced a SIMD-

style operation on the packed ciphertext. In a SIMD-style

FHE calculation on ciphertexts, operations such as additions

and multiplications are conducted in a slot-wise manner. In

our system, all operations over a ciphertext are applied in a

SIMD manner.

3 Related works

A private information retrieval (PIR) scheme was first in-

troduced by Chor et al. in 1995 [14]. Kushilevitz and Ostro-

vsky constructed the first single-database PIR in 1997 [15].

Since then, PIR has become one of the most important cryp-

tography schemes available [16].

The original work by Kushilevitz and Ostrovsky [15] has

already resulted in the introduction of a PIR protocol upon

homomorphic encryption. Based on Gentry’s improvement



of homomorphic encryption [9], the implementation of PIR

based on the HE scheme has become a reality [17], [18]. A

set of implementations of PIR using the HE scheme proved

its usefulness in various fields including cloud computing [19],

chemical compound management [5], data aggregation [20],

and e-voting [21]. However, the schemes applied in these

studies are not suitable for use in our system. [20] and [5]

use additional homomorphic encryption (AHE), whereas [19]

uses BGN homomorphic encryption and [21] uses ElGamal

homomorphic encryption, which differ from FHE. These

methods are effective for specific types of arithmetic circuits,

but they are not suitable for our situation, in which a cipher-

text and plaintext are contained inside query content at the

same time. Based on [18], because FHE is theoretically suit-

able for any arbitrary arithmetic circuit, we consider it to be

a more suitable way to solve our problem. In [22], Dong et

al. introduced a general PIR scheme using FHE, although

there is still space for optimization for our specific problem.

4 Proposed method

4. 1 Goal

Our goal is to provide a privacy-preserving scheme to ex-

tract information that can support pharmacists in finding the

reason for the occurrence of side effects based on the medic-

inal history of the patient. To be specific, we need records

of patients with the following conditions for a comparison of

the query content:

• Gender: same

• Age: R years younger – R years older, R ∈ Z
• Medicine: At least one the same

• Side Effect: At least one the same

Sensitive information includes the gender and age infor-

mation of the patients, as well as other private information.

Such information must be kept encrypted during the entire

query process.

4. 2 System

4. 2. 1 Overview

For a simple description, we assume that we have only

three participants in our model: the cloud, server, and termi-

nal device. Here, the cloud is an untrustworthy cloud server

conducting FHE calculations, provided by third-party cloud

service providers, which holds the medicinal history database

of encrypted users; the server represents the branch servers

stored in each branch of a pharmacy, which are considered

to be trustworthy; and the terminal device represents un-

trustworthy user devices that send a query, i.e., tablet PCs,

which are assumed to be used by pharmacists when they in-

teract with patients. Relations between these participants

are shown in Figure 1.

Figure 1 Relation between participants

4. 2. 2 Privacy

With our system, we plan to use PIR on FHE over the

full medicinal history database of patients. A key pair was

previously generated and distributed to each participant, as

shown in Figure 1. The key pair pk/sk is used for a cer-

tain time period (e.g., a month) and renewed periodically. If

there are multiple users, they will share the same sk.

Each party only has access to certain content. With our

system, the server has access to the key pair pk/sk and eval-

uation key ek; the terminal device has access to plaintext

query content m, a public key pk, and an evaluation key ek;

and cloud has access to the ciphertext database Enc(db),

public key pk, and evaluation key ek.

Plaintext content m only exists inside the terminal device,

and db is not accessible to any party, ensuring the privacy of

the user’s query and database.

4. 2. 3 Procedure

Before a query, the following preparation steps are con-

ducted. In step 1, the parameters for the encryption en-

vironment are prepared using the server. In step 2, the

database holder prepares a fully encrypted database Enc(db)

and sends it to the cloud.

（ 1） step 1: server generate a public/secret key pair

pk/sk, and evaluation key ek, and share pk and ek with

the cloud and terminal device sides.

（ 2） step 2: cloud receive the entire encrypted database

Enc(db) offered by the database holder using pk for encryp-

tion.

During the search process, the following steps are con-

ducted. In step 1, terminal device prepares the encrypted

query content, which is also shown in Algorithm 1. In step 2,

a comparison of m and db is conducted using SIMD subtrac-

tion, and slots with zero as the subtraction result points to

the query result. To make sure the contents of the non-zero

slots are not recovered, the subtraction result is multiplied

with a non-zero random integer r. This is described in Algo-



rithm 4. In steps 3 to 5, the server decrypts the result, finds

the zeros, and reports their index to the cloud, whereas the

cloud extracts these records accordingly, as shown in Algo-

rithm 5.

（ 1） step 1: terminal device encrypt the query content

m using pk, and send the encrypted query content Enc(m)

to the server side. Then, server send this information to the

cloud side.

（ 2） step 2: cloud perform a SIMD-style subtraction be-

tween Enc(m) and Enc(db), and then multiply the subtrac-

tion result with a non-zero random integer r. Then, cloud

send the resulting ciphertext (Enc(m) ⊖ Enc(db)) ⊗ r to

server.

（ 3） step 3: server use sk to decrypt the resulting cipher-

text (Enc(m)⊖Enc(db))⊗r to gain the plaintext (m−db)×r.

server then search for slots with zeros, and gather the index

of these slots. server then share the index with the cloud

side.

（ 4） step 4: cloud refer to Enc(db) according to indexes,

access these parts and pack them as Enc(db′), then, send

them to the server side.

（ 5） step 5: server use sk to decrypt Enc(db′) to gain

plaintext db′, and share them with the terminal device side.

4. 3 Optimization

Query content m contains the following four types of data:

age, gender, list of medicines, and list of side effects. Here,

we encrypt only age and gender to avoid a privacy leakage.

The lists of medicines and side effects are handled in plain-

text format. Note that all data, mainly, the encrypted age,

encrypted gender, and the other two plaintexts, are trans-

ferred over encrypted channels, such as AES, to keep them

secured during their transfer. We separate m into two parts:

• FHE-encrypted part: age and gender

• non FHE-encrypted part: lists of medicines and side

effects

Because the lists of medicines and side effects are not en-

crypted by the FHE, the cloud contains them in plaintext.

Thus, we can apply a filtering at the cloud before the FHE

calculation, reducing the size of the database for calculation

purposes. We apply the inverted index method commonly

used in search engines to conduct the filtering step [23], as

shown in Algorithm 2.

Because the cloud is equipped with multiple CPU cores,

we use an NTL threading pool [24] in the cloud side when

conducting the FHE calculations. In addition, as shown in

Algorithm 3, SV packing is used.

4. 4 Algorithm

The implementation of the cloud side contains the main

part of our scheme. The cloud will receive query content

from the server prepared using Algorithm 1. Herein, we use

m′ as the grouped parameters from gender and age, combin-

ing the FHE-related parameters into only a single parameter.

This grouping is supported according to [25], provided that

each possible pair of (age, gender) for humans will map to a

uniquem′ within [0, 255], when the upper limit of the age dif-

ference is R ⩽ 5. Males are mapped to [0, 127], and females

are mapped to [128, 255].

Algorithm 1 QueryGen

Input age, (Med1, ...,Medn), (Side1, ..., Sidem)

Output query

1: if gender is male then

2: m′ ← age+R

3: else

4: m′ ← age+ 128 +R

5: end if

6: c← FHE.Enc(pk,m′)

7: query ← c, (Med1, ...,Medn), (Side1, ..., Sidem)

After receiving the query contents c, (Med1, ...,Medn),

(Side1, ..., Sidem) from the server, cloud is initiated to apply

filtering with an inverted index of the medicine InvMed and

side effect InvSide, and a smaller part is extracted from db

for the FHE calculation. The classical pyramidal merge al-

gorithm used in mergesort [26] will be operated over inverted

indexes, making a smaller encrypted database Enc(db′) of

size s for the FHE calculation. The filtering is shown in Al-

gorithm 2. With this algorithm, Intersect(List) takes the

intersection of several sets, and Union(List) takes the union

of several sets.

Algorithm 2 Filter

Input (Med1, ...,Medn), (Side1, ..., Sidem)

Output Enc(db′)

1: MergeListMed← []

2: for i← 1 to n do

3: MergeListMed.Append(InvMed[Medi])

4: end for ▷ MergeListMed stores inverted indeces for

inputted medicines

5: ResMed← Intersect(MergeListMed)

6: MergeListSide← []

7: for i← 1 to m do

8: MergeListSide.Append(InvSide[Sidei])

9: end for ▷ MergeListMed stores inverted indeces for

inputted side effects

10: ResSide← Intersect(MergeListSide)

11: Res← Union([ResMed,ResSide]) ▷ Res is a list of record

IDs

12: Enc(db′)← []

13: for i in Res do

14: Enc(db′).Append(Enc(db)[i])

15: end for



Because we use the SIMD method for calculation, we use

a HElib EncrypedArray class to pack a vector of ciphertext

Enc(db′) into a single ciphertext PackDB. This is shown in

Algorithm 3.

Algorithm 3 SVPack

Input Enc(db′)

Output PackDB

1: PackDB ← Enc(pk, 0)

2: for i← 1 to s do

3: l← all-zero integer list of size s

4: l[i]← 1 ▷ l act as a position indicator showing which slot

to insert

5: PackDB ← PackDB ⊕ l ⊗ Enc(db′)[i]

6: end for

We can then conduct a calculation using FHE. The match-

ing result should have the same gender as m and at an age

difference within R with the age information of m; hence,

the target value should be in [m−R,m+R] inside the orig-

inal partial database db′. After the SIMD subtraction of

PackDB and c, we need to add it with [−R,+R] and obtain

2R + 1 ciphertexts MetaRes. We can SIMD multiply these

2R+ 1 ciphertexts into one ciphertext Enc(res) and send it

back to the server for decryption, as shown in Algorithm 4.

Algorithm 4 FHECalculate

Input PackDB, c,R

Output Enc(res)

1: MetaRes← []

2: for i← −R to +R do

3: MetaRes.Append(PackDB ⊖ c⊕ i)

4: end for ▷ MetaRes stores 2R+ 1 ciphertexts

5: while len(MetaRes) > 1 do

6: i← 1, j ← len(MetaRes)

7: while i < j do

8: MetaRes[i]←MetaRes[i]⊗MetaRes[j]

9: MetaRes.Remove(MetaRes[j])

10: i+ = 1, j− = 1

11: end while

12: end while ▷ Calculate product of sequences

13: Enc(res)←MetaRes[1]⊗ random()

After receiving ciphertext Enc(res), the server will apply

a decryption and request additional information, e.g., phar-

macy instructions, as shown by Algorithm 5.

5 Experiment and result

5. 1 Experiment

We implemented the scheme in C++ using HElib. We set

up our server on a desktop PC and the cloud on a cloud

computing platform provided by Nifty Cloud. The server

was equipped with an 8-core CPU and 16 GB of memory.

Algorithm 5 Decrypt

Input Enc(res)

Output query result

1: res← FHE.Dec(pk,Enc(res))

2: for item in res do

3: if item is 0 then

4: request additional information related with the index

of item from cloud

5: decrypt the responded additional information and send

it to the terminal device

6: end if

7: end for

The cloud was equipped with 28 virtual CPUs and 256 GB

of memory. To make full use of the system, the maximum

thread for the NTL threading pool was set as 28. In addi-

tion, R was set as 5. The FHE parameters used in HElib

were set as shown in Table 1.

Table 1 HElib parameters

m p r L

12,097 257 1 11

5. 2 Simulation dataset

We prepared the simulation dataset based on statistical

data. We referred to official data offered by the Japan

Ministry of Health, Labor, and Welfare [7], and by Statis-

tics Japan [25]. From the statistical data, we gained the

patient distribution over the different age periods and gen-

ders. In addition, we assumed 2,000 types of medicines and

100 types of side effects, distributed according to a Pareto

distribution [27]. We arbitrarily assumed that each patient

takes fewer than 20 different medicines and suffers from fewer

than five side effects. According to these rules, we created a

dataset with a size of 40,000.

5. 3 Result

We conducted 10,000 uniformly random queries based on

a random age, gender, list of medicines, and list of side ef-

fects between the server and cloud. The relation between

the filtered data size and the query processing time is shown

in Figures 2 and 3. The distribution of the filtering percent-

age, i.e., the percentage of filtered database size based on the

original database size is shown in Table 2.

From Figure 2 and Table 2, we can see that filtering is effec-

tive in scaling down the database size. In 98.36% of all cases,

the database was scaled down to less than 400 items, which

is only 1% of the original database size. Using filtering, FHE

calculations over the full database are not required, which

saves time and memory. From Figure 3, we can observe an

improvement through multithreading. We set 100 as the slot

number in a single ciphertext in our experiment. Thus, in



Figure 2 Relation between time consumption and filtered

database size in 10,000 experiments

Figure 3 A closer view when filtered down to a dataset of 2.00%

Table 2 Distribution of Filter Percentage

Filter Percentage Percentage for a Total of 10,000 Attempts

0% 60.52%

0%-1% 37.84%

1%-2% 0.57%

2%-5% 0.56%

5%-10% 0.22%

10%-20% 0.16%

20%-50% 0.10%

>50% 0.03%

Figure 3, the server calculation time, which was originally

considered the most time-consuming, increases much more

slowly after the filtered database size s reaches 100. As a

general result, 99.71% of all queries completed the entire pro-

cess, i.e., from the completed collection of m at the terminal

device to the complete output, within 60 s.

The maximum memory usage is approximately 2.48 GB.

6 Discussion

The results of our experiment conducted on a simula-

tion dataset show that our privacy-preserving query system

model is capable of conducting a search for the side effects

of a medicine.

A filtering application using an inverted index and multi-

threading was successful in decreasing the time and memory

use. From the results of Table 2, we can see that, in most

cases, only less than 1% of the database needed to be used

in the calculation. If such filtering is not applied, a FHE

calculation must be performed over a full database, result-

ing in a waste of both time and memory. From Figure 3,

we can see that the server calculations require the greatest

amount of time for a filtered database size s of less than

500. At greater than 500, the communication time, however,

becomes the most time-consuming part. We introduced an

NTL threading pool in the server calculations. When s is

less than 100, the process is the same as with a single thread,

and the server calculation time rapidly increases. When s is

greater than 100, multithreading is applied, and the increase

in the calculation time becomes much slower.

7 Conclusion

We proposed a scheme for a privacy-preserving query sys-

tem, and implemented it into a real-world case. We proved

the usefulness of the scheme through experiments conducted

on real datasets. For future optimization, we can see that the

communication time contributes significantly to the overall

session time when the filtered database size is large. This is

understandable because the size of Enc(res) is proportional

to filtered database size s. To reduce this heavy time con-

sumption, we can consider packing more slots into a single

ciphertext. However, this requires that we adjust the param-

eters to obtain a larger packing capacity.

Acknowledgment

This work was supported by JST CREST, Grant Number

JPMJCR1503, Japan.

References

[1] Lars Kotthoff. Algorithm selection for combinatorial search

problems: A survey. In Data Mining and Constraint Pro-

gramming, pages 149–190. Springer, 2016.

[2] Hassan N Khan, David A Hounshell, and Erica RH Fuchs.

Science and research policy at the end of moore’s law. Na-

ture Electronics, 1(1):14, 2018.

[3] Phee Waterfield and Timothy Revell. Huge new facebook

data leak exposed intimate details of 3m users. New Scien-

tist, URL: https://www.newscientist.com/article/mg238317

82-100-huge-new-facebook-data-leak-exposed-intimate-details-

of-3m-users, May 2018. Accessed: 2019-01-05.

[4] Julia Carrie Wong and Olivia Solon. Google to shut

down google+ after failing to disclose user data leak. The

Guardian, URL: https://www.theguardian.com/technology/

2018/oct/08/google-plus-security-breach-wall-street-journal,

Oct 2018. Accessed: 2019-01-05.

[5] Kana Shimizu, Koji Nuida, Hiromi Arai, Shigeo Mitsunari,



Nuttapong Attrapadung, Michiaki Hamada, Koji Tsuda,

Takatsugu Hirokawa, Jun Sakuma, Goichiro Hanaoka,

et al. Privacy-preserving search for chemical compound

databases. BMC bioinformatics, 16(18):S6, 2015.

[6] Naoko Muramatsu and Hiroko Akiyama. Japan: super-

aging society preparing for the future. The Gerontologist,

51(4):425–432, 2011.

[7] 大臣官房統計情報部. 平成 26 年 (2014) 患者調査の概況.

https://www.mhlw.go.jp/toukei/saikin/hw/kanja/14/, Dec

2015.

[8] Ronald L Rivest, Len Adleman, and Michael L Dertouzos.

On data banks and privacy homomorphisms. Foundations

of secure computation, 4(11):169–180, 1978.

[9] Craig Gentry. Fully homomorphic encryption using ideal

lattices. In Proceedings of the 41st annual ACM symposium

on Symposium on theory of computing-STOC\’09, pages

169–169. ACM Press, 2009.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(leveled) fully homomorphic encryption without bootstrap-

ping. ACM Transactions on Computation Theory (TOCT),

6(3):13, 2014.

[11] Nigel P Smart and Frederik Vercauteren. Fully homomor-

phic encryption with relatively small key and ciphertext

sizes. In International Workshop on Public Key Cryptogra-

phy, pages 420–443. Springer, 2010.

[12] Shai Halevi and Victor Shoup. Algorithms in helib. In 34rd

Annual International Cryptology Conference, CRYPTO

2014. Springer Verlag, 2014.

[13] Nigel P Smart and Frederik Vercauteren. Fully homomor-

phic simd operations. Designs, codes and cryptography,

71(1):57–81, 2014.

[14] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu

Sudan. Private information retrieval. In Foundations of

Computer Science, 1995. Proceedings., 36th Annual Sym-

posium on, pages 41–50. IEEE, 1995.

[15] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not

needed: Single database, computationally-private informa-

tion retrieval. In Foundations of Computer Science, 1997.

Proceedings., 38th Annual Symposium on, pages 364–373.

IEEE, 1997.

[16] Rafail Ostrovsky and William E Skeith. A survey of single-

database private information retrieval: Techniques and ap-

plications. In International Workshop on Public Key Cryp-

tography, pages 393–411. Springer, 2007.

[17] Vinod Vaikuntanathan. Computing blindfolded: New de-

velopments in fully homomorphic encryption. In Founda-

tions of Computer Science (FOCS), 2011 IEEE 52nd An-

nual Symposium on, pages 5–16. IEEE, 2011.

[18] Xun Yi, Mohammed Golam Kaosar, Russell Paulet, and

Elisa Bertino. Single-database private information retrieval

from fully homomorphic encryption. IEEE Transactions on

Knowledge and Data Engineering, 25(5):1125–1134, 2013.

[19] Yang HaiBin and Zhang Ling. A secure private informa-

tion retrieval in cloud environment. In Intelligent Network-

ing and Collaborative Systems (INCoS), 2016 International

Conference on, pages 388–391. IEEE, 2016.

[20] Tsotsope Daniel Ramotsoela et al. Data aggregation using

homomorphic encryption in wireless sensor networks. PhD

thesis, University of Pretoria, 2015.

[21] Shubhangi S Shinde, Sonali Shukla, and DK Chitre. Se-

cure e-voting using homomorphic technology. International

Journal of Emerging Technology and Advanced Engineer-

ing, 3(8):203–206, 2013.

[22] Changyu Dong and Liqun Chen. A fast single server pri-

vate information retrieval protocol with low communication

cost. In European Symposium on Research in Computer

Security, pages 380–399. Springer, 2014.

[23] Justin Zobel, Alistair Moffat, and Kotagiri Ramamoha-

narao. Inverted files versus signature files for text index-

ing. ACM Transactions on Database Systems (TODS),

23(4):453–490, 1998.

[24] Victor Shoup. Ntl: A library for doing number theory.

http://www.shoup.net/ntl/, 2001.

[25] 総務省. 日本の統計: 2018. 日本統計協会, 2018.

[26] Richard Cole. Parallel merge sort. SIAM Journal on Com-

puting, 17(4):770–785, 1988.

[27] Tudor I Oprea. Property distribution of drug-related chemi-

cal databases. Journal of computer-aided molecular design,

14(3):251–264, 2000.


