
DEIM Forum 2009 B5-6

A Hybrid Approximate XML Subtree Matching Method

Using Syntactic Features and Word Semantics

Wenxin LIANG†,†† and Haruo YOKOTA††

† CREST, Japan Science and Technology Agency
5 Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan

†† Global Scientific Information and Computing Center, Tokyo Institute of Technology
2–12–1 Ookayama, Meguro-ku, Tokyo 152–8552, Japan

E-mail: wxliang@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract With the exponential increase in the amount and size of XML data on the Internet, XML subtree match-

ing has become important for many application areas such as change detection, keyword retrieval and knowledge

discoveries over XML documents. In our previous work, we have proposed leaf-clustering based approximate XML

subtree matching methods using syntax information of both the clustered leaf nodes and the corresponding paths.

In this paper, we propose a hybrid subtree matching method, in which subtree matching is determined by using

the word semantics based on WordNet thesaurus in leaf nodes and the syntactic features in the relevant paths. We

also propose a one-pass hash join technique to reduce the additional join cost caused by the extra words expanded

by the WordNet. We perform experiments to evaluate performance and matching precision and recall comparing

the hybrid method with the original syntax-based methods. The experimental results indicate that the proposed

hybrid method with one-pass hash join, comparing with the existing path-based SLAX algorithm, can effectively

improve the precision and recall with about only 5% increase of the execution time for the leaf-clustering based

subtree matching.

Key words XML Subtree Matching, Syntactic Feature, Word Semantics, WordNet

1. Introduction

XML has increasingly become a wildly popular standard

and employed as a key technique for representing, exchanging

and integrating data on the Internet, because it is portable

for representing different types of data from multiple sources.

Recently, a large number of data, for example free online en-

cyclopedias such as Wikipedia [10], life science data such as

Swiss-Prot [8], and bibliography data such as DBLP [12],

are disseminated and exchanged on the Internet in the form

of XML documents. With the exponential increase in the

amount and size of XML data, XML subtree matching has

become important for many application areas such as change

detection, keyword retrieval and knowledge discoveries over

XML documents. However, XML subtree matching is not

an easy task because XML documents from different data

sources representing nearly or exactly the same information

may be constructed by different structures. Besides, even

two XML documents contain the same information, each of

them may have some extra information that the other does

not do.

［Example 1］ Figure 1 shows an example of two XML doc-

Bibliography

article article

title author title author volume

WWW Black XML
Joins

 7Green

volume

20

article

title

XML
DBs

author volume

Green

20

... ...

(a)

References

article article

authors title authorstitle

Web

XML
Joins

author author author

Black White White

author

Green

initPage initPage

20 7

articles
... ...

articles articles... ...
... ...

(b)

Figure 1 Example XML document trees

ument trees with different DTDs. Although the two XML

document trees have different structures, they represent very

similar information. Besides, each document has some infor-

mation that the other does not do. For example, volume in

Figure 1 (a); and initPage in Figure 1 (b).

In previous work, we have proposed leaf-clustering based

approximate XML subtree matching methods using syntax

features of the clustered leaf nodes [6] and the correspond-

ing paths [7]. However, focusing on the syntactic features

without considering the semantic similarity between words

achieves high performance but may degrade matching preci-

sion and recall due to the indistinguishable matching prob-

lem. To solve the indistinguishable matching problem and

achieve reasonable trade-off between performance and effec-

tiveness, in this paper we propose a hybrid subtree match-

ing method, in which subtree matching is determined by the

word semantic similarity using WordNet thesaurus [11] of

clustered leaf nodes and the syntactic features in the relevant

paths. We perform experiments to evaluate the performance

and matching precision and recall comparing the proposed

hybrid method with the original ones, and the experimental

results indicate that the proposed method can improve the

matching precision and recall but takes more execution time.

The rest of the paper is organized as follows. Section 2

briefly introduces the related researches. Section 3 describes

our previously proposed syntax-based methods and the in-

distinguishable matching problems. In Section 4, we pro-

pose the hybrid subtree matching method and discuss the

one-pass join technique. Section 5 describes the experimen-

tal evaluation of the proposed method comparing with the

original methods. Finally, Section 6 concludes this paper.

2. Related Work

XML subtree matching in RDBs is often applied in the

area of change detection on XML documents [3, 9]. Wang

et al. [9] proposed X-Diff, an effective change detection al-

gorithm based on an unordered tree model. However, X-

Diff cannot be applied to large-scale XML documents be-

cause of main memory limitation. Leonardi et al. [3] pro-

posed schema-conscious approaches which can be applied

to larger XML documents with better performance than

X-Diff. However, the schema-conscious methods need the

DTDs of the XML documents. In [6], we proposed SLAX,

a syntax-based subtree matching algorithm, which is DTD-

independent and cost-effective with focusing only on the syn-

tax of clustered leaf nodes. However, SLAX sometimes cause

imprecise matching problems that may degrade the effective-

ness of subtree matching. To solve the imprecise matching

problems, in [7] we proposed path-based SLAX, which uti-

lizes the syntactic features of both the path information and

the clustered leaf nodes. However, focusing on the syntactic

feature may degrade matching precision and recall due to the

indistinguishable matching problem which will be described

in the next section.

3. Syntax-based Method

In this section, we briefly introduce our previously pro-

posed syntax-based approximate XML subtree matching al-

gorithms using syntax features of the clustered leaf nodes [6]

and the corresponding paths [7], and the indistinguishable

matching problems occurred in the syntax-based methods.

3. 1 SLAX and Path-based SLAX

In [6], we have proposed the leaf-clustering based XML

integration methods, in which the two XML documents to

be joined are firstly segmented into independent meaning-

ful subtrees [4]. Then, the subtree matching is determined

by SSD (Subtree Similarity Degree) as shown in the follow-

ing equation [5, 6], where n and nbi denote the number of

matched leaf nodes and the number of leaf nodes in the base

subtree tbi, respectively.

SSD(tbi, ttj) =
n

nbi
× 100 (%) (1)

However, focusing only on the leaf nodes sometimes causes

imprecise matching problems that may degrade the precision

and recall of subtree matching. To solve the imprecise match-

ing problems, in [7] we have proposed path-based SLAX,

in which the approximate similarity between two segmented

subtrees is determined based on the Path-based Subtree Sim-

ilarity Degree (PSSD) which is defined as follows（1）.

［Definition 1］ (Path-based Subtree Similarity Degree

(PSSD)) For a pair of matched subtrees TM (i), assume the

number of matched leaves is K, the full-path based subtree

similarity degree PSSD(tbi, ttj) is determined by Equation 2,

where PS(i) is the path similarity determined by the number

of matched tags out of the total number of tags in the path.

PSSD(tbi, ttj) = SSD(tbi, ttj) ×
∑K

i=1
PS(i)

K
(2)

3. 2 Indistinguishable Matching Problem

Focusing on the syntactic features without considering the

semantic similarity between words achieves high performance

but may degrade matching precision and recall due to the

indistinguishable matching problem. Figure 2 shows an ex-

ample of indistinguishable matching occurred in the syntax-

based methods. According to the definition of SSD, subtree

tb1 matches both target subtrees tt1 and tt2 because of the

same SSD = 33.33%; that is, the SSD cannot distinguish

which pair of subtrees are more semantically relevant only

by using the syntax information. However, since the word

“WWW” is synonymous with the word “Web”, the target

（1）：Note that the path-based SLAX in this paper only corresponds

to the full-path based method using path information after matching

leaf nodes proposed in [7].

tb1

article

title author

WWW Black

volume

20

(a) Base subtree

tt1 tt2

article article

authors title authorstitle

Web

XML
Joins

authorauthor author

Black White White

author

Green

initPage initPage

20 7

(b) Target subtrees

Figure 2 Example of indistinguishable matching

subtree tt1 is considered to be more semantically relevant to

the base subtree tb1.

4. Hybrid Subtree Matching Method

4. 1 Hybrid Similarity Degree

WordNet [11] is one of most common used lexical database

of English. Words are grouped into sets of cognitive syn-

onyms (synsets), each expressing a distinct concept. Synsets,

interlinked by means of conceptual-semantic and lexical rela-

tions, are the general components for describing word seman-

tics. We use the synsets returned by Java WordNet API [2]

to determine the semantic similarity between the words in

the leaf nodes. Given two words w1 and w2, assume w1 and

w2 contain m and n synonyms s1(i) (1 <= i <= m) and s2(j)

(1 <= j <= n) from the synsets of WordNet（2）, the semantic

similarity between the two words S(w1, w2) can be deter-

mined by the following equation, where σ (0 < σ <= 1) is a

user-defined constant（3）.

S(w1, w2) =

{
σ, if any s1(i) = s2(j)

0, otherwise

In order to solve the indistinguishable matching problem,

we propose a hybrid method using both the syntactic features

and the word semantics. We first use WordNet thesaurus to

determine the semantic similarity between leaf nodes, and

then consider the syntactic features in the relevant paths. In

（2）：Note that if there are no synonyms returned from WordNet,

s1 = w1 and s2 = w2.

（3）：For the sake of simplicity, we set σ = 1 in this paper.

Figure 3 Example of join process

the proposed method, the similarity between two subtrees are

determined by the Hybrid Similarity Degree (HSD) which is

defined as follows.

［Definition 2］ (Hybrid Similarity Degree (HSD)) For a

pair of subtrees tb and tt, assume there are m and n words

wb(i) and wt(j) in the leaf nodes of tb and tt is m and n,

the hybrid similarity degree between tb and tt, HSD(tb, tt)

is determined by Equation 3, where PS(k) and K are the

same as those in Definition 1.

HSD(tb, tt) =

∑m

i=1
Max{S(wb(i), wt(j))}

m
×

∑K

k=1
PS(k)

K
(3)

4. 2 One-pass Join

In order to reduce the the additional join cost caused by

the extra words expanded by the WordNet, we propose a

one-pass hash join technique instead of joining each pair of

base and target subtrees one by one. In the one-pass hash

join, the words and their corresponding synonyms in the leaf

nodes of each base subtree are stored into a relation table Bi

and those in the leaf nodes of all the target subtrees together

with their IDs are stored into a relation table T . During the

join process, once a join base table Bi is built into memory

by a hash function, the join table T containing all the tar-

get subtree information can be one-pass probed to achieve

high-speed subtree matching.

Table 1 Experimental environment

CPU Intel Core 2 Processor E6850 3.0 GHz

Memory 2.0 GB

Hard Disk Seagate ST336607LC 37GB

OS Linux 2.6.9

DBMS PostgreSQL 8.1.3

Java Sun JDK 1.6.0

Lexical Database WordNet 2.1

Java API MIT JWI 2.1.5

Figure 3 illustrates the process of joining base subtree

tb1 with target ones tt1 and tt2 in Figure 2. Firstly, the

synonyms of the words in the leaf nodes of tb1, tt1 and

tt2 are obtained from the synsets of WordNet, and they

are stored together with the original words into two rela-

tional tables B1 and T (Table T also stores the subtree

ID information), respectively. Next, the two tables are

hash joined by the condition that B1.Syn = T.Syn. Fi-

nally, the matched subtree for the base subtree tb1 can be

determined based on Equation (3) using the join results

sorted by T.Id. In this example, according to Equation

(1) and (3), SSD(tb1, tt1) = SSD(tb1, tt2) = 33.3%, while

HSD(tb1, tt1) = 66.7% > HSD(tb1, tt2) = 22.2%. This

means the hybrid method can effectively solve the indistin-

guishable matching problem. Besides, since HSD(tb1, tt1) =

66.7% > PSSD(tb1, tt2) = SSD(tb1, tt1) = 33.3%, the hy-

brid method is more effective to evaluate the semantic simi-

larity between subtrees than the syntax-based methods.

5. Experiments

5. 1 Experimental Setup

The experiments were performed under the environment

shown in Table 1. We used the XML version of SIGMOD

Record [1], named sigmod.xml (482KB, about 20,000 nodes),

and we segmented the XML version of DBLP [12] into

955 fragment documents, named dblp1∼955.xml (300KB

each, about 15,000 nodes). We parsed the sigmod.xml and

dblp290.xml into relational tables and then segmented them

into independent meaningful subtrees（4）.

5. 2 Experimental Results

After the XML documents are stored and segmented into

independent meaningful subtrees, we used the original algo-

rithm SLAX, the path-based SLAX, and the proposed hybrid

method to execute the subtree matching for the sigmod.xml

and dblp290.xml with four different matching threshold from

0.1 to 0.4. The lexical database and Java API used in the

hybrid method are WordNet 2.1 [11] and MIT Java Wordnet

Interface JWI 2.1.5 [2]. The number of segmented subtrees

（4）：Refer to Reference [4] for the detailed data schema and subtree

segmentation algorithms.

Figure 4 Time for subtree matching

of the two documents are 1504 and 698, and the number of

correct answer is 142. In order to evaluate the effectiveness

of subtree matching, we define precision and recall as follows.

［Definition 3］ (Precision) The precision of subtree match-

ing (P) is the percentage of the number of correctly selected

hit subtrees (Ns) out of the total number of hit subtrees

(Nh).

P =
Ns

Nh
× 100 (%) (4)

［Definition 4］ (Recall) The recall of subtree matching (R)

is the percentage of the number of correctly selected hit sub-

trees (Ns) out of the total number of correct answer(Nc).

R =
Ns

Nc
× 100 (%) (5)

Figure 4 shows the execution time using SLAX, path-

based SLAX (PS for short), the hybrid method using tra-

ditional join (HB normal for short), and the hybrid method

using one-pass hash join (HB for short). Figure 5 and Fig-

ure 6 show the precision and recall of subtree matching using

SLAX, PS and HB methods. According to the experimental

results, we can make the following discussions:

• Comparing with the PS method, the HB normal

method increases 138.30% of execution time on the average,

because the extra words expanded by the WordNet increases

the number of comparison in the join process. While, the

hybrid method with one-pass hash join only increases 5.29%

of execution time on the average, which indicates that using

the one-pass hash join can effectively reduce the join cost

even the number of the words to be compared becomes much

larger due to the utilization of the WordNet thesaurus.

• Comparing with SLAX, the precision increases 19.68%

and 20.37% on the average when using PS and HB, respec-

tively. Figure 5 shows that HB is superior to PS when the

matching threshold is greater than 0.2. However, PS achieves

slightly better precision when the matching threshold is less

than 0.2, because using the word semantics in HB generates

Figure 5 Precision of subtree matching

Figure 6 Recall of subtree matching

larger number of hit subtrees than PS does（5）.

• Comparing with SLAX, the recall increases 2.09%

and 4.93% when using PS and HB, respectively. The hy-

brid method achieves better recall than the SLAX and PS

methods, particularly when the matching threshold becomes

larger than 0.2.

From the above results, we can learn that the proposed

hybrid method with one-pass hash join, comparing with the

path-based SLAX algorithm, can effectively improve the pre-

cision and recall with about only 5% increase of the execution

time for the leaf-clustering based subtree matching, particu-

larly when the matching threshold becomes larger.

6. Conclusions

In this paper, we proposed a hybrid XML subtree matching

method, in which subtree matching is determined by using

（5）：Another reason is that the XML documents used in our experi-

ments contain many computer terms, “XML” for example, that are not

included in the WordNet database. Acturally, in the future we plan

to conduct further evaluation on the effectiveness of using WordNet

by more experiments using multiple kinds of XML data.

word semantics in leaf nodes and the syntactic features in

the relevant paths, to solve the indistinguishable matching

problem in syntax-based approximate XML subtree match-

ing algorithms. We also proposed a one-pass hash join tech-

nique to reduce the additional join cost caused by the extra

words expanded by the WordNet.

We performed experiments to evaluate the trade-off be-

tween performance and matching precision and recall com-

paring the proposed hybrid method with the original ones,

and the experimental results indicate that the proposed hy-

brid method with one-pass hash join, comparing with the

path-based SLAX algorithm, can effectively improve the pre-

cision and recall with about only 5% increase of the execution

time for the leaf-clustering based subtree matching, particu-

larly when the matching threshold becomes larger.

Acknowledgment

This work was partially supported by CREST of JST

(Japan Science and Technology Agency), and by the Grant-

in-Aid for Scientific Research of MEXT Japan #19024028.

References

[1] ACM SIGMOD Record in XML. Available at
http://www.acm.org/sigmod/record/xml/.

[2] MIT Java WordNet Interface. Available at
http://projects.csail.mit.edu/jwi/.

[3] Erwin Leonardi and Sourav S. Bhowmick. Detecting
Changes on Unordered XML Documents Using Rela-
tional Databases: A Schema-conscious Approach. In
Proc. of CIKM, pages 509–516, 2005.

[4] W. Liang, X. Ouyang, and H. Yokota. An XML Sub-
tree Segmentation Method Based on Syntactic Seg-
mentation Rate. In Proc. of ADSS, pages 551–558,
2007.

[5] W. Liang and H. Yokota. LAX : An Efficient Approx-
imate XML Join Based on Clustered Leaf Nodes for
XML Data Integration. In Proc. of BNCOD, pages
82–97, 2005.

[6] W. Liang and H. Yokota. SLAX : An Improved Leaf-
Clustering Based Approximate XML Join Algorithm
for Integrating XML Data at Subtree Classes. IPSJ
Trans. on Databases, 47(SIG8(TOD30)):47–57, 2006.

[7] Wenxin Liang and Haruo Yokota. Exploiting Path In-
formation for Syntax-based XML Subtree Matching in
RDBs. In Proc. of WAIM, pages 105–112, 2008.

[8] Swiss-Prot. http://www.ebi.ac.uk/swissprot/.
[9] Y. Wang, D. J. DeWitt, and J. Cai. X-Diff: An Ef-

fective Change Detection Algorithm for XML Docu-
ments. In Proc. of ICDE, pages 519–530, Match 2003.

[10] Free Encyclopedia: Wikipedia. http://wikipedia.org/.
[11] WordNet. http://wordnetweb.princeton.edu/.
[12] XML Version of DBLP. Available at http://dblp.uni-

trier.de/xml/.

