完全準同型暗号における bootstrap problem 及び relinearize problem の 厳密解法の高速化

佐藤 宏樹[†] 石巻 優[†] 山名 早人^{††}

† 早稲田大学 基幹理工学研究科 〒 114-1919 東京都新宿区大久保 3-4-1
 †† 早稲田大学 理工学術院 〒 114-1919 東京都新宿区大久保 3-4-1
 E-mail: †{hsato,yuishi}@yama.info.waseda.ac.jp, ††yamana@waseda.jp

あらまし 完全準同型暗号 (FHE) は秘密鍵を用いることなく任意の演算が暗号文上で可能な暗号方式である.FHE は, データの秘密を保持したまま解析や検索を行う技術への応用が期待される.FHE 上での演算は平文上での演算と特徴 が異なるため,FHE に適したアルゴリズムや最適化が必要である.特に,暗号化状態での計算を継続的に行うためには bootstrapping や relinearization と呼ばれる処理を暗号文に施す必要がある.bootstrapping や relinearization は FHE の中で計算量が大きいため,計算のデータフローグラフ上でのこれらの処理の実行スケジューリングは,FHE による 計算全体の処理時間に影響を与える.それぞれのスケジューリング問題は bootstrap problem, relinearize problem と 呼ばれ,ともに NP 困難であり,制約式を列挙すると整数線形計画問題 (ILP) となる.変数と制約式の個数はデータ フローグラフの辺と頂点の個数に比例するため,最適化対象のグラフが大きくなると厳密解を得ることが困難である. 本稿では,出力される ILP の解は厳密解から変えずに,ILP の変数と制約式を削減し,本処理を適用しない場合より も高速に解を求める手法を提案する.評価実験では,多くの場合で提案手法により頂点数を約 3~4 割削減し,厳密解 を求める最適化の計算時間も約 3~4 割削減した.

キーワード 完全準同型暗号, bootstrap, relinearize, 最適化

1 はじめに

近年,国や企業などの組織が保有するデータ量が爆発的に増加するにつれ,保有するデータを解析し活用するために計算資源としてクラウドを利用するケースが増加している.しかし, 医薬品や遺伝子情報などの機密性の高いデータに対する各種処理をクラウドという第三者のサーバ上で行う場合,サーバからの機密情報漏洩が懸念される.

データの秘密を保持したまま解析を行う秘密計算技術のうち, 本稿では完全準同型暗号 (FHE, Fully Homomorphic Encryption) [1] を扱う. FHE は,秘密鍵を用いることなく任意の演算 を暗号文上で行うことのできる暗号方式である. FHE を用い ることでデータの秘密を保持したままデータの解析や検索が可 能となり, クラウドコンピューティングへの応用が期待される.

ある演算を FHE 上で行うとき,その計算回路におけるデー タ依存関係をデータフローグラフにより表現することができる. 暗号化したまま,すなわち準同型に演算したい計算を,データ フローグラフにより表現することで,既存のコンパイラと同様 に,データフローグラフ上で演算を最適化できる.しかし FHE での演算には,暗号文の持つ平文に対する演算処理だけではな く,これから述べるような暗号文のメンテナンスのためのみに 用いられる演算処理がある.これらの処理は暗号文の保持する 平文は変更しないためデータフローグラフ上で明示的に示され ず,既存のコンパイラにおける最適化技術を直接適用できない. 暗号文メンテナンスのための処理の一つが bootstrapping で ある.そもそも FHE は格子に基づく暗号であり [2],暗号文に ノイズ成分が含まれる.暗号文中のノイズは準同型演算を行う たびに増加し,ノイズが一定量以内でないと正しく復号できな いため,1つの暗号文に対して連続で行える演算回数に限界が ある.この計算回数の限界に対し,Gentry により提案された bootstrapping [1] と呼ばれる手法を用いると,暗号化状態を維 持したままノイズを削減することが可能になり,任意の回数の 計算できるようになる.しかし,bootstrapping は時間・空間計 算量がともに膨大であり,1回あたり数秒~数分を要するため, FHE を用いた計算のボトルネックとなる.暗号文を正しく復号 できる状態を維持したまま,データフローグラフ上のどの位置 で bootstrapping を行うかにより,必要となる bootstrapping の回数が変化する.この bootstrapping の回数を最小化する最 適化問題は bootstrap problem と呼ばれる [3].

もう一つの暗号文メンテナンスのための処理が、relinearization である. Ring Learing-With-Errors (Ring-LWE)問題[4]¹ を基に構成される FHE では、暗号化直後の暗号文は長さ 2 の 多項式のベクトルといえる. 暗号文上で準同型に乗算をする につれて、ベクトルの長さ(以下、次元)は大きくなる. さら に、暗号文の次元が大きくなると、比例して準同型演算の計 算量も大きくなる. そこで FHE では、relinearization と呼ば れる処理を行うことで、暗号文の次元を削減することができ

1: 効率的に解くことが困難とされている問題の一つ.

	表 1 本稿で用いる主な記号
記号	意味
L	FHE の暗号化直後の暗号文のレベル
N	FHE の bootstrapping 直後のレベル
l	FHE の暗号文のレベル
len(c)	FHE の暗号文 <i>c</i> の次元
G	有向グラフ $G = (V, E)$
V	グラフにおける頂点集合
E	グラフにおける有向辺集合

る.しかし, relinearization 自体にも準同型乗算と同程度の計 算量を必要とする.Bootstrapping を除くと,FHEの演算の 中で relinearization と準同型乗算が計算量が大きい.データフ ローグラフ上で,計算の順序やデータの依存関係は変更せず に,relinearization を実行するタイミングや回数を決定して, 回路全体での計算コストを最小化する最適化問題は relinearize problem と呼ばれる [5].

Bootstrap problem, relinearize problem はともに, NP 困難 であることが知られている [3], [5]. 既存研究では, 近似アルゴ リズム [6] やデータフローグラフがある特別な条件を満たす場合 の多項式時間の解法 [5] が提案されている.しかし, bootstrap problem や relinearize problem の厳密解を求めるには, 制約 条件と目的関数を定式化して整数線形計画問題を解く必要があ る.ソルバを用いることで厳密解を得ることができる [7] が, 必 要な時間・空間計算量はグラフの大きさに指数的に増加する. そこで本稿では,準同型加算ではノイズ増加が小さく, 暗号文 の次元が増えないことに注目し,データフローグラフに対し前 処理を施し,問題を解く際に考慮すべき頂点数を削減する.こ れにより整数線形計画問題の変数と制約式の個数を削減し,本 処理を適用しない場合よりも高速に厳密解を求める手法を提案 する.

本稿は以下, 2. で FHE と bootstrap problem と relinearize problem の既存研究を説明する. その後 3. で提案手法を説明 し, 4. で実験と提案手法の評価検証を行う. 最後に 5. でまと めを述べる.

2 研究背景と既存研究

本稿で用いる記法を表1に示す.

完全準同型暗号(FHE)とは,暗号化状態で平文に対して加 算を行える加法準同型性と乗算を行える乗法準同型性の両方の 性質を備える公開鍵暗号である.1978年に Rivest らが初めて FHE の概念を示し [8],2009年に Gentry が具体的な構成法を 発表 [1] した.以降,FHE に関連した研究が継続的に行われて いる.

2.1 Bootstrap Problem

FHE の暗号文はノイズを含んでおり、ノイズの大きさは暗号 化直後に最小で、準同型加算や準同型乗算を繰り返すたびに増 加する、ノイズの量がある閾値を超えると暗号文は正しく復号 できなくなるため、bootstrapping と呼ばれる処理を実行する

表 2 HElib[10]	による計算時間例
処理	計算時間(秒)
暗号化	0.158
復号化	0.044
準同型加算	0.004
準同型乗算	0.170

Bootstrapping 333.827 Core i7-1479@3.6GHz (8thread) 上で実験し、FHE のパラメータは $p = 2, m = 27311, L = 26 (\lambda = 110.1)$ とした、準同型乗算中には relinearization の時間も含む.

ことで、平文の値はそのまま、暗号文に蓄積したノイズを削減 することができる.しかし、表2に示すように、準同型加算や 準同型乗算に対し、bootstrappingには数百~数千倍の時間を 要する.したがって、bootstrappingを含むFHEの計算回路 に演算に要する時間は bootstrappingの回数にほぼ比例する.

また、本稿では FHE のうち、leveled FHE の使用を前提と する. Leveled FHE は, bootstrapping を用いずに演算可能な 乗算回数の上限を,鍵生成時に渡す「レベル」パラメータLに より指定できる FHE である. Leveled FHE を実現する FHE の一つに BGV 方式 [9] がある. BGV 方式は, 準同型演算中の ノイズ増加を制御する技術の一つである modulus switching を 備えている.具体的に BGV 方式では,公開パラメータに L 個 の奇数 $q_L > q_{L-1} > \ldots > q_1$ を含む. 暗号文空間の多項式の 係数の法にはこれらの値が用いられ,特に法が q の暗号文をレ ベルlの暗号文と呼ぶ $(1 \leq l \leq L)^2$.暗号化直後の暗号文はレ ベルLであり、準同型演算を行った後に modulus switching を 行い適宜レベルを下げることで、もともとは準同型演算回数に 対して指数的に増加したノイズを,線形程度の増加に抑制でき る. 必要な bootstrapping の回数を減らすために L を大きくと ると、保証されるセキュリティレベルが減少するとともに、準 同型演算と bootstrapping の計算時間は増加する. すなわち, レベルを大きくするだけでは、計算の高速化は行えず、セキュ リティレベルも低下する. bootstrapping の必要回数を減らす ためには L を大きくするだけでは不十分である ³.

Leveled FHE のレベルパラメタ L と計算回路のデータフロー グラフが与えられたとき,正しく復号できる状態を維持した まま,グラフ中における bootstrapping の実行回数を最小化す る最適化問題を bootstrap problem と呼ぶ [6], [7].本稿では特 に, modulus switching [9] を用いた leveled FHE による場合 について述べる.

完全準同型暗号において,準同型加算によるノイズの増加量 は準同型乗算によるノイズ増加量と比較して小さい.そこで, bootstrap problem では, modulus switching を用いた leveled FHE について「準同型加算の際のノイズ増加は無視し,ノイ ズが大きく増加する準同型乗算の際,その計算直後に暗号文の レベルを1つ下げる」とモデル化する [3], [6], [7]. 具体的には,

^{2:}既存研究ではレベルの表現方法が 0 や 1 から始まり増加するものもあるが、 本稿では FHE の実装の一つである HElib と同一となる表現を選択した. 3:bootstrap problem の既存研究では、簡単のため L を固定した状態で最適 化問題を議論している.

図 1 Bootstrap Problem の例

レベル l_1 とレベル l_2 の暗号文を入力としたとき、準同型加算 ではレベル min (l_1, l_2) の暗号文を出力し、準同型乗算ではレベ ル min $(l_1, l_2) - 1$ の暗号文を出力するとモデル化する.また、 bootstrapping 直後の暗号文のレベルを $N(\leq L)$ とする.

計算回路のデータフローグラフG = (V, E)を,入力数が0 ~2の頂点の集合 V と頂点間をつなぐ有向辺の集合 E により 定義する.計算回路のゲートが頂点に,ワイヤが有向辺に対応 する.

例として,図1にデータフローグラフを示す.ここで, L = N = 4と設定する.回路の入力が図の上部の菱形の頂 点であり,上部から下部に向けて計算を行う.それぞれの頂点 の横に記載されたl = xで示されるxの値が,その頂点での計 算直後のレベルを表す.ナイーブな手法として「頂点での計算 直後のレベルが1に到達したら bootstrapping を行う」場合を 考える(図1左).このとき,bootstrapping は(d)と(e)の 計算直後で行うこととなり、2回必要となる.これに対し、1 つ手前の頂点(c)の計算後に bootstrapping を行う場合(図1 右)、回路中で bootstrapping を行う回数は1回となり、回路 全体での計算時間を削減できる.

Bootstrap problem は, Lepoint と Paillier が 2013 年に初 めて指摘した [3]. 2015 年に Paindavoine と Vialla がグラフ 理論を用いた bootstrap problem に関する研究成果を発表し, 整数線形計画問題 (ILP, Integer Linear Problem) に本問題を 変換し,厳密解を求める手法を示した [7]. また, 2017 年に Benehamouda らは, L = N を満たす場合における bootstrap problem の多項式時間の近似解法を示した [6]. 筆者らは 2018 年,計算回路が繰り返し処理を含む場合の最適化手法を提案し た [11]. 本稿では, Paindavoine と Vialla の ILP による厳密解 の求まる解法をナイーブな解法とし,高速化の対象とする.

2.2 Relinearize Problem

Ring-LWE 問題を基に構成される FHE では, 暗号化直後の 暗号文は長さ2の多項式のベクトルで表される. 暗号文上で 準同型乗算を行うにつれて, ベクトル長(以下, 次元)は大き くなる.ここで, 準同型加算や準同型乗算を計算する際の計算 時間は出力暗号文の次元に比例する.したがって, 暗号文 c の 次元を len(c) と表記したとき, 比例定数 k_a, k_m を用いて, 準 同型加算の計算時間は $k_a \max(len(c_1), len(c_2))$,準同型乗算 の計算時間は $k_m(len(c_1) + len(c_2) - 1)$ と表現できる. なお, relinearize problem において $k_a \ge k_m$ は,他の FHE のパラ メータを決定した後に実測により得る値とする.

準同型の乗算を継続すると暗号文の次元は増加する一方で あるが、relinearization と呼ばれる処理を行うことで暗号文の 次元を削減することができる.具体的には、次元 len(c)の暗 号文を relinearization により、平文の値を変えることなく次元 len(c) - xの暗号文に変換することができる. Relinearization に要する時間は、減少させる次元数に比例し、パラメータ k_r を用いて k_rx と表現でき、準同型乗算1回と同等程度の計算コ ストを要する.なお、暗号文の次元は1にすることはできない ため2が最小となる.また、準同型乗算と比較して準同型加算 は軽いため、以降では準同型加算に要する計算時間は無視して 議論を進める.

既存の FHE を用いた実装やアプリケーションの研究では, 簡単のため、すべての乗算処理の後に relinearization を行うこ とで暗号文の次元を常に2に維持している場合が多い.しかし、 relinearization と乗算に要する時間の変化は、パラメータ k_m , k_r と計算回路に依存して最適な選択は異なるため複雑である. 計算回路と FHE のパラメータ k_m , k_r が与えられたとき、デー タフローグラフには変更を加えず、relinearization を実行する 頂点とその回数を決定して、回路全体での計算コストを最小化 する問題は relinearize problem と呼ばれる [5].

Relinearize problem は bootstrap problem と同様に暗号文 の次元に関する制約式を列挙し,目的関数として回路全体の計 算時間を立式することで,整数線形計画問題に変換することが できる.

3 提案手法

Bootstrap problem と relinearize problem は共通して,対 象とするデータフローグラフが大きくなると,ILP の変数と制 約式の個数が大きくなり,ILP の解を求めるのに要する計算時 間が増大するという問題点がある.具体的には,データフロー グラフ G = (V, E) から ILP への変換により,立式する変数の 個数と制約式の個数はともに O(|V|) である.ILP の計算時間 は,制約式と変数の個数に対して指数的に増加する.グラフの 頂点数削減は変数と制約式の個数の削減につながり,ILP の計 算時間を削減できる.

そこで本稿では、ILP の計算量オーダーは変わらないものの、 そのまま制約式を立式した場合と比べて制約式の個数を削減 可能な手法を提案する.なお、簡単のため、以下は bootstrap problem に適用する場合のみを説明する. Relinearize problem に対しても、bootstrapping を relinearization と読み替え、レ ベルの変化を暗号文の次元の変化と読み替えることで同様に説 明が可能である.

本稿では準同型加算時のノイズを無視していることを利用 し, ILP に変換する前に, bootstrapping の配置決定において 考慮する必要のない頂点をデータフローグラフから削除するこ

図2 乗算直後に加算 gather 複数ある回路の例

とで,データフローグラフを小さくすることを目指す.例として,図2にデータフローグラフの一部を示す.図中では,(a)の頂点のみ乗算を表しており,その他の頂点は準同型加算を表す.また,(c)には図示範囲外からの入力がある.

ここで例えば ILP の結果として (b) 又は (d) の頂点で bootstrapping を行う状況を得たときを考える.3 頂点 (b), (d), (a) の間には暗号文のレベルが変化しうる頂点がないため, (a) の頂点で代わりに bootstrapping を行っても,制約条件を満た す状況を維持できる.これは, (a) の頂点で bootstrapping を 行っても, (a) の出力する暗号文レベルは高くなるか変わらな いため, (a) の他の出力先で bootstrapping を新たに実行する 必要は生じないためである.

対して,(c)の頂点では同様の議論はできない.(c)の入力 の2変数は直前のレベルが変化した親が異なるため,(c)で bootstrappingを行う必要があるときに,bootstrappingの位 置をこれ以上親に動かすことができない.

このように、ある頂点から親を辿り続け、最初にレベルが変 化しうる頂点を探すことを考える.そのようなレベルの変化し うる頂点が1つに定まるとき、親を辿る際に訪れた頂点の何 れかで bootstrapping を行う代わりに最後にたどり着いた頂点 で bootstrapping を行っても、復号の整合性を崩さず、ILPの 制約を満たした状況を維持できる.よって提案手法では、以上 の例に示した親子を辿る順序を逆にし、レベルが変化しうる頂 点から探索を開始し、bootstrapping を行う位置を変更できる 頂点の範囲を探索する.Bootstrapping を行う位置を動かせる 範囲内の頂点同士をまとめることで、最終的に頂点数が削減さ れる.

以上の頂点数削減は,幅優先探索を用いると実現可能であ り、Algorithm 1 にアルゴリズムを示す.探索では順次,辺と 頂点に番号を振る.ある頂点でレベルが変化しないとき,その 頂点の入力と出力の辺には同じ番号を振り,レベルが変化する 可能性があるならば,まだ使用していない番号を振る.辺と頂 点に振られた番号は Algorithm 1 中の配列 num_E, num_V に相 当し,変数 nextID は相異なる番号を代入するため,未使用の 最も小さい非負整数を保持している.この幅優先探索を用いた アルゴリズムは,時間計算量 O(|V| + |E|) で終了する.

すべての頂点に番号を振ったのち,同一番号の振られた頂点 同士をまとめ,新たなグラフとして ILP に変換して厳密を求め る.変換後のある番号の振られた頂点で bootstrapping を行う ことは,最初のデータフローグラフにおいて該当の番号が最初 に振られた頂点で bootstrapping を行うことに置き換えること

Algorithm 1 幅優先探索による	J <u>J</u> 山底数削減
Input: $G = (V, E)$	
Output: $G' = (V', E')$	▶ 頃点剱削減後のクラフ
1: $nextID \leftarrow 0$	
2: FIFO $\neq \exists - Q \leftarrow \phi$	
3: $V' \leftarrow \phi, E' \leftarrow \phi$	4 0 /l.
4: 昭列 num_V [], num_E [] を 0 で初	期化
5: for all $\{i \mid v_i \in V\}$ do	▷ 配列 InCount の初期化
6: $InCount[i] \leftarrow v_i に入力する$	辺の本剱
7: end for	
8: for all $\{i \mid v_i \in V, v_i $ は乗算も	しくは人力数 0 の頂点 } do
9: $Q \not \subset v_i \not \subset enqueue$	
10: $V' \leftarrow V' \cup \{v_i\}$	
11: $num_V[i] \leftarrow nextID$	
12: $nextID \leftarrow nextID + 1$	
13: $InCount[i] \leftarrow 0$	<i>⊳ v_i から探索させないため</i>
14: end for	
15: while $Q \neq \phi$ do	
16: $v_i \leftarrow Q$ から dequeue	
17: for all $\{(h, j) \mid e_h \in E, v_j \in$	$V, e_h = (v_i, v_j) \}$ do
18: $\triangleright v_i h$	いら出るすべての辺 $e_h = (v_i, v_j)$
19: $num_E[h] \leftarrow num_V[i]$	
20: $InCount[j] \leftarrow InCount$	[j] - 1
21: if $InCount[j] = 0$ then	
22: $Q \wr v_j \And$ enqueue	
23: $S_j \leftarrow \{num_E[x] \mid e_x$	$= (v_k, v_j) \in E, v_k \in V\}$
24: $\triangleright S_j \And v_j \land j$	入力する辺に振られた番号の集合
25: if S_j の全要素が同一の	の値 then
26: $num_V[j] \leftarrow num$	$_{E}[h]$
27: else	
$28: V' \leftarrow V' \cup \{v_j\}$	
29: $num_V[j] \leftarrow next$	ID
$30: \qquad nextID \leftarrow nextI.$	D + 1
31: end if	
32: end if	
33: end for	
34: end while	
35: for all $\{(i,j) \mid e \in E, v_i, v_j \in V \}$	/, e = (v _i , v _j)} do ▷ 佰点削減後の辺を構成
37: if $num_V[i] \pm num_V[i]$ the	n
$38: E' \leftarrow E' \sqcup f(v) \qquad \text{for } v$	
30: end if	$num_V[j]$)J
40: end for	
40. end for 41. return $C' = (V' F')$	
+1. return G = (V, E)	

ができる.

4 評価実験

4.1 実験回路と頂点数の削減

最初に,提案手法のアルゴリズムにより,計算回路の頂点 数がどれだけ削減されるかを評価する.実験対象となる回路 は,[12]に公開されているバイナリ回路のデータを用いた.

表3に用いた回路の特性と,提案手法の適用による頂点数の 変化を示す.アルゴリズム上,準同型加算の頂点数のみ削減さ

	回路の種類		1.			车管百占粉	加算	草頂点数	加算頂点数		頂片粉別パズ		
			I			D 米异坝凤奴		与法適用前	提案手法適用後		1貝 品 奴 印 佩 举		
-	adder_64bit			759	887	265		494		241	().333	
	AES-non-expanded comparator_32bit_signed_lt			,616	$33,\!872$	6,800		$26,\!816$		$25,\!132$	(0.050	
				300	364	150		150		60	(0.300	
	DES-non-expanded		30	,313	30,441	$18,\!124$		$12,\!189$		$1,\!340$	().358	
	md5		77	,861	78,373	$29,\!084$		48,777		$14,\!631$	().439	
	mult_32x32		12	374	$12,\!438$	5,926		6,448		$1,\!133$	(0.430	
	sha-1		106	,601 1	07,113	37,300		69,301		$24,\!627$	().419	
	sha-256		236	5,112 2	36,624	$90,\!825$		$145,\!287$		$42,\!510$	().435	
		表 4	既存手法	・提案手	法におけ	る最適化に	要する問	時間の計測	結果(ミリ	J秒)			
回路の種類		Rolin ($(k_r = 1, k_m = 1)$		Relin $(k_r = 3, k_m = 1)$			Boot $(L=2, N=2)$			Boot $(L=10, N=2)$		
		nerru ($n_T = 1, n_T$. — 1)	Relin	$(k_r = 3, k_m)$	= 1)	Boot (L = 2, N =	= 2)	BOOT (L = 10, N	= 2)
	の種類	既存手法	提案手法	(-1) 時間比	Relin 既存手法	$k_r = 3, k_m$ 提案手法	= 1) 時間比	Boot (既存手法	L = 2, N = 提案手法	= 2) 時間比	既存手法	L = 10, N = 提案手法	= 2) 時間比
adder_64bit	の種類	既存手法 4.18	提案手法 2.87	。— 1) 時間比 0.69	Relin 既存手法 4.20	$(k_r = 3, k_m$ 提案手法 2.88	= 1) 時間比 0.69	Boot (既存手法 8.90	L = 2, N = 提案手法 6.35	= 2) 時間比 0.71	Boot (既存手法 31.54	L = 10, N 提案手法 15.62	= 2) 時間比 0.50
adder_64bit AES-non-ex	の種類 panded	既存手法 4.18 908.06	提案手法 2.87 875.99	。 時間比 0.69 0.96	Relin 既存手法 4.20 769.65	$k_r = 3, k_m$ 提案手法 2.88 771.82	= 1) 時間比 0.69 1.00	Boot (既存手法 8.90 486.96	L = 2, N = 提案手法 6.35 435.58	= 2) 時間比 0.71 0.89	Boot (近 既存手法 31.54 7526.93	L = 10, N 提案手法 15.62 7056.22	= 2) 時間比 0.50 0.94
adder_64bit AES-non-ex comparator_	;の種類 panded 32bit_signed_lt	既存手法 4.18 908.06 1.63	ルテ 二 1, ル _研 提案手法 2.87 875.99 1.07	時間比 0.69 0.96 0.66	Relin 既存手法 4.20 769.65 1.64	$k_r = 3, k_m$ 提案手法 2.88 771.82 1.06	= 1) 時間比 0.69 1.00 0.65	Boot (既存手法 8.90 486.96 3.75	L = 2, N = 提案手法 6.35 435.58 2.91	= 2) 時間比 0.71 0.89 0.78	Boot 既存手法 31.54 7526.93 25.46	L = 10, N $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$	= 2) 時間比 0.50 0.94 0.46
adder_64bit AES-non-ex comparator_ DES-non-ex	の種類 panded 32bit_signed_lt panded	既存手法 4.18 908.06 1.63 207.16	提案手法 2.87 875.99 1.07 124.27	時間比 0.69 0.96 0.66 0.60	Relin 既存手法 4.20 769.65 1.64 207.42	$k_r = 3, k_m$ 提案手法 2.88 771.82 1.06 124.48	= 1) 時間比 0.69 1.00 0.65 0.60	Boot (既存手法 8.90 486.96 3.75 411.39	L = 2, N = 提案手法 6.35 435.58 2.91 268.00	= 2) 時間比 0.71 0.89 0.78 0.65	Boot 既存手法 31.54 7526.93 25.46 2020.57	L = 10, N 提案手法 15.62 7056.22 11.69 1083.89	= 2) 時間比 0.50 0.94 0.46 0.54
adder_64bit AES-non-ex comparator DES-non-ex md5	の種類 panded 32bit_signed_lt panded	既存手法 4.18 908.06 1.63 207.16 1560.78	提案手法 2.87 875.99 1.07 124.27 1284.94	時間比 時間比 0.69 0.96 0.66 0.60 0.82	Relin 既存手法 4.20 769.65 1.64 207.42 952.02	$k_r = 3, k_m$ 提案手法 2.88 771.82 1.06 124.48 646.74	= 1) 時間比 0.69 1.00 0.65 0.60 0.68	Boot (既存手法 8.90 486.96 3.75 411.39 1234.34	L = 2, N = $\frac{4}{2}$ $\frac{4}{2}$ $\frac{1}{$	= 2) 時間比 0.71 0.89 0.78 0.65 0.60	Boot 既存手法 31.54 7526.93 25.46 2020.57 5146.75	L = 10, N 提案手法 15.62 7056.22 11.69 1083.89 2521.92	= 2) 時間比 0.50 0.94 0.46 0.54 0.49
adder_64bit AES-non-ex comparator DES-non-ex md5 mult_32x32	の種類 panded .32bit_signed_lt panded	既存手法 4.18 908.06 1.63 207.16 1560.78 89.55	kr = 1, km kr = 1, km	時間比 0.69 0.96 0.66 0.60 0.82 0.64	Relin 既存手法 4.20 769.65 1.64 207.42 952.02 88.01	$k_r = 3, k_m$ $k_{\bar{x}} \pm 3, k_{\bar{x}}$ 2.88 771.82 1.06 124.48 646.74 56.56	= 1) 時間比 0.69 1.00 0.65 0.60 0.68 0.64	Boot (既存手法 8.90 486.96 3.75 411.39 1234.34 154.94	L = 2, N = 提案手法 6.35 435.58 2.91 268.00 737.02 96.09	= 2) 時間比 0.71 0.89 0.78 0.65 0.60 0.62	既存手法 31.54 7526.93 25.46 2020.57 5146.75 1994.23	L = 10, N 提案手法 15.62 7056.22 11.69 1083.89 2521.92 1211.87	= 2) 時間比 0.50 0.94 0.46 0.54 0.49 0.61
adder_64bit AES-non-ex comparator. DES-non-ex md5 mult_32x32 sha-1	の種類 panded 32bit_signed_lt panded	既存手法 4.18 908.06 1.63 207.16 1560.78 89.55 2103.48	$kr = 1, k_{ff}$ $kr = 1, k_$	時間比 0.69 0.96 0.66 0.60 0.82 0.64 1.03	Relin 既存手法 4.20 769.65 1.64 207.42 952.02 88.01 1383.29	$k_r = 3, k_m$ $k_r = 3, k_m$ 2.88 771.82 1.06 124.48 646.74 56.56 1073.85	 = 1) 時間比 0.69 1.00 0.65 0.60 0.68 0.64 0.78 	Boot (既存手法 8.90 486.96 3.75 411.39 1234.34 154.94 1701.00	L = 2, N = 提案手法 6.35 435.58 2.91 268.00 737.02 96.09 1044.52	= 2) 時間比 0.71 0.89 0.78 0.65 0.60 0.62 0.61	既存手法 31.54 7526.93 25.46 2020.57 5146.75 1994.23 10233.91	L = 10, N $\frac{1}{100}$ 1	= 2) 時間比 0.50 0.94 0.46 0.54 0.49 0.61 0.63

表3 回路の特性と頂点削減結果

れる.本実験では、ほとんどの場合において、準同型加算の個 数を約半数以下に削減し,頂点数全体でも約3~4割の頂点を 削減することができた.

4.2 頂点数削減による整数計画問題の高速化

次に, 頂点数削減が, bootstrap problem や relinearize problem の ILP の計算時間にどの程度の影響を与えるか検証する.

ILP のソルバとして, Grobi Optimizer 8.0.1 ⁴を用いた. 実 験・時間計測は, Intel Core i7-4790 CPU @3.60GHz, 16GM of RAM, Ubuntu 18.04.1 LTS, gcc 7.3.0 のデスクトップコ ンピュータ上で行った.

それぞれの計算回路について, 頂点数削減前のデータフロー グラフを ILP に変換して解いたときの計算時間を既存手法,本 提案手法による頂点数削減後のデータフローグラフを ILP に 変換して解いたときの計算時間を提案手法とし、結果を表3に まとめる. なお, 表における Relin は relinearize problem を, Boot は bootstrap problem を解くこと指しており, それぞれ の場合において用いたパラメータを併記した.

実験結果より、提案手法を用いることでナイーブな既存手法 と比較して多くの場合で最適化に要する時間を約3~4割削減 したことを確認できる.

5 おわりに

本稿では, bootstrap problem と relinearize problem の厳密 解を高速に求める手法を提案した. 厳密解を求める際に必要な ILP への問題変換の前にデータフローグラフに前処理を施すこ とで、考慮する必要のあるグラフの大きさを削減し、ILP の計 算時間を削減した.評価実験では,多くの場合で,グラフの頂

4: http://www.gurobi.com/

点数と ILP の計算時間をともに約 3~4 割削減した. 今後の課題として、よりグラフの大きさを削減するアルゴリ ズムの検討, また, bootstrap problem や relinearize problem に対する精度の良い近似アルゴリズムの検討が挙げられる.

謝 辞

本研究は JST CREST Grant Number JPMJCR1503 の支 援を受けたものである.

文 献

- [1] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC '09, pp. 169-178. ACM, 2009.
- [2] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Computer Science, Vol. 10, No. 4, pp. 283–424, 2016.
- Tancrède Lepoint and Pascal Paillier. On the minimal num-[3] ber of bootstrappings in homomorphic circuits. In Financial Cryptography and Data Security: FC 2013 Workshops, Vol. 7862, LNCS, pp. 189–200, 2013.
- [4] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In Advances in Cryptology - EUROCRYPT 2010, Proceedings, Vol. 6110, LNCS, pp. 1–23, 2010.
- [5] Hao Chen. Optimizing relinearization in circuits for homomorphic encryption. arXiv e-prints, October 2017.
- Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, [6] and Hang Zhou. Optimization of bootstrapping in circuits. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '17), pp. 2423-2433. 2017.
- [7] Marie Paindavoine and Bastien Vialla. Minimizing the number of bootstrappings in fully homomorphic encryption. In International Conference on Selected Areas in Cryptography, Vol. 9566, LNCS, pp. 25-43, 2015.
- [8] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomorphisms. Foundations

of secure computation, Vol. 4, No. 11, pp. 169–180, 1978.

- [9] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106, 2011.
- [10] Victor Shoup and Shai Halevi. HElib. https://github. com/shaih/HElib.
- [11] 佐藤宏樹, 馬屋原昂, 石巻優, 山名早人. 完全準同型暗号による秘密計算回路のループ最適化と最近傍法への適用. DBSJ Japanese Journal, Vol. 16-J, No. 12, March 2018.
- [12] Nigel P. Smart and Stefan Tillich. Circuits of basic functions suitable for mpc and fhe. https://homes.esat.kuleuven. be/~nsmart/MPC/.