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Abstract Data in many fields such as e-commerce, social networks, and web data can be modeled as graphs, where a node

represents a person and/or an object and a link represents the relationship between people and/or objects. Since the relation-

ships change with time, data mining techniques for time series graphs have been actively studied. In this paper, we study the

problem of predicting the links in the future graph from historical graphs. Although various studies have been carried out on

link prediction, the prediction accuracy of existing methods is still low because it is difficult to capture continuous change with

time. Therefore, we propose a new method that combines non-negative matrix factorization (NMF) and Holt-Winters method.

NMF extracts the latent features while the Holt-Winters method captures the changes of features with time. Our method can

predict hidden links that do not appear in historical graphs. Our experiments with real dataset show that our method has a

higher prediction accuracy compared to existing methods.
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1 Introduction

The amount of data in many applications such as e-commerce,

social networks, and the web is increasing rapidly. Extracting use-

ful information from these big data can improve the quality of ap-

plications or services and can create new profits. Data from these

applications can be modeled as graphs, where nodes represent ob-

jects and links represent the relationship between the objects. For

example, if a customer purchases an item from an e-commerce site,

we can represent this relationship using a link between two nodes,

those represent the customer and the item. Graphs can be used in

various data mining tasks, such as detecting hidden groups, detect-

ing missing links, and ranking objects [9].

Real world data such as product sales is dynamic because their re-

lationships change with time. Therefore, it is useful to predict how

the links in the graphs change with time. By predicting the future

link structure, we can predict future trends and behaviors. There-

fore, e-commerce sites such as amazon can recommend products

which match customers tastes and increase their sales and customer

satisfaction [8, 12, 13, 17, 18]. We formally define our problem as

follows.

Problem definition: (Time Series Link Prediction). Given the

set of time series bipartite graphs G1 =(V1,V2,E1), · · · ,GT (V1,V2,ET )

from time 1 to T , where V1 and V2 represent the sets of nodes

and Et represents the set of weighted links at each time t, the

task is to predict the set of binary links ET+1 in the future graph

GT+1 = (V1,V2,ET+1) at time T +1.

Various link prediction methods have been proposed, but the pre-

diction accuracy is still low [8, 12] for time series graphs. In order

to improve the prediction accuracy, it is important to model the fea-

tures of the graph properly and capture how these features change

with time. Non-negative matrix factorization (NMF) method can be

used in modelling graph features because it extracts latent features

effectively and therefore helps in understanding the underlying link

structure [19]. In addition, Holt-Winters method is commonly used

in time series data forecasting because it effectively captures peri-

odicity or seasonal fluctuations in the data [3, 10].

In this paper, we propose a new method that combines NMF and

Holt-Winters method for predicting the links in the future graph

from historical graphs. Our method first applies NMF to extract

the latent features from the matrix representing the structure of each

historical graph at time t (1<= t <= T ) and, then, applies Holt-Winters

to predict the latent features at time T + 1 from the time series of

the decomposed matrices from 1 to T . In addition, we propose two

extensions to our method so as to improve the preciseness of the

prediction; matrix decomposition by leveraging time invariant fea-

tures and future prediction by ensemble learning. As for the former

extension, we assume that given a bipartite graph with two sets of

nodes, the latent features in one set are time invariant, while the

latent features in the other set change with time. Then, we apply



NMF and Holt-Winters method to an adjacency matrix of the bi-

partite graph, where the column or row features are held constant.

As for the latter, ensemble learning improves the accuracy of pre-

dictions [6]. By employing ensemble learning, multiple models can

be created by changing the parameters and they are combined to

improve the prediction accuracy and avoid overfitting. We evaluate

our method by comparing it with other methods using a real dataset

and our method showed an improvement in the prediction accuracy.

Further, Vector Auto Regressive (VAR) model has been success-

fully used in multivariate time series data forecasting [21, 22]. We

compare the performance of Holt-Winters and VAR forecasting

methods, and the results show that Holt-Winters results are more

accurate and therefore it outperforms VAR on our dataset. In spite

of the popularity of VAR models, the results indicate that in some

domains VAR does not perform well.

The remainder of this paper is organized as follows. Section 2

describes related work. Section 3 overviews the preliminaries of

this work. Section 4 describes the details of our proposed method.

Section 5 reviews the results of our experiments. Section 6 provides

our brief conclusion.

2 Related work

In this section, we describe existing methods for the link pre-

diction problem using matrix decomposition and forecasting tech-

niques.

2.1 Matrix decomposition approach

Truncated singular value decomposition (TSVD) is a low-rank

matrix approximation technique which can used for time series link

prediction [7]. TSVD decomposes a matrix X of size M×N into

three matrices. The best K rank approximation of the original ma-

trix is given by

X ≈ UKΣKV
T

K , (1)

where UK and VK are orthogonal matrices of size M×K and N×K

respectively, and ΣK is a K×K diagonal matrix.

A three dimensional tensor can be reduced to a two dimensional

matrix using the collapsed tensor (CT) and collapsed weighted ten-

sor (CWT) techniques proposed in [8]. CT method removes the

time series information of a three dimensional tensor by taking the

sum in the time direction as shown below.

X =
T

∑
t=1

Zt , (2)

where Zt is the matrix at time t and X is the sum of all matri-

ces from time 1 to time T . CWT method assigns temporal weights

to the elements and reduces a three-dimensional matrix to a two-

dimensional matrix while maintaining the time series information

of the three-dimensional tensor as shown below.

X =
T

∑
t=1

(1−Θ)T−t
Zt , (3)

where Zt is the matrix at time t, X is the final matrix after summing

all the matrices from time 1 to time T , and Θ ∈ (0,1) is a parame-

ter that is chosen by the user depending on the experiments on the

training data. As shown by (3), CWT assigns more weight to the

most recent links. TSVD matrix decomposition method can be used

with the matrices resulting from CT and CWT, we refer to them as

TSVD CT and TSVD CWT respectively.

In addition, Canonical Polyadic (CP) decomposition is a common

tensor matrix decomposition method which decomposes a three di-

mensional matrix to three rank-one tensors, just like SVD decom-

poses a matrix to three rank-one matrices [8, 11]. However unlike

SVD, the resultant tensors from CP decomposition are not orthogo-

nal, but they are unique and hence they can be used for forecasting.

The CP decomposition of a tensor X of size M×N×T is defined

as follows:

X ≈
K

∑
k=1

λkak ◦bk ◦ ck, (4)

where K is the number of components and the symbol ◦ represents

the outer product 1. ak and bk extract the column and row features

respectively, while ck extracts the temporal components. The three

matrices correspond to the axes of the original three-dimensional

tensor.

2.2 Forecasting approach

Various time series data forecasting methods have been stud-

ied [20]. Prediction of how a link changes between certain nodes

is a univariate time series prediction task, and therefore future links

can be predicted by solving all the node combinations.

Exponential smoothing is a simple univariate time series predic-

tion method. In the first-order exponential smoothing method, pre-

diction is performed on the observations y1, · · · ,yt such that more

weight is given to the most recent observation.

Pt+1 = αyt +(1−α)Pt , (5)

where α is a learning coefficient which takes values 0 <= α <= 1 and

Pt+1 is the predicted value for one time period ahead. However,

the first-order exponential smoothing prediction formula does not

capture change in trends such as increasing and decreasing trends

effectively.

In the second-order exponential smoothing method, prediction is

performed with the addition of the term bt which captures the trend

such that

Pt+1 = αyt +(1−α)Pt +bt and (6)

bt = β (Pt −Pt−1)+(1−β )bt−1, (7)

where β is the trend coefficient.

Auto Regressive (AR) models are also widely used in data fore-

casting [21, 22]. The Vector Auto Regressive (VAR) model is used

in prediction of future observations in multivariate time series data,

and has the parameters; time lag set L, weight Al and Gaussian noise

1Three-way outer product is defined as: X = a◦b◦ c.



εt .

yt = ∑
l∈L

Alyt−l + εt . (8)

The AR model is used in various research fields, for example, in

social economics, Simultaneous Auto Regressive (SAR) model is

commonly used in the analysis of spatial data since it incorporates

spatial auto-correlations into regression models [2]. VAR has also

been used in space-time prediction problems of sensor data by com-

bining AR model with tensor decomposition [21].

Recently, Recurrent Neural Networks especially Long-Short

Term Memory (LSTM) have been studied for time series data fore-

casting [14]. This is because of their potential to capture long term

dependencies in sequential data. The standard LSTM model takes a

sequence of vectors y1,y2, · · · ,yt ∈ R
n as input and produces a sin-

gle output vector ŷt+1 ∈ R
n, where ŷt+1 is the predicted value for

one time period ahead.

3 Preliminaries

As preliminaries of our method, we explain time series graph,

NMF, and Holt-Winters method.

3.1 Time series graph

Let G = (V1,V2,E) be a bipartite graph, where V1 and V2 are sets

of nodes and E ∈V1×V2 is a set of weighted links. The numbers of

nodes in V1 and V2 are denoted by N and M, respectively. The bipar-

tite graph G is represented in a form of two-dimensional adjacency

matrix X of size M×N. If there exists a link between nodes i and

j, the (i, j) component of the matrix is assigned the weights of the

links and zero if there is no link. We consider the graph structure

over a period of time. The graph structure changes with time (e.g.,

sales data in every month). We denote X
(t) as an adjacency matrix

at each time t. We call the set of graphs over time range time series

graph.

3.2 NMF: Non-negative Matrix Factorization

NMF decomposes a matrix of non-negative values to two matri-

ces of low dimensions such that they do not include negative val-

ues [15]. This restriction enables NMF to provide different decom-

position results compared to other matrix decomposition methods

such as singular value decomposition (SVD) or principal compo-

nent analysis (PCA). In addition, NMF results are easy to interpret,

especially in tasks where the underlying features are interpreted as

non-negative.

In NMF, a non-negative value matrix X of size M×N is decom-

posed into two non-negative matrices, U and V of size M×K and

K×N respectively, such that X ≈ UV . K is the base number of

NMF and is an arbitrary parameter. In this paper, we use the multi-

plicative update rules for NMF where matrices U and V are initial-

ized with random non-negative values. We use an iterative method

to update matrices U and V such that the divergence between the

original matrix X and UV is minimized. In our experiments, we

use a supermarket dataset and, since sales events are expected to

follow the Poisson distribution, we use the Kullback- Leibler (KL)

divergence. The update rules based on KL divergence are defined

by the equations below as discussed by [16].

uik← uik

∑
j

xi jvk j

∑
k

uikvk j

∑
j

vk j

, (9)

vk j← vk j

∑
i

xikuik

∑
k

uikvk j

∑
i

uik

. (10)

The obtained decomposed matrices can be regarded as matrices in

which the features of the original matrix are reduced into a low di-

mension, that is, the features of each axis of the original matrix are

reduced into groups with K number of components.

3.3 Holt-Winters method

Holt-Winters is a forecasting method suitable for time series data

that has seasonality and trend [3, 10]. Seasonality means that the

time series data has trends that repeat every m cycles. There are two

variations of the Holt-Winters technique; additive and multiplica-

tive methods that differ in the seasonality component. The additive

method is suitable when the seasonal variations in the series are

roughly constant. On the other hand, the multiplicative method is

suitable when the seasonal variations change proportionally to the

level (average value) of the series. In this paper we choose the addi-

tive method because the change in our dataset is fairly constant. The

additive Holt-Winters method consists of three smoothing equations

and a forecasting equation as shown below.

lt = α(yt − st−m)+(1−α)(lt−1 +bt−1). (11)

bt = β (lt − lt−1)+(1−β )bt−1. (12)

st = γ(yt − lt−1−bt−1)+(1− γ)st−m. (13)

yt+h = lt +hbt + st−m+h. (14)

where y1,y2, · · · ,yt are the observed values and m is the seasonal-

ity parameter which represents the length of the seasonal cycle, for

example, m = 3 for quarterly data, and m = 12 for monthly data.

α ,β ,γ are smoothing parameters. lt is the smoothed estimate of the

level at time t, bt is the smoothed estimate of the change in the trend

at time t and st is the smoothed estimate of the seasonal component

at time t. The smoothing equations (11-13) minimize the squared

error and the forecast, (yt+h) at h time periods ahead is calculated

as shown in (14).

4 Proposed method

In our proposed method, we use NMF to extract the underly-

ing latent features and Holt-Winters method to capture the periodic

change of the extracted latent features and predict future actions.



Figure 1: Overview of proposed method: Step 1: NMF is applied to the

matrices X(1), · · · ,X(T ). Step 2: Holt-Winters method is applied to the se-

quence of U (t) and V (t) (1 <= t <= T ). Step 3: The predicted matrix at time

T +1 is calculated as X(T+1) =U (T+1)V (T+1).

4.1 Outline of proposed method

Figure1 shows the outline of the proposed method. Z is a three-

dimensional tensor which consists of the adjacency matrices of

the bipartite graphs from time 1 to time T . We consider matrices

X
(1), · · · ,X(T ) of uniform size at each time t. NMF is applied to

the matrices X(1), · · · ,X(T ) to obtain U
(1),V (1), · · · ,U (T ),V (T ).

Holt-Winters method is then applied to the sequence of U
(t) and

V
(t) (1 <= t <= T ) to predict the values of U

(T+1) and V
(T+1) at

time T +1, respectively. The predicted matrix at time T +1 is cal-

culated as X(T+1) =U
(T+1)

V
(T+1).

In NMF, the decomposition matrices are initialized with random

non-negative values and then the multiplicative update rules are ap-

plied. The final decomposition matrices depend on the initial de-

composition matrices. Therefore, there is no guarantee that the

reduced K features appear in the same order for each decompo-

sition matrix in U
(t) (V (t)) (1 <= t <= T ). To solve this problem,

we first apply NMF to the average matrix defined as XAve(i, j) =

1
T

T

∑
t=1

X
(t)(i, j) to obtain Uinit ,Vinit which we use as the initial ma-

trices at each time t. By using the same initial decomposition ma-

trix at each time t, we expect that the order of the features does

not change, that is, same features are likely to appear in the same

position in each decomposition matrix. This ensures that the latent

features are captured properly over the entire time.

Algorithm 1 shows the outline of the proposed method. The in-

put Z is a list of same size matrices at each time t, and XAve is the

average matrix. The output X(T+1) is the predicted matrix at time

T + 1. NMF is applied to the average matrix with random initial

non-negative value matrices Urandom,Vrandom to obtain the initial

Algorithm 1 Calculation of prediction matrix X
(T+1)

Input Z = (X(1),X(2), ...,X(T )),XAve

Output X(T+1)

1: NMF : Uinit ,Vinit ←XAve,Urandom,Vrandom

2: for each X(t) ∈Z do

3: NMF : U (t),V (t)←X(t),Uinit ,Vinit

4: Ulist ←U (t)

5: Vlist ← V (t)

6: end for

7: Holt−Winters : U (T+1)←Ulist

8: Holt−Winters : V (T+1)← Vlist

9: X(T+1) =U (T+1)V (T+1)

decomposition matrices Uinit ,Vinit (line 1). NMF is then applied to

the matrices at each time t, with Uinit ,Vinit as the initial matrices

(lines 2 and 3). A list of decomposed matrices Ulist ,Vlist is created

to which Holt-Winters is applied to forecast the values at time T +1

(lines 7 and 8). The predicted matrix X
(T+1) is obtained by the dot

product of U (T+1),V (T+1) (line 9).

4.2 Matrix decomposition by time invariant features

In time series link prediction for bipartite graphs with two sets

of nodes, we can assume that the latent features in one set are time

invariant while the latent features in the other set change with time.

For example, since we use supermarket dataset for this paper, this

dataset contains two sets of nodes which represent customers and

items. Then, we can assume that customers features (preferences)

remain constant but products features change with time. This is be-

cause some items such as fruits are seasonal and special products

are promoted during special events, and hence they have a greater

effect on sales. Therefore, it is important to consider a model where

temporal change is represented in only one of the nodes of the bi-

partite graphs.

Given the adjacency matrices of the bipartite graphs from time 1

to time T , we assume that the row features are time invariant but the

column features change with time, and vice-versa. In the case of

time invariant column features, NMF is applied to a matrix of size

T M×N obtained by concatenating T matrices of size M×N. The

matrix is decomposed into two matrices U and V of sizes T M×K

and K×N respectively. The column features (matrix V ) will have

the same values over the entire time, and change is represented only

in the row features (matrix U ). Matrix U of size T M×K is then

divided into T matrices, U1,U2, · · · ,UT and Holt-Winters method

is used to forecast the values of UT+1 at time T +1. The predicted

matrix at time T +1 is calculated as X(T+1) =U
(T+1)

V . Figure 2

shows the proposed method with time invariant column features.

Algorithm 2 shows the algorithm for the proposed method with

time invariant column features. NMF is applied to matrix X of size

T M×N, which is then decomposed to matrices U and V of sizes

T M×K and K×N respectively (line 1). The T M×K matrix U is

then divided into T matrices to create a list of decomposition ma-



Figure 2: Proposed method by leveraging time invariant features V

Algorithm 2 Calculation of prediction matrix X
(T+1) by leverag-

ing the time invariant column features

Input Z = (X(1),X(2), ...,X(T ))

Output X(T+1)

1: NMF : U,V ←X

2: Time Divide : U (1),U (2), ...,U (T )←U

3: Ulist ←U (1),U (2), ...,U (T )

4: Holt−Winters : U (T+1)←Ulist

5: X(T+1) =U (T+1)V

trices. Holt-Winters is applied to the list of matrices to predict the

values of UT+1 at time T +1, (line 4). The predicted matrix at time

T +1 is calculated as XT+1 =U
T+1

V (line 5).

Assuming that the temporal change in one set of the nodes of a

bipartite graph is significantly larger than that in the other node, this

algorithm improves modelling of the latent features and prediction

accuracy.

4.3 Holt-Winters and NMF methods with ensemble learning

Ensemble learning technique involves strategically combining

several models so as to improve the stability and predictive perfor-

mance. Previous studies on ensemble learning show that combining

multiple individual models improves prediction accuracy compared

to using a single model [6]. The idea of combining multiple models

assumes that it is difficult for a single model to understand the un-

derlying structure, but multiple models can capture different aspects

of data. Ensemble learning is helpful when it is difficult to choose

optimum values of parameters, and when one wants to avoid large

errors [4].

The Holt-Winters seasonality parameter, m, and the number of

features, K, for NMF need to be selected manually. It is difficult

to search for optimum values for those parameters which give the

best performance. We employ an ensemble approach, let XKm

denote the matrix of scores calculated for K = 5,10, · · · ,100 and

m = 1,2, · · · ,12, the final matrix of ensemble scores is then calcu-

lated as,

X = ∑
K∈(5,10,...,100)

∑
m∈(1,2,...,12)

XKm

‖XKm‖F
, (15)

where ‖XKm‖F is the Frobenius norm for XKm.

5 Experiments

In this section, we describe experiments and their results by com-

paring our method proposed in Section 4 with the former methods

summarized in Section 2. We also investigate the results of our vari-

ation of 1) fixing time invariant features and 2) ensemble learning

described in Section 4.

In our experiments we use a point-of-sales dataset for a period of

24 months obtained from a supermarket. Supermarket data is peri-

odic because some products such as vegetables are seasonal and spe-

cial products are promoted during special events such as Christmas

and Valentines. The dataset contains 25668 customers and 113688

items. From this dataset we extract the top 1000 frequent customers

and top 500 items with highest number of sales. We transform the

data to adjacency matrices of bipartite graphs, and use the data for

23 months as training dataset and the data for the last month as the

test dataset. We generate a three-dimensional tensor Z extended in

the time direction, that is, if customer i buys n items in month t, then

Z(i, j, t) = n. We eliminate the influence of large values in the data

by normalizing the data according to the equation below which was

proposed by [8].

Z(i, j, t) =











1+ log(n) n > 0

0 n = 0.
(16)

The link prediction problem can be regarded as a matrix comple-

tion problem with implicit feedback [1]. Given a M×N adjacency

matrix, we assume that the matrix is binary where the presence of

links is represented by 1s and absence of links is represented by 0s.

Since the objective of our study is to predict whether there is a link

or not between the customers and items, if customer i purchased

item j n times, the link information is represented as,

Y (i, j) =











1 n > 0

0 n = 0.
(17)

In addition, the Holt-Winters smoothing parameters α ,γ,β and

seasonality component need to be decided before-hand. We use the

approach discussed in [3] to establish the values for the smoothing

parameters which minimize the sum of squared errors for one time



step ahead forecast. We set the seasonality component to m = 3

months, by assuming seasonality appears every quarter year in sales

data. Moreover, Holt-Winters method can also be used with the

temporal information extracted by CP (described in Section 2) to

predict future observations, we refer to this as CP+HW. We com-

pare the performance of our proposed methods with the methods

described in Section 2; CP+HW, CP and TSVD CWT. For TSVD,

CP and NMF decomposition, instead of using a fixed value of K,

we use an ensemble approach as shown below.

X = ∑
K∈(5,10,...,100)

XK

‖XK‖F
, (18)

where XK is the matrix of scores calculated for K = 5,10, · · · ,100,

X is the final matrix of ensemble scores and ‖XK‖F is the Frobe-

nius norm for XK .

In addition, we select a threshold value based on the Youden’s J

statistic 2 and use this threshold to determine the presence or ab-

sence of a link [5]. That is, predicted values above the threshold are

considered as positive links and predicted values below the thresh-

old indicate that there is no link between the corresponding cus-

tomer and item. Further, we construct the receiver operating char-

acteristic (ROC) curve and the area under the curve (AUC) mea-

sures the discrimination, that is, the ability to predict true positives

and true negatives correctly. We compare the performance of the

methods in predicting all links and hidden links. In all links predic-

tion, we compare how the different methods perform in predicting

the links in the test dataset. On the other hand, the prediction of

the hidden links addresses a difficult task, that is, how the differ-

ent methods predict links that do not previously exist in the training

dataset. Since our objective is to predict the significant entries, we

treat all nonzero entries as ones (positive links) and the other entries

as zeros (no links). The total number of links in our test dataset was

33233 and the number of hidden links was 1258.

5.1 Comparison with existing methods

We compare the performance of the methods in terms of their pre-

cision, recall, and F-measure. We use Prop. default, TN, FP, FN, TP,

P.L, C.P.L, Prec., Rec. and F-meas. to denote proposed method, the

number of true negatives, false positives, false negatives, true pos-

itives, predicted links, correctly predicted links, precision, recall,

and F-measure, respectively. In addition, we use simple average as

the baseline method.

Table 1 shows the performance in the prediction of all links. Holt-

Winters method has the highest accuracy and F-measure. Exclud-

ing the Holt-Winters method, our method has the highest precision

and F-measure. The average prediction performs well because we

considered the most frequent users and items in our dataset and fore-

casts for only one time step ahead. However, for multiple-step ahead

forecasting and infrequent items, the performance reduces signifi-

cantly because average method cannot capture data patterns.

2J = max(sensitivity+ speci f icity−1)

Table 1: Comparison with existing methods: all links prediction

Prop. Base- CP+ CP HW TSVD

default line HW CWT

TN 393342 389048 376670 373733 409894 369646

FP 73425 77719 90097 93034 56873 97121

FN 3924 2764 4623 4587 5203 4887

TP 29309 30469 28610 28646 28030 28346

P.L 102734 108188 118707 121680 84903 125467

C.P.L 29309 30469 28610 28646 28030 28346

Prec. 28.53 28.16 24.10 23.54 33.01 22.59

Rec. 88.19 91.68 86.09 86.20 84.34 85.29

F-meas. 43.11 43.09 37.66 36.98 47.45 35.72

Table 2: Comparison with existing methods: hidden links Prediction

Prop. Baseline CP+ CP HW TSVD

default HW CWT

P.L 25695 0 27343 26731 0 36275

C.P.L 689 0 589 559 0 667

Prec. 2.68 0 2.15 2.09 0 1.84

Rec. 54.77 0 46.82 44.44 0 53.02

F-meas. 5.11 0 4.12 3.99 0 3.55

Table 2 shows the results of the methods in predicting hidden

links. As expected, the F-measures for hidden links prediction are

lower than the F-measures for all links prediction. The results show

that the Holt-Winters and average prediction methods cannot predict

hidden links at all and their F-measure is 0. Our proposed method

achieved the highest accuracy and F-measure values. This result

indicates that the proposed method is better in extracting hidden

features by analyzing the underlying graph structure.

Figure 3 shows the performance of the methods in terms of the

area under the receiver operating characteristic curve (AUC) for all

links prediction. ROC curve shows the trade-off between sensitiv-

ity and specificity, and therefore curves close to the top-left corner

indicate a better performance [1]. The methods perform well be-

cause their ROC curves are close to the top-left corner. Holt-Winters

method is the best when the false positive rate is low. As the false

positive rate increases, the proposed method is the best and has the

highest AUC value.

5.2 Effectiveness of leveraging time invariant features

In Section 4 we described the method of matrix decomposition by

leveraging time invariant features to improve accuracy of the link

prediction task. We use Prop. column and Prop. row to denote

variants of our proposed method by leveraging the time invariant

column features and the row features, respectively.

When predicting all links, table 3 shows that our method of lever-

aging time invariant row features achieved the best performance in

terms of precision and F-measure. Table 4 shows the performance

in predicting hidden links. Our method of leveraging time invariant

row features achieved the highest precision and F-measure. These

results indicate that there is little change in row features with time

and there are large temporal changes in column features. In our



Table 3: Comparison with methods of time invariant features: all links pre-

diction

Prop. Prop. Prop.

default column row

TN 393342 392518 389586

FP 73425 74249 75040

FN 3924 3705 4820

TP 29309 29528 30554

P.L 102734 103777 105594

C.P.L 29309 29528 30554

Prec. 28.53 28.45 28.94

Rec. 88.19 88.85 86.37

F-meas. 43.11 43.10 43.35

dataset, rows represents customers while columns represent items.

The results show that the customers tastes remained constant while

the product features changed with time. This can be explained by

the fact that some products in supermarkets, especially food prod-

ucts such as vegetables change depending on seasons. However,

only a single dataset was used for our experiments, and the perfor-

mance of each method may vary depending on datasets. Therefore,

by analyzing the characteristics of the dataset, it is possible to select

the appropriate method and hence improve the accuracy.

Figure 4 shows the ROC curves for our method of leveraging time

invariant features in all links prediction. Although the ROC curve of

the methods overlap largely, the AUC value of the method of matrix

decomposition by time invariant row features is slightly higher than

that of the proposed method and, therefore, it has the best perfor-

mance in terms of AUC value.

5.3 Comparison with method of ensemble learning

In section 4 we described an extension to our proposed method

by applying ensemble learning. Here we vary the Holt-Winters sea-

sonality parameter, m and K for NMF as shown by equation (15)

described in section 4. Table 5 shows that the Holt-Winters method

has the highest accuracy and F-measure in all links prediction. Ex-

Figure 3: ROC curve comparison with existing methods

Table 4: Comparison with methods of time invariant features: hidden links

prediction

Prop. Prop. Prop.

default column row

P.L 25695 29120 23395

C.P.L 689 668 638

Precision 2.68 2.29 2.73

Rec. 54.77 53.10 50.72

F-meas. 5.11 4.40 5.18

Figure 4: ROC curves for our methods by leveraging time invariant features

cluding Holt-Winters method, the method of leveraging time invari-

ant row features has the highest accuracy. Comparing the results

of table 1, table 3 and table 5, we observe that ensemble learning

method led to a significant increase in the prediction accuracy of

the proposed methods and Holt-Winters method. In hidden links

prediction, table 6 shows that the proposed method achieved the

highest precision and F-measure. Although the F-measure is low,

it increased significantly from 5.11 to 5.86. Since we considered a

single dataset in our experiments, the performance of the proposed

method and the method of matrix decomposition by time invariant

features might vary. Therefore, depending on the dataset one can

select the method with the best performance.

Table 5: Comparison with methods of ensemble learning: all links predic-

tion

Prop. Prop. Prop. Base- CP+ HW

default column row line HW

TN 394418 391455 394137 389048 385875 432022

FP 72349 75312 72630 77719 80892 34745

FN 3781 3215 3442 2764 4084 6832

TP 29452 30018 29791 30469 29149 26401

P.L 101801 105330 102421 108188 110041 61146

C.P.L 29452 30018 29791 30469 29149 26401

Prec. 28.93 28.50 29.09 28.16 26.49 43.18

Rec. 88.62 90.33 89.64 91.68 87.71 79.44

F-meas. 43.62 43.33 43.92 43.09 40.69 55.95



Table 6: Comparison with methods of ensemble learning: hidden links pre-

diction

Prop. Prop. Prop. Base- CP+ HW

default column row line HW

P.L 19227 21897 21636 0 24210 0

C.P.L 600 555 636 0 545 0

Prec. 3.12 2.53 2.94 0 2.25 0

Rec. 47.69 44.12 50.56 0 43.32 0

F-meas. 5.86 4.79 5.56 0 4.28 0

Figure 5: ROC curves for methods of ensemble learning

Figure 5 shows the ROC curves for this method in all links pre-

diction. As expected, the AUC values of the proposed methods in-

creased compared to the values in Figure 4. All methods perform

well because the ROC curves are close to the top-left corner. The

proposed method has the highest AUC value.

In addition, we carried out additional experiments with LSTM

and VAR forecasting methods described in section 2. Although pre-

vious studies show that LSTM and VAR perform well in time series

forecasting, they did not outperform the proposed method on our

dataset. In addition, our dataset contains monthly sales data for a

period of 24 months, the time period is short, making LSTM unsuit-

able. Further, LSTMs are non-linear models with different architec-

tures, identifying a suitable architecture is challenging compared to

our proposed method.

6 Conclusion

In this paper we addressed the time series link prediction prob-

lem. We proposed a method of extracting latent features from time

series data and modelling the periodicity of the features by combin-

ing NMF and Holt-Winters methods. We also proposed extensions

to the proposed method, through matrix decomposition by time in-

variant features and applying ensemble learning to NMF and Holt-

Winters methods to improve the prediction accuracy. We compared

the performance of our methods with existing link prediction meth-

ods in predicting existing links and hidden links. As a result of the

experiments, we confirmed that the proposed methods perform well,

especially in predicting hidden links.

There are several directions which can be considered for future

work. First, in this paper we considered only a sales dataset, it is

important to evaluate the performance of our methods with differ-

ent datasets. Second, our proposed method does not use attribute

information, therefore attribute-based prediction is important to fur-

ther improve the accuracy of our methods.
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