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Abstract: Fully homomorphic encryption (FHE) allows a third party to evaluate arithmetic circuits over encrypted 
data without decryption. However, FHE typically only supports addition and multiplication over encrypted data. 
Thus, functions that cannot be directly represented using additions or multiplications (such as reciprocals and 
logarithms) are not compatible with FHE. To overcome this limitation, Crawford et al. (WAHC 2018) proposed 
a method of evaluating such functions using a lookup table (LUT). While this approach provides the ability to 
evaluate any functions using FHE, two problems arise. First, it uses bitwise encoding, i.e., an integer is 
decomposed into a set of bits, and then each bit is encrypted individually, which typically results in a large 
overhead in terms of both computational and storage costs. Second, the size of the LUT can be huge, depending 
on the function to be evaluated, as all possible pairs of input and output values of the function must be included. 
This necessitates an expensive computation for LUT evaluation with FHE. In this study, we propose a more 
efficient function evaluation protocol with FHE than the method of Crawford et al. Our protocol allows the use 
of integer encoding, i.e., a single integer is encrypted as a single ciphertext, rather than using bitwise encoding. 
In addition, our protocol guarantees that no information on the underlying plaintext between two parties can be 
leaked, via a combination of permutation operations and private information retrieval. Our experimental results 
in a multi-threaded environment show that the runtime of our protocol is approximately 51 s when the size of the 
LUT is 448,000. Thus, we surmise that our protocol is more practical. 
Keyword: Function Evaluation, Lookup Table, Fully Homomorphic Encryption, Cloud Computing, Private 
Information Retrieval

1.INTRODUCTION  
  Nowadays, cloud computing services and big data 
techniques are proliferating rapidly. With the widespread 
adoption of big data technology, data security issues have 
received increasing attention. The existence of 
information uploaded by large numbers of users, stored in 
cloud servers, increases data security risks [1][2]. Several 
mature traditional encryption schemes are available, such 
as AES and DES. However, once data has been encrypted, 
operations cannot be performed on it without decryption. 
In 2009, a fully homomorphic encryption (FHE) scheme 
was introduced by Gentry [3], which allows a third party 
to perform function evaluations over encrypted data 
without decryption. However, the limitations of FHE, 
such as 1) only allowing the evaluation of functions 
composed of additions and multiplications and 2) its large 
computational cost and memory usage, make it difficult to 
adapt to big data. 
  The previous study [4] by Crawford et al. replaces 
function evaluation with a lookup table (LUT) protocol for 
FHE. This enables the evaluation of some complex 
functions using FHE, such as reciprocals and logarithms. 
However, two problems remain in their approach: 1) they 
employ bitwise encoding, which is not scalable; and 2) the 
LUT must include all possible input values, meaning that 
it can be huge, increasing the evaluation time. In this study, 
our protocol adopts integer encoding rather than bitwise 
encoding. We generate two LUT matrices, where each 
row in an LUT matrix includes only some of values, to 
speed up the evaluation. This approach is implemented 

with a two-party protocol, consisting of a server and a 
decryptor, where the latter owns a decryption key to 
evaluate complex functions such as reciprocals and 
logarithms. Although decryption is required on the 
encrypted data, our protocol guarantees that no 
information on the underlying plaintext can be leaked, by 
combining permutation operations with private 
information retrieval (PIR) [5]. The query generation 
method is based on our previous work [6]. In addition, a 
similar procedure is performed in every row in an LUT 
matrix, so that multi-thread operations can be adopted for 
all rows to further reduce the evaluation time. 
  This remainder of this paper is organized as follows. In 
Section 2, we describe FHE, BGV cryptosystems, single 
instruction multiple data (SIMD)-style operations, and 
PIR from a single database. In Section 3, related work is 
discussed. In Section 4, our proposed model and overall 
protocol for two parties is described. In Sections 5 and 6, 
a security analysis, experimental results, and an evaluation 
are presented. Finally, in Section 7 we conclude the paper. 
 
2. PRELIMINARIES 
2.1 FULLY HOMOMORPHIC ENCRYPTION 
  FHE is an encryption scheme that allows a third party to 
evaluate arbitrary functions using modular arithmetic 
(mod 𝑝) over encrypted data without decryption. 
  When 𝑝 = 2, a number is encoded into a binary string. 
This is introduced in, e.g., the GSW scheme (Gentry et al. 
[7]), which can encrypt each bit as ciphertext. Using logic-
circuit AND and XOR operations, any function can be 
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evaluated. However, this approach involves a large 
ciphertext:plaintext ratio. 
  When 𝑝 > 2, a number is encoded into an integer. This 
FHE operation is introduced in, e.g., the BGV scheme 
(Brakerski et al. [8]), which can encrypt a large integer as 
a single ciphertext. Thus, the integer circuit has a better 
ciphertext:plaintext ratio, which means that more data can 
be processed with one operation. Using polynomial 
approximations, a function consisting only of additions 
and multiplications can be evaluated. However, this 
approach has some restrictions in terms of functionality, 
in that functions that cannot be directly represented using 
additions and multiplications (such as reciprocals and 
logarithms) are not compatible with FHE. Thus, it is ideal 
to apply an integer circuit for the evaluation of any 
function. 
 
A. BGV CRYPTOSYSTEM 
  In this section, we describe the following four main 
algorithms in the BGV scheme. 
1. Setup: 𝑝𝑎𝑟𝑎𝑚𝑠 ← FHE. Setup (15,16) 
Input the security parameter 𝜆 and number of levels L, 
output a set of parameters 𝑝𝑎𝑟𝑎𝑚𝑠. 
2. Key Generation:  
 (𝑝𝑘, 𝑠𝑘) ← FHE. SecretKeyGen(𝑝𝑎𝑟𝑎𝑚𝑠) 
Input the set of parameters, generate a pair of keys: public 
key 𝑝𝑘 and secret key 𝑠𝑘. 
3. Encryption: 𝑐 ← FHE.Enc(𝑝𝑘,𝑚) 
Input the public key, encrypt a message 𝑚 as a ciphertext 
𝑐. 
4. Decryption: 𝑚 ← FHE. Dec(𝑠𝑘, 𝑐) 
Input the secret key, decrypt a ciphertext 𝑐 as a message 
𝑚. 
 
B. SIMD-STYLE OPERATIONS 
  In [9], Smart and Vercauteren introduced a type of 
ciphertext packing technique based on the Chinese 
reminder theorem (CRT), which can support SIMD-style 
operations. In their work [9], a CRT-represented 
ciphertext generated from 𝑙 plaintexts can be considered 
as a vector consisting of 𝑙 slots, each of which contains 
one plaintext. The SIMD-style operations over the CRT-
represented ciphertext are performed slot-wise in parallel. 
  For example, we denote two vectors of length 𝑙 by 𝒙 =
[𝑥G,… , 𝑥I] and 𝒚 = [𝑦G,… , 𝑦I]. Using the packing method 
[9], we can pack all the elements of a vector into a single 
ciphertext. Then, the slot-wise addition and multiplication 
operations over a packed ciphertext can be respectively 
expressed as follows:  
𝐷𝑒𝑐(𝐸𝑛𝑐(𝒙)⊞ 𝐸𝑛𝑐(𝒚)) = [(𝑥G + 𝑦G),… , (𝑥I + 𝑦I)] 
𝐷𝑒𝑐(𝐸𝑛𝑐(𝒙)⊡ 𝐸𝑛𝑐(𝒚)) = [(𝑥G × 𝑦G),… , (𝑥I × 𝑦I)] 

 
2.3 SINGLE DATABASE PIR FROM FHE 
  The PIR protocol [5] allows a user to retrieve a record 
from a database server without letting the server learn 
which element is selected by the user.  
  Aguilar et al. [10] introduced a PIR scheme with a query 
compression technique called XPIR. Here, a PIR query in 
this work includes 𝑛 ciphertexts, where 𝑛 is the number of 
elements in the database. To reduce the size of a query and 
increase the efficiency, Angel et al. [11] proposed SealPIR, 
which reduces the number of queries, i.e., ciphertexts, to 
one, a via new query encoding method. 

  The basic idea of PIR with homomorphic encryption is 
to assume a vector 𝒗 of length 𝑛, where 𝑛 is the number 
of elements in the database. A user has the index 𝑡 that 
they would like to access. The user creates a binary vector 
𝒒 of length 𝑛 as a query. The element whose index is 𝑡 in 
the query is 1, and other elements are 0. Using the packing 
method in [9], the user encrypts 𝒒 into a ciphertext and 
then sends it to the database. The database responds to the 
user with the result 𝐸𝑛𝑐(𝒗𝑹) = 𝐸𝑛𝑐(𝒗)⊡ 𝐸𝑛𝑐(𝒒). The 
result 𝒗𝑹 only contains the element with the index 𝑡 in the 
database. After decryption, the user can retrieve 𝑣Z from 
the database as desired. (Fig. 2-3) 

 
Fig. 2-3 AN EXAMPLE OF PIR FROM FHE 

 
3. RELATED WORK 
  It is difficult to evaluate certain functions with FHE, such 
as reciprocals and logarithms. Crawford et al. [4] proposed 
computing “complicated functions” using table lookup. 
When a function is difficult to evaluate, one can look up a 
table that includes all possible input values and 
corresponding output values, which have already been 
calculated. Using this solution, they implemented a low-
precision approximation method for complex functions. A 
function 𝑓 to be computed is pre-computed in a table 𝑇], 
such that 𝑇]	[𝑥] = 𝑓(𝑥) for every x in some range. Then, 
given the encryptions of the bits of x, homomorphic table 
lookup is performed to obtain the bits of the value 𝑇]	[𝑥]. 
  Two problems remain in this approach. First, bitwise 
encoding is employed, which is not scalable. Second, an 
LUT must include all possible input values, meaning that 
it may be huge, increasing the evaluation time. Fig. 3-1 
presents an example of this approach.  

 
Fig. 3-1 EXAMPLE OF BITWISE TABLE LOOKUP 

 
4. FUNCTION EVALUATION WITH FHE USING 
TABLE LOOKUP 
  There are two fundamental factors that appear to limit the 
application of FHE to cloud computing services: 1) FHE 
with integer encoding can only evaluate functions 
composed of additions and multiplications, and 2) it 
requires a large computational cost and memory usage. To 
solve the first problem, we adopt LUTs to evaluate 
functions such as reciprocals and logarithms. To reduce 
the computational cost, we construct an LUT matrix that 
can be adopted for multi-thread operations. 
 
4.1 PROPOSED MODEL 
  Our proposed LUT evaluation method relies on a two-
party protocol, which consists of a computation server (CS) 
and a decryptor. Here, we suppose that a complex function 
𝑓  is evaluated at the CS, based on an encryption of 𝑥 
denoted by Enc(𝑥) . Namely, the CS aims to evaluate 
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Enc(𝑓(𝑥)) , which is difficult to evaluate using an 
arithmetic circuit over FHE. For this propose, the 
decryptor is required to transform x into a PIR query. The 
input	𝑥  and output 𝑓(𝑥)  are private information in this 
protocol, which cannot be known by the CS or decryptor. 
In the initialization phase, the decryptor generates a pair 
of keys: a public key and secret key. The decryptor sends 
the public key to the CS, and owns the secret key. Enc(𝑥) 
is the input of the CS, and Enc(𝑓(𝑥)) is an output that can 
be used for other evaluations in the CS. For example, in a 
recommender system [12] [13], the cosine distance needs 
to be computed, which requires a square root operation. 
This is difficult to evaluate over FHE, because FHE only 
supports addition and multiplication. The input of the 
square root operation is a computational result. Fig. 4-1 
presents an example. The function is 𝑓(𝑥) = √𝑥 . The 
input of the square root operation is a computational result 
𝐸𝑛𝑐(𝑥) = 𝐸𝑛𝑐(𝑥`)⊞…⊞𝐸𝑛𝑐(𝑥a)⊞…⊞𝐸𝑛𝑐(𝑥b) . 
Here, 𝐸𝑛𝑐(𝑥a) comes from user 𝑖 , and 𝐸𝑛𝑐(𝑥) includes 
sensitive information for	𝑛 users. 

 
Fig. 4-1 AN EXAMPLE OF the PROPOSED MODEL 

  
4.2 PROPOSED PROTOCOL 
  The overview of our protocol is as follows. 1) Construct 
lookup table: The CS generates two new permuted LUT 
matrices, based on a permutation vector generated by the 
CS. This is performed for each encrypted input in our 
protocol, and the two LUT matrices 𝑇ab,𝑇deZ are known 
and kept by the CS. The LUT matrix 𝑇ab holds all the input 
values of the function 𝑓, and its output is in LUT matrix 
𝑇deZ. 2) Search input value: The CS searches the input 
over the LUT matrix 𝑇ab. The result after this step also 
consists of ciphertext, which cannot be known by the CS. 
To determine the index of the input in 𝑇ab and generate the 
PIR query, the CS sends the result to the decryptor. 3) 
Generate PIR query: Using one decryption, the decryptor 
can obtain the index of the input in 𝑇ab, which is the same 
as the output index in 𝑇deZ. Then, the decryptor generates 
the encrypted PIR query and sends it to the CS. 4) Select 
output value: The CS selects the output from 𝑇deZ with the 
PIR query. Fig. 4-2 illustrates the overall protocol. 
 
A. Construct Lookup Table 
  The LUT must include all input values of the function 𝑓 
and the corresponding output values. The original LUT 
can be known by the CS and the decryptor. We denote the 
input and output integer values in original LUT, 
respectively, by two vectors 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕 ∈ ℤb  of length 𝑛. 
The CS creates two new permuted LUT matrices 𝑇ab, 𝑇deZ 
based on a permutation vector 𝒗 generated by the CS. 
  FHE allows us to encrypt a vector of integers of length 𝑙 
as a single ciphertext. The vector 𝒗𝒊𝒏 ∈ ℤb holds all input 

values from the original LUT, where 𝑛 is the number of 
elements. The vector 𝒗𝒐𝒖𝒕 ∈ ℤb  holds all output values 
from the original LUT. The CS constructs two new LUT 
matrices 𝑇ab, 𝑇deZ ∈ ℤm×I, where 𝑘 is the number of rows 
and 𝑙 is the number of columns (which is the same as the 
number of slots). We define 𝑘 = ⌈𝑛/𝑙⌉ ∈ ℤ , |𝑇ab| =
𝑘 × 𝑙 ≥ |𝒗𝒊𝒏| = 𝑛  and |𝑇deZ| = 𝑘 × 𝑙 ≥ |𝒗𝒐𝒖𝒕| = 𝑛 . Let 
𝒗  be a permutation vector that holds various random 
values within the integer range [0, 𝑛 − 1]. 
  Fig. 4-3 shows an example of lookup table construction. 
The input and output integer values in the original LUT 
are stored as two vectors 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕 of length 12. The new 
LUT matrices are 𝑇ab,𝑇deZ, with the number of slots 𝑙 = 4 
and number of rows 𝑘 = ⌈𝑛/𝑙⌉ = ⌈12/4⌉ = 3 . 𝒗  is a 
permutation vector, which holds various random values in 
the integer range [0,11]. For ease of understanding, we 
add a permuted LUT vector in Fig. 4-3, which is divided 
into three rows in an LUT matrix.  

 

 
  We represent how to construct the LUT matrices 
𝑇ab,𝑇deZ  from the original LUT vectors 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕  in 
Algorithm 1. 
Algorithm 1: Construct lookup table 
Input. vectors 𝒗𝒊𝒏,𝒗𝒐𝒖𝒕 ∈ ℤb; a permutation vector	𝒗 ∈
ℤb. 
Output. LUT matrices 𝑇ab,𝑇deZ ∈ ℤm×I . 
 1: function LUTConstruction (𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕, 𝒗) 
 2: 𝑠	 ← 	0 
 3: Fill all the elements in 𝑇ab and 𝑇deZ by zeros 
 4: for 𝑖 = 0 to 𝑘 − 1 do 
 5:  for 𝑗 = 0 to 𝑙 − 1 do 
 6:   𝑖𝑛𝑑𝑒𝑥 ← 𝒗[𝑠] 
 7:    𝑇ab[𝑖][𝑗] ← 𝒗𝒊𝒏[𝑖𝑛𝑑𝑒𝑥] 
 8:    𝑇deZ[𝑖][𝑗] ← 𝒗𝒐𝒖𝒕[𝑖𝑛𝑑𝑒𝑥] 
 9:    𝑠 ← 𝑠 + 1 
10:  end for 
11: end for 
12: return 𝑇ab,𝑇deZ 
13: end function 
 
B. Search Input Value 
  The CS owns the LUT matrices 𝑇ab,𝑇deZ. We denote the 
ciphertext of a vector with elements 𝑥 as 𝑐. In addition, we 
denote slot-wise addition and multiplication over FHE by 
⊞ and ⊡, respectively. For the 𝑖-th row in the matrix 𝑇ab, 
by executing the operation 𝑐 ⊞ (−𝑇ab[𝑖]) we obtain the 
result as a ciphertext 𝒗𝒄[𝑖]. If the input value 𝑥 matches 
the value at the index (𝑡zd{, 𝑡|dI)  in 𝑇ab , the 𝒗𝒄[𝑡zd{] 
encrypts a vector whose element at 𝑡|dI is zero. Because 
the result 𝒗𝒄, which will be sent to decryptor, is multiplied 
by the vector 𝒓𝒊  that contains all uniformly random 
numbers in ℤ~\{0} of length 𝑙, we can hide the true input 

Fig. 4-3 EXAMPLE OF LOOKUP TABLE CONSTRUCTION 
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in the LUT matrix from the decryptor. We represent how 
to search the input over 𝑇ab in Algorithm 2.  
Algorithm 2: Search input value 
Input. LUT matrix 𝑇ab ∈ ℤm×I ; input ciphertext 𝑐 
Output. a vector of ciphertexts 𝒗𝒄 of length 𝑘  
1: function InputSearch (𝑇ab, 𝑐)  
2: for 𝑖 = 0	𝐭𝐨	𝑘 − 1 do 
3:  Sample a vector 𝒓𝒊 of uniformly random numbers 
4:  𝒗𝒄[𝑖] ← 𝑐 ⊞ (−𝑇ab[𝑖])    w𝑇ab[𝑖]: 𝑖-th row in 𝑇ab 
5:  𝒗𝒄[𝑖] ← 𝑣|[𝑖]⊡	𝒓𝒊 w𝒓𝒊: a random numbers vector 
6: end for 
7: return 𝒗𝒄 
8: end function 
 
C. Generate PIR Query 
 The decryptor receives the result, which is a vector of 
ciphertexts 𝒗𝒄 of length 𝑘. First, the decryptor decrypts 𝒗𝒄 
as a matrix 𝑉z�� . Then, the decryptor finds the index of 
zero in 𝑉z��. Because this protocol accepts a single input 
value, which only matches one element of the LUT matrix 
𝑇ab. Thus, after decryption there is also only one zero in 
𝑉z��. We denote the index of the zero by (𝑡zd{, 𝑡|dI). We 
know that the index (𝑡zd{, 𝑡|dI) represents the input and 
output index in the permuted LUT matrices 𝑇ab, 𝑇deZ. Here, 
we hide the index 𝑡|dI from the CS using a PIR query. To 
hide the index 𝑡zd{  from the CS, we employ the query 
generation method described in [6], which can reduce the 
number of PIR queries. The number of PIR queries is the 
same as the number of dimensions 𝑑 = ⌈logI(𝑙 × 𝑘)⌉ in a 
d-dimensional hypercube representation. In this study, we 
implemented both two-dimensional and two-dimensional 
cases, which means that we can support 𝑛 up to 𝑙�. 
  In the two-dimensional case, we generate two (to match 
the number of dimensions) queries 𝒒𝟎 and 𝒒𝟏. The PIR 
query 𝒒𝟎 is a vector whose 𝑡|dI-th element is 1, with other 
elements 0. The query 𝒒𝟏 is a permuted vector that left-
rotates 𝑡G = 𝑡zd{ elements from 𝒒𝟎 . For example, if 
𝒒𝟎 ={0,0,1,0} and 𝑡G = 2 , then after left-rotating two 
elements from 𝒒𝟎, we have that 𝒒𝟏 ={1,0,0,0}. If 𝑡G = 3, 
then after left-rotating three elements from 𝒒𝟎  we have 
that 𝒒𝟏 = {0,0,0,1}. In the three-dimensional case, we 
generate three queries 𝒒𝟎, 𝒒𝟏, and 𝒒𝟐. The PIR query 𝒒𝟎 
is a vector whose 𝑡|dI-th element is 1, with other elements 
0. The index 𝑡G = 𝑡zd{	𝑚𝑜𝑑	𝑙, and 𝑡� = ⌊𝑡zd{/𝑙�⌋	𝑚𝑜𝑑	𝑙. 
The query 𝒒𝟏  is a permuted vector that left-rotates 𝑡G 
elements from 𝒒𝟎. The query 𝒒𝟐 is a permuted vector that 
left-rotates 𝑡� elements from 𝒒𝟏. 
  The decryptor encrypts the queries, and then sends them 
to the CS. We represent how to generate PIR queries for 
the two- and three-dimensional cases in Algorithm 3 and 
Algorithm 4, respectively.  
Algorithm 3: Generate PIR query for two-dimensional 
case 
Input. a vector of ciphertexts 𝒗𝒄 of length 𝑘 
Output. two PIR queries 𝐸𝑛𝑐(𝒒𝟎) and 𝐸𝑛𝑐(𝒒𝟏) 
 1: function QueryGeneration (𝒗𝒄) 
 2: for 𝑖 = 0 to 𝑘 − 1 do 
 3:  𝑉z��[𝑖] ← 𝐷𝑒𝑐(𝒗𝒄[𝑖])            wa matrix 𝑉z�� 
 4: end for 
 5: Fill all the element in 𝒒𝟎 by zeros 
 6: for 𝑖 = 0 to 𝑘 − 1 do 
 7:  for 𝑗 = 0 to 𝑙 − 1 do 
 8:    if 𝑉z��[𝑖][𝑗] == 0 then  
 9:      𝑖𝑛𝑑 ← 𝑖 
10:      𝒒𝟎[𝑗] ← 1 

11:   end if  
12:  end for 
13: end for 
14: 𝑡G = 𝑖𝑛𝑑  
15: 𝒒𝟏 = 𝒒𝟎 ≪	𝑡G        wleft-rotate by 𝑡G-elements 
16: return 𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏) 
17: end function 
 
Algorithm 4: Generate PIR query for three-dimensional 
case 
Input. a vector of ciphertexts 𝒗𝒄 of length 𝑘 
Output. three PIR queries 𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏),𝐸𝑛𝑐(𝒒𝟐). 
 1: function QueryGeneration (𝒗𝒄) 
 2: for 𝑖 = 0 to 𝑘 − 1 do 
 3:  𝑉z��[𝑖] ← 𝐷𝑒𝑐(𝒗𝒄[𝑖])           wa matrix 𝑉z�� 
 4: end for 
 5: Fill all the element in 𝒒𝟎 by zeros 
 6: for 𝑖 = 0 to 𝑘 − 1 do 
 7:  for 𝑗 = 0 to 𝑙 − 1 do 
 8:    if 𝑉z��[𝑖][𝑗] == 0 then  
 9:      𝑖𝑛𝑑 ← 𝑖 
10:      𝒒𝟎[𝑗] ← 1 
11:    end if  
12:  end for 
13: end for  
14: 𝑡G ← ⌊𝑖𝑛𝑑/𝑙⌋	𝑚𝑜𝑑	𝑙 
15: 𝑡� ← ⌊𝑖𝑛𝑑/𝑙�⌋	𝑚𝑜𝑑	𝑙  
16: 𝒒𝟏 = 𝒒𝟎 ≪	𝑡G         wleft-rotate by 𝑡G-elements 
17: 𝒒𝟐 = 𝒒𝟏 ≪	𝑡�         wleft-rotate by 𝑡�-elements 
18: return 𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏),𝐸𝑛𝑐(𝒒𝟐) 
19: end function 
 
D. Select Output Value 
  The CS receives encrypted PIR queries from the 
decryptor, and then selects the output using the queries. 
We define a function 𝑃𝑒𝑟𝑚(𝐶𝑡𝑥𝑡, 𝑛𝑢𝑚), where 𝐶𝑡𝑥𝑡 is a 
ciphertext of a vector 𝑡𝑥𝑡  of length 𝑙 , and 𝑛𝑢𝑚  is an 
integer 𝑛𝑢𝑚 ∈ [0, 𝑙 − 1] . The function 
𝑃𝑒𝑟𝑚(𝐶𝑡𝑥𝑡, 𝑛𝑢𝑚) right-rotates 𝑛𝑢𝑚 elements from the 
encrypted vector 𝑡𝑥𝑡. For example, 𝐷𝑒𝑐(𝐶𝑡𝑥𝑡) ={0,1,2} 
and 𝐷𝑒𝑐�𝑃𝑒𝑟𝑚(𝐶𝑡𝑥𝑡, 2)� ={1,2,0}. 
  In the two-dimensional case, we first permute the query 
𝐸𝑛𝑐(𝒒𝟏) by the function 𝑃𝑒𝑟𝑚. Second, for the 𝑖-th row 
of LUT 𝑇deZ , we construct 𝒒′  for the output selection 
using the operation 𝐸𝑛𝑐(𝒒𝟎)⊡ 𝑃𝑒𝑟𝑚(𝐸𝑛𝑐(𝒒𝟏), 𝑖). Then, 
we denote the result of 𝑞′ ⊡ 𝑇deZ[𝑖]  as a vector 𝑣d  of 
ciphertext of length 𝑘. By summing all ciphertexts in 𝑣d, 
we obtain a ciphertext 𝑐�, where only one slot contains the 
output 𝑓(𝑥), and remainder of the slots are 0. 
  In the three-dimensional case, for each 𝑗 ∈ [0, 𝑙 − 1] ∩ ℤ 
we first reconstruct a vector of ciphertext 𝒗𝒒 of length 𝑙 
using the operation 𝐸𝑛𝑐(𝒒𝟏)⊡ 𝑃𝑒𝑟𝑚(𝐸𝑛𝑐(𝒒𝟐), 𝑗) . 
Second, for the 𝑖-th row of the LUT 𝑇deZ, we construct 𝑞′ 
for the output selection using the operation 𝐸𝑛𝑐(𝒒𝟎)⊡
𝑃𝑒𝑟𝑚(𝒗𝒒[𝑥], 𝑦) . Then, we denote the result of 𝑞′ ⊡
𝑇deZ[𝑖]  as a vector 𝒗𝒐  of ciphertext of length 𝑘 . By 
summing all ciphertexts in 𝒗𝒐, we obtain a ciphertext 𝑐�, 
where only one slot contains the desired output 𝑓(𝑥), and 
the remainder of the slots are 0. 
  We represent how to select the output value over 𝑇deZ�eZ 
in Algorithm 5 and Algorithm 6.  
Algorithm 5: Output value selection for two-dimensional 
case 
Input. LUT matrix 𝑇deZ ∈ ℤm×I; two PIR queries 
𝐸𝑛𝑐(𝒒𝟎) and 𝐸𝑛𝑐(𝒒𝟏) 
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Output. a ciphertext 𝑐′ 
 1: function OutputSelection (𝑇deZ,𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏))  
 2: 𝑐′ ← 𝐸𝑛𝑐(𝒗𝒛)           wan all-zero vector 𝒗𝒛 
 2: for 𝑖 = 0 to 𝑘 − 1 do 
 3:  𝑞′ ← 𝐸𝑛𝑐(𝒒𝟎)⊡ 𝑃𝑒𝑟𝑚(𝐸𝑛𝑐(𝒒𝟏), 𝑖) 
 4:  𝒗𝒐[𝑖] ← 𝑞′ ⊡ (𝑇deZ[𝑖])        wa ciphertext 𝑞′ 
 5:  𝑐� ← 𝑐� ⊞ 𝒗𝒐[𝑖]      wa vector of ciphertext 𝒗𝒐 
 8: end for 
 9: return 𝑐′ 
10: end function 
 
Algorithm 6: Output value selection for three-
dimensional case 
Input. LUT matrix 𝑇deZ ∈ ℤm×I; three PIR query 
𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏),𝐸𝑛𝑐(𝒒𝟐) 
Output. a ciphertext 𝑐′ 
 1: function OutputSelection (𝑇deZ,𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏), 
𝐸𝑛𝑐(𝒒𝟐))  
 2: 𝑐′ ← 𝐸𝑛𝑐(𝒗𝒛)                 wan all-zero vector 𝒗𝒛 
 3: for 𝑗 = 0 to 𝑙 − 1 do 
 4:   𝒗𝒒[𝑗] ← 𝐸𝑛𝑐(𝑞G)⊡ 𝑃𝑒𝑟𝑚(𝐸𝑛𝑐(𝑞�), 𝑗) 
 5: end for 
 6: for 𝑖 = 0 to 𝑘 − 1 do 
 7:  𝑥 = 𝑖/𝑙 
 8:  𝑦 = 𝑖%𝑙 
 9:  𝑞′ ← 𝐸𝑛𝑐(𝒒𝟎)⊡ 𝑃𝑒𝑟𝑚(𝒗𝒒[𝑥], 𝑦) 
10:  𝒗𝒐[𝑖] ← 𝒒′ ⊡ (𝑇deZ[𝑖])           wa ciphertext 𝑞′ 
11:  𝑐� ← 𝑐� ⊞ 𝒗𝒐[𝑖]      wa vector of ciphertext 𝒗𝒐 
12: end for 
13: return 𝑐′ 
14: end function 
 
Input: vectors 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕 ∈ ℤb; ciphertext 𝑐 of input 𝑥. 
Output: ciphertext 𝑐′ of output 𝑓(𝑥) 
1. Decryptor Setup  
[Create FHE parameters] The decryptor generates a 
pair of keys: a public key 𝑝𝑘 and a secret key 𝑠𝑘. 
Decryptor: 𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝐹𝐻𝐸. 𝑆𝑒𝑡𝑢𝑝 (15,16,𝑏); 
(𝑝𝑘, 𝑠𝑘) ← 𝐹𝐻𝐸. 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) 
[Send the public key] The decryptor sends the public 
key to CS. 
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟 → 𝐶𝑆: 𝑝𝑘  
2. Construct Lookup Table 
[Generate a permutation vector] CS generates a 
permutation vector	𝒗 ∈ ℤb 
[Construct LUT matrices] CS constructs LUT matrices 
𝑇ab,𝑇deZ ∈ ℤm×I 
𝑇ab,𝑇deZ ← 𝐿𝑈𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	(𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕, 𝒗)                            
(Algorithm 1) 
3. CS Searches Input Value over LUT matrix 
[Search input value over the LUT matrix] CS searches 
the input ciphertext 𝑐 over the LUT matrix 𝑇ab and get 
the result 𝒗𝒄 
𝒗𝒄 ← 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑎𝑟𝑐ℎ	(𝑇ab, 𝑐)	                                         
(Algorithm 2) 
[Send result to the decryptor] CS sends the result to the 
decryptor 
4. The Decryptor Generate PIR Query 
[Decrypt the result from the CS] The decryptor 
decrypts the result 𝒗𝒄 to a matrix 𝑉z�� 
[Generate PIR queries] The decryptor performs two 
PIR queries in the two-dimensional case; three PIR 
queries in the three-dimensional case. 
[Encrypt the PIR queries] The decryptor decrypts the 
PIR queries. 

𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏) ← QueryGeneration (𝑣|)                 
(2-dimensional case Algorithm 3) 
𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏),𝐸𝑛𝑐(𝒒𝟐) ← QueryGeneration (𝑣|)    
(3-dimensional case Algorithm 4) 
[Send the PIR queries to the CS] Send the PIR queries 
to the CS 
5. The CS Selects Output Value from LUT matrix 
[Select output value from the LUT matrix] CS selects 
the output ciphertext 𝑐′ from the LUT matrix 𝑇deZ by the 
PIR queries from decryptor. 
𝑐′ ← 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛	(𝑇deZ,𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏))       
(two-dimensional case Algorithm 5) 
𝑐′
← 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛	(𝑇deZ,𝐸𝑛𝑐(𝒒𝟎),𝐸𝑛𝑐(𝒒𝟏),𝐸𝑛𝑐(𝒒𝟐)) 
(three-dimensional case Algorithm 6) 
 

Fig. 4-2 FUNCTION EVALUATION WITH FHE USING LUT 
PROTOCOL 

 
5. SECURITY ANALYSIS 
  Our protocol is implemented using a two-party protocol, 
consisting of a CS and decryptor. Below, we demonstrate 
how the input value 𝑥  and output value 𝑓(𝑥)  are not 
revealed to the CS and decryptor. The decryptor is a semi-
honest party, which owns the secret key but must follow 
the exact prespecified protocol, and cannot change its 
inputs or outputs. 
  We guarantee that no information on the underlying 
plaintext can leak to anyone in the four main algorithms in 
our protocol: construct LUT matrix, search input value, 
generate PIR query, and select output value. The original 
LUT can be known and uploaded by anyone, which means 
that the original LUT is public. 
  In the algorithm construct LUT matrix, the CS uses the 
original LUT to construct two permuted LUT matrices 𝑇ab, 
𝑇deZ, and saves these in the CS. In the algorithm search 
input value, the input 𝑐 and output 𝑣| of the algorithm are 
both ciphertext. Thus, 𝑥 and 𝑓(𝑥) cannot be known by the 
CS. In the algorithm generate PIR query, the decryptor 
receives the result 𝑣| from the CS, and decrypts it to 𝑉z��. 
The decryptor knows the index (𝑡zd{, 𝑡|dI) , i.e., 
𝑉z��[𝑡zd{][𝑡|dI] = 0, which is also the index of the value 
in 𝑇deZ  that we want to extract. Then, the decryptor 
generates the PIR queries. Because 1) the original LUT is 
permuted by a random permutation and the permuted LUT 
matrices 𝑇ab, 𝑇deZ are not sent to decryptor, and 2) all the 
elements in 𝑉z��  contain uniformly random values, the 
decryptor cannot know 𝑥 and 𝑓(𝑥). In the algorithm select 
output value, the input PIR queries and output 𝑐� are both 
ciphertexts. Thus, 𝑥 and 𝑓(𝑥) cannot be known by the CS. 
  Therefore, neither CS nor the decryptor can know the 
input value 𝑥 and output value 𝑓(𝑥). 
 
6. EXPERIMENTAL EVALUATION 
  In this section, we evaluate the proposed protocol to 
confirm its efficiency, by implementing it with HElib*, 
which is based on the BGV scheme. The implemented 
protocol considers the two-dimensional and two-
dimensional cases, which means that the protocol supports 
up to 𝑙� elements in the LUT matrix, whose number of 
columns is 𝑙 (the number of slots). In the evaluation, one 
machine was prepared to operate as both the CS and 
decryptor, i.e., both modules run on the same machine. 
The communication between the CS and decryptor, such 
as ciphertext results and encrypted PIR queries, was 
handled by writing to files. 

HElib*: https://github.com/shaih/HElib 
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  The experimental evaluation consists of two evaluations: 
Experiment-1 and Experiment-2. Experiment-1 confirms 
the effectiveness of our proposed protocol in comparison 
with the method of Crawford et al.. Experiment-2 
evaluates the feasibility of our proposed protocol, by 
measuring both the runtime and communication cost. 
Experiment-1 
 Experiment-1 compares the proposed method with the 
related method of Crawford et al. [4]. The utilized FHE 
parameters are shown in Table 6-1, which are as consistent 
as possible with those of [4]. We set the plaintext space as 
2G¬ = 32,768, which means that in our protocol the input 
and output integers of the function are in a 15-bit range 
size. The number of elements in this experiment is 27,000 
(𝑘 = 15). We employed the environment detailed in Table 
6-2 for Experiment-1. We set a larger plaintext space and 
table size on the machine, whose CPU and memory are 
weaker to those used in [4], to perform the experiment. To 
implement a multi-thread environment, we utilize 
NTL/BasicThreadPool.h from the NTL* library, and we 
test the runtime for different numbers of threads. 
Experiment-2 
  The purpose of this experiment is to measure the runtime 
and communication cost for our proposed protocol. We 
perform this experiment with different numbers of 
elements in the LUT matrix. Using the same FHE 
parameters as shown in Table 6-1, we vary the number of 
elements by varying the number of rows 𝑘  in the LUT 
matrix. When 𝑘 ≤ 224, the number of dimensions is two, 
and when 224 < 𝑘 ≤ 224� the number of dimensions is 
three. We employed the environment detailed in Table 6-
2. To implement a multi-thread environment, we employ 
NTL/BasicThreadPool.h from the NTL library, and set the 
number of threads to 36, which means that we utilize two 
CPUs (each with 18 cores) in this experiment. 
 
6.1 RUNTIME RESULTS 
  We show the runtimes for the search input value, 
generate PIR query, and select output value algorithms in 
Experiment-1, along with the total time as the average 
over five trials, in Table 6-3. The runtime for 
Experiment-2 is shown in Table 6-4.  
  Crawford et al. employed an Intel Xeon E5-2698 v3 
(which is a Haswell processor), with two sockets and 16 
cores per socket, at 2.30 GHz. The main memory size was 
250 GB. They set 𝑚 = 2G¬ − 1 = 32767 , with the 

plaintext space 2GG = 2048 , so that 1800 slots were 
available. Each plaintext slot held a degree-15 extension 
(𝐿 = 15).  
  The result from Experiment-1 shows that we can look up 
27,000 15-bit integers the LUT matrix in approximately 
23 s, excluding the communication time. By using eight 
threads, the runtime can be reduced to 6 s excluding the 
communication time. The evaluation time is independent 
of the function. Our result shows that our proposed 
protocol using integer encoding is more practical than the 
method in [4]. 
  The result from Experimente-2 shows that we can look 
up 448,000 19-bit integers in the LUT in approximately 
20 min for one thread, excluding the communication time. 
By using 36 threads, the runtime can be reduced to 
approximately 51 s excluding the communication time. 
Our results show that the construction of the LUT matrices 
supports multi-thread execution in every row, which 
makes it possible to further reduce the runtime. 
 
6.2 COMMUNICATION COST 
  In our protocol, the CS communicates with the decryptor. 
We measured the transferred data size for each input in 
our protocol, and calculated the transmission time. The 
communication cost in Experiment-1 is shown in Table 
6-5, and that in Experiment-2 is shown in Table 6-6. 
  The result for Experiment-1 (Table 6-5) shows that when 
the transmission speed is 100 Mbps, we can look up 
27,000 15-bit integers the LUT matrix in approximately 
30 s using one thread, including approximately 7 s of 
communication time. Even our protocol involves 
communication between the CS and decryptor, the overall 
runtime of our protocol is approximately 120 times faster 
than that of Crawford et al. [4] running on one thread, and 
approximately 74 times faster running on eight threads. 
  The result from Experiment-2 (Table 6-6) shows that in 
our protocol, the communication cost is 𝑂(𝑘 ∙ 𝑠) for the 
CS to send the result to the decryptor, and 𝑂(𝑑 ∙ 𝑠) for the 
decryptor to send the PIR query to the CS, where 𝑠 is the 
size of a single ciphertext, 𝑘 is the number of rows in the 
LUT matrix, and 𝑑 is the number of dimensions. As the 
number of elements in the LUT matrix increases, the 
transferred data size from the CS to the decryptor 
increases linearly, and the transferred data size from the 
decryptor to the CS increases in stages. 
                                      NTL*: https://www.shoup.net/ntl/ 

 
 

Table 6-1 FHE PARAMETERS OF HELIB IN THE EXPERIMENT 
Experiment 𝒎 𝒍 Security Plaintext space 𝑳 

1 32,767 1,800 300 32,768 (2^15) 15 
2 11,441 224 142 524,288 (2^19) 10 

 
Table 6-2 EXPERIMENTAL ENVIRONMENT IN THE EXPERIMENT 

Experiment OS CPU Memory # of CPUs (sockets) 

1 Ubuntu 18.04.1 Intel(R) Core (TM) 
i7-8700 @3.2 GHz 15.4 GB one (each with six 

cores) 

2 CentOS 7.3.1611 

Intel Xeon CPU E7-
8880 v3 @ 2.3 GHz 
(Turbo Boost: 3.1 

GHz) 

3 TB four (each with 18 
cores) 
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Table 6-3 RUNTIME IN EXPERIMENT-1 
 Our protocol Crawford et al. [4] 

# of threads 1 2 4 8 1 2 4 8 
(a) Search Input Value [s] 0.63 0.37 0.21 0.17 

60 
min 

35 
min 

20 
min 

16 
min 

(b) Generate PIR Query [s] 14.90 8.33 4.28 3.32 
(c) Select Output Value [s] 7.72 4.71 2.65 2.20 

(a)+(b)+(c) Total [s] 23.25 13.42 7.14 5.69 
 

Table 6-4 RUNTIME IN EXPERIMENT-2 
# of elements 44,800 448,000 

# of dimensions 2 3 
# of threads 1 4 12 36 1 4 12 36 

(a) Search Input Value [s] 4.73 1.50 0.61 0.44 47.30 13.78 4.98 2.28 
(b) Generate PIR Query 

[s] 53.55 15.02 5.44 2.47 534.18 149.98 51.57 17.98 

(c) Select Output Value 
[s] 55.01 16.56 6.52 5.03 598.09 179.22 69.86 30.80 

(a)+(b)+(c) Total [s] 113.29 33.08 12.57 5.90 1179.58 342.97 126.55 51.07 
 

Table 6-5 COMMUNICATION COST IN EXPERIMENT-1 

Data # of elements Measured transferred data size 
[MB] 

Calculated transmission time [ms] 
100 Mbps 1 Gbps 10 Gbps 

CS to Decryptor 27,000 82 6406.25 640.6 64.06 
Decryptor to CS 11 859.38 85.93 8.60 

 
Table 6-6 COMMUNICATION COST IN EXPERIMENT-2 

Data # of 
elements 

# of 
dimensions 

Measured transferred 
data size [MB] 

Calculated transmission time 
100 Mbps 1 Gbps 10 Gbps 

CS to 
Decryptor 

11,200 

2 

66 5.16 s 0.52 s 0.05 s 
22,400 132 10.31 s 1.03 s 0.10 s 
33,600 197 15.39 s 1.54 s 0.15 s 
44,800 263 20.55 s 2.06 s 0.21 s 
112,000 

3 

656 51.25 s 5.13 s 0.51 s 
224,000 1,331 103.98 s 10.40 s 1.04 s 
336,000 2,048 160.00 s 16.00 s 1.60 s 
448,000 2,662 207.97 s 20.80 s 2.08 s 

Decryptor to 
CS 

11,200 

2 2.7 210.9 ms 21.10 ms 2.11 ms 
22,400 
33,600 
44,800 
50,176 
50,177 

3 4.0 312.50 ms 31.25 ms 3.13 ms 
112,000 
224,000 
336,000 
448,000 

7. CONCLUSION 
  In this paper, we proposed an LUT protocol for 
evaluating any single-integer input functions. We 
proposed a new protocol to resolve the problems with the 
existing method in [4], i.e., 1) bitwise encoding is 
employed, which is not scalable, and 2) the LUT must 
include all possible input values, meaning that it may be 
huge, increasing the evaluation time. 
  Our protocol adopts integer encoding, which is more 
efficient than bitwise encoding. The experimental results 
show that we can look up 27,000 15-bit integers in the 
LUT matrix in approximately 30 s using one thread, 
including approximately 7 s of communication time. The 
evaluation time is independent of the function.  
  The construction of the LUT matrices supports multi-
thread execution in every row, which makes it possible to 
further reduce the runtime. We can look up 448,000 19-bit 

integers in the LUT in approximately 51 s excluding the 
communication time using 36 threads.  
  Using the query generation method based on our 
previous work [6], we can reduce the communication cost. 
The communication cost is 𝑂(𝑘 ∙ 𝑠) for the CS to send the 
result to the decryptor, and 𝑂(𝑑 ∙ 𝑠) for the decryptor to 
send the PIR query to the CS, where 𝑠 is the size of a 
single ciphertext, 𝑘  is the number of rows in the LUT 
matrix, and 𝑑 is the number of dimensions. As the number 
of elements in the LUT matrix increases, the transferred 
data size from the CS to the decryptor increases linearly, 
and the transferred data size from the decryptor to the CS 
increases in stages. 
  Our experimental result shows that we can achieve a 
shorter runtime using a weaker machine than in [4] to look 
up more integers, which demonstrates that our protocol is 
more practical than that in [4]. 
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  Currently, our proposed protocol can evaluate any 
functions with one input value. Our future work will 
include extending our protocol to handle multi-input 
values.  

 
ACKNOWLEDGEMENT 

    This work was supported by JST CREST Grant Number 
JPMJCR1503, Japan and Japan-US Network Opportunity 
2 by the Commissioned Research of National Institute of 
Information and Communications Technology (NICT), 
JAPAN. 
 

REFERENCES 
[1] M. D. Ryan.: Cloud computing security: The 

scientific challenge, and a survey of solutions. In 
Journal of Systems and Software, vol 86, issue 9, 
pp.2263-2268. (2013) 

[2] S. M. Shariati, Abouzarjomehri and M. H. 
Ahmadzadegan.: Challenges and security issues in 
cloud computing from two perspectives: Data 
security and privacy protection. In Proc. of KBEI 
2015, pp.1078-1082. (2015) 

[3] C. Gentry.: Fully Homomorphic Encryption Using 
Ideal Lattices. In Proc. of STOC 2009, pp.169-178. 
(2009) 

[4]  J. L. H. Crawford, C. Gentry, S. Halevi, D.  Platt and 
V. Shoup: Doing Real Work with FHE: The Case of 
Logistic Regression. In Proc. of WAHC 2018, pp. 1-
12. (2018) 

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. 
Sudan.: Private information retrieval. In Journal of 
the ACM, vol 45, issue 6, pp. 965-981. (1998)  

[6] Y. Ishimaki, H. Imabayashi and H.Yamana.: Private 
Substring Search on Homomorphically Encrypted 
Data. In Proc. of SMARTCOMP 2017, pp.1-6. 
(2017) 

[7]  Z. Brakerski and V. Vaikuntanathan.: Lattice-based 
FHE as secure as PKE. In Proc. of ITCS 2014, pp. 1-
12. (2014) 

[8]  Z. Brakerski, C. Gentry and V. Vaikuntanathan: 
(Leveled) Fully Homomorphic Encryption without 
Bootstrapping. In Proc. of ITCS 2012, pp.309-325. 
(2012) 

[9] N. P. Smart and F. Vercauteren.: Fully homomorphic 
SIMD operations. In Journal of Designs, Codes and 
Cryptography, vol 71, issue 1, pp. 57-81. (2014) 

[10] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M. 
Killijian.: XPIR: Private information retrieval for 
everyone. In Journal of Proceedings on Privacy 
Enhancing Technologies, vol 2016, issue 2, pp. 155-
174. (2015) 

[11] S. Angel, H. Chen, K. Laine, S. Setty.: PIR with 
Compressed Queries and Amortized Query 
Processing. In Proc. of S&P 2018, pp.962-979. 
(2017) 

[12] S. Badsha, X. Yi, I. Khalil and E. Bertino.: Privacy 
Preserving User-based Recommender System. In 
Proc. of ICDCS 2017, pp. 1074-1083. (2017) 

[13] Q. Tang and H. Wang.: Privacy-preserving Hybrid 
Recommender System. In Proc. of CSS 2017, pp. 
59-66. (2017) 
 

 
 


