
DEIM Forum 2009 C3-1

Metadata-aware Keyword Search in Relational Databases
 Jiajun GU† Hiroyuki KITAGAWA†‡

†Graduate School of Systems and Information Engineering
‡Center for Computational Sciences

University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
E-mail: gu@kde.cs.tsukuba.ac.jp, kitagawa@cs.tsukuba.ac.jp

Abstract Keyword search is the most widely used information retrieval approach which powers the successful web search
engines. In recent years because of its user-friendly way it has been applied to RDBMS and several approaches have been
proposed. According to a query with a set of keyword terms these approaches can retrieve results from multiple tuples in
different relations. However, they only consider keyword terms in tuple instances but ignore the metadata part such as names
of relations or attributes. As a matter of fact ordinary users have requirements to raise keywords which may be contained in the
metadata part. In this paper, we propose metadata-aware keyword search approach. We define a tuple with annotation as an
extension concept of a conventional tuple. Based on the WordNet ontology we calculate the similarity between the query and
the metadata part. Furthermore, we propose the weight function which also cares about metadata information. Finally, we
implement the query processing scheme in RDBMS in order to prove our proposed approach.

Keyword Relational Database, Keyword Search, Weight, Similarity

1. Introduction
Keyword search is the most widely used information
retrieval approach which powers the successful web search
engines because of its user-friendly way. However,
according to the major RDBMS (Relational DataBase
Management System) the general search requires users to
have a good knowledge of the query language and the
scheme of databases. It is the bottleneck of RDBMS’s
wide spreading to normal users. Therefore free-form
keyword search has been applied to RDBMS and attracted
recent research interests.
 In conventional keyword search, each document
constitutes one unit of information, and is included in a
result, if it contains all or some of the keywords [10]. In
RDB (Relational DataBase) the basic unit of information
is a tuple which consists of several attributes. The major
difference between keyword search in document and RDB
is that for the former the result is just one document, for
the latter the result is not limited to a single tuple, but
several tuples from multiple relations based on some
relationship.
 In recent years various approaches to keyword search in
RDB have been proposed such as [5, 6, 7, 9, 10, 11, 12, 15,
16]. According to a query with a set of keyword terms
these approaches can retrieve results from multiple tuples
in different relations. However, they only consider
keyword terms in tuple instances but ignore the metadata
part such as names of relations or attributes. As a matter
of fact normal users have requirements to raise keywords

which may be contained in the metadata part.
In our previous work [20], we defined a tuple with

annotation as an extension concept of a conventional tuple
and worked on the exact match for the terms of query and
metadata part. In this paper, we propose metadata-aware
keyword search approach considering similarity. Based on
the WordNet ontology we calculate the similarity between
the query and the metadata part. Furthermore, we propose
the weight function which also cares about metadata
information. The results containing all the keywords are
ranked according to the proposed weight function.

The remainder of this paper is structured as follows:
Section 2 introduces related work and previous work
briefly. Section 3 gives the motivating example. Section 4
explains the proposed approach for keyword search in
detail. Section 5 shows the experiments’ results. Section 6
summarizes the paper and gives the future work.

2. Related work
There are a handful of different approaches for keyword
search in RDBs. Here we just introduce Discover [6].
Discover exploits the RDBMS’s schema graph information
to return qualified joining trees of tuples as results, that is,
sets of tuples which are associated on their
primary-foreign key relationships and contain all the
keywords of the query.
 At query time, after users input a query, it firstly finds
tuple instances in each relation that contain at least one
keyword by using inverted index. Then it traverses

database schema graph to enumerate all minimal joining
networks of tuple sets called candidate networks. A
candidate network CN is a minimal joining network of
tuples because all end nodes of a CN should contain at
least one distinct keyword. Therefore, a CN can be
considered as a joining expression to produce joining
networks of tuples which satisfy the keyword query.

A tuple set consists of the tuples which just contain a
sub-set of the query keywords set in exactly one relation.
A CN contains all the keywords and involves non-free
tuple sets and free tuple sets. Free tuple sets in a CN do
not contain any query keywords, but help to construct
results by connecting the non-free tuple sets.
 Finally, based on the enumerated joining networks of
tuple sets, execution plans are translated into SQL
statements. The results are ranked in ascending order of
the number of the joins involved in the tuple trees.
 After Discover was proposed, some papers were
published to extend it and make it robust. [7] focused on
effective keyword search. They proposed to use
information retrieval (IR) ranking technologies for
keyword search in relational databases to get more
effective results. [7] also proposed some efficient
query-processing algorithms to obtain Top-K results.

In this paper, we use [6, 7] as the basic approach to
implement keyword search in RDB.

None of the above approaches consider keyword search
including metadata. The weight function in them does not
care about metadata information either.

In our previous work, we defined a tuple with
annotation as an extension concept of a conventional tuple
which consists of a set of attribute-value pairs:

{(A1: vi1), (A2: vi2)… (An: vin): (N1: A1), (N2: A2)…
(Nn: An), (Nn+1: R)}

where i = 1, 2 … m, where m is the number of tuples in the
relation and n is the number of attributes. N1~Nn+1 are

new attributes for metadata and R is a relation name.
 In the tuple with annotation the metadata information is
added. Based on it we can extend the existing keyword
search system to the metadata-aware keyword search
system.
 Our previous work is limited to the exact match for
terms of the query and the metadata part. In fact, the
queries can be more flexible. Therefore we propose
metadata-aware keyword search considering similarity in
this paper and design the special weight function which
also cares about metadata part.

3. Motivating example
Figure 1 is a simple example of a part of movie
information database. Figure 1(a) is a Movie relation
consisting of three attributes MID, Title and Year while
MID is a primary key. Figure 1(b) is a Play relation
consisting of two attributes MID and AID while both are
foreign keys. Figure 1(c) is an Actor relation consisting of
two attributes AID and Name while AID is a primary key.
For explanation, we assign ID to every tuple instance in
each relation as shown in Figure 1.
 If a user gives a keyword query “Titanic, Kate”, we can
easily find the joining sequence of m2, p3 and a4 because
the joining sequence contains two keywords in its end
nodes. In this example, it is the only result because we do
not consider answers containing only a part of query
keywords.

Movie
MID Title Year

01 The Year of the Yao 2004
02 Titanic 1997
03 Titanic 1953
04 The Aviator 2004
05 1953 2003

(a)

Figure 1: Database example

In some cases, however, users may give a query like

“Leonardo, Winslet, Movie”. It means that they want to
know the information about movies which were performed
by Leonardo and Winslet. In reality, this kind of queries is
often raised by normal users. Recalling the database
example in Figure 1, “Movie” is not a value in any tuple
instances, but a relation name, one kind of metadata. More
generally, because normal users have no knowledge of the
scheme of database, the keyword term they raised cannot
exactly match with the terms in metadata part. For
example, they may raise keyword such as “Film”, “Show”
and “Performer”. These keywords have similar meanings
to their corresponding metadata term.

In existing approaches, users cannot get any results

Play
MID AID

01 002
02 003
02 004
03 001
04 003

(b)

Actor
AID Name
001 Robert Wagner
002 Ming Yao
003 Leonardo DiCaprio
004 Kate Winslet

(c)

m1
m2
m3
m4
m5

p1
p2
p3
p4
p5

a1
a2
a3
a4

from our example. Even if fortunately users can get some,
they may not be the relevant results users expect.

In the next section we try to solve the above problem by
using our proposed approach.

4. Proposed approach
4.1. Query model
We consider a database with a set of relations {R1, R2...
Rn}. The relations are connected through primary-foreign

key relationship. The database schema graph is
constructed with relations as nodes and relationships as
edges. In notation, Ri→Rj represents primary key to
foreign key relationship. For simple expression, we
assume all primary and foreign key attributes are in one
attribute and there is no more than one primary-foreign
key relationship between two relations. We also assume
there are no self-loops or parallel edges in the database
schema graph.
 A query Q is a set of distinct keywords and a result is a
joining tree T of tuples with annotation. Each leaf node in
T contains at least one unique keyword. It is not allowed
that the same tuple appears more than once in one T. In
this paper we assume Boolean-And semantics, so a result
should contain all keywords of the given query.

4.2. Similarity
As discussed in the motivating example part, it is often the
case that the keyword doses not exactly match with the
term in the metadata part. To cope with this problem, we
employ WordNet ontology to find the similarity between
the term of the query and the term of the metadata part.

WordNet [19] is a large lexical database of English
language, developed in Princeton University. Nouns, verbs,
adjectives and adverbs are grouped into sets of cognitive
synonyms (synsets). Each synset expresses a distinct
concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations. Different types
of word have different relations between synsets. For
nouns as an example, there are hypernymy, hyponymy,
holonymy and metonymy conceptual-semantic relations.

Hypernymy/hyponymy is also called subset/superset or
the is-a relation. For example, the relation for computer
and machine is hypernymy/hyponymy relation because the
computer is a machine. Holonymy/metonymy is the
is-a-part-of relation. For example, the relation for
computer and monitor is a holonymy/metonymy relation
because the monitor is a part of a computer. Also synsets
can be interlinked through lexical relations such as

antonymy. For example, the relation for beauty and
ugliness is antonymy relation because the meaning of
beauty is opposite to the meaning of ugliness.

Additionally, in WordNet database, singular form and
plural form of a word are considered in the same synset.

In our paper, we consider hypernymy/hyponymy
relation for similarity. Figure 2 is an example of WordNet
ontology while a rectangle represents a synset and a link
represents hypernymy/hyponymy relation.

Figure 2: An example of WordNet ontology

For similarity calculation, we consider the inverse of

(the shortest path length + 1) between synsets as the
similarity for two terms. For example, according to Figure
2 the path length between “movie” and “cartoon” is 2, so
the similarity for them is 0.3333. If two terms appear in
the same synset such as “movie” and “film”, the similarity
for them is 1. And if either of two terms cannot be found
in any synsets, the similarity for them is 0. As a result the
similarity for any two terms is between 0 and 1.

For implementation of similarity calculation in
computers, we employ WordNet::Similarity [19] which
implements a variety of semantic similarity and
relatedness measures based on information found in the
lexical database WordNet. Measures of similarity use
information found in the is-a relation of synsets, and show
how much synset A is similar to synset B.
WordNet::Similarity cannot compare the similarity
between noun pairs and verb pairs because the is-a
relation in WordNet does not cross part of speech
boundaries. WordNet::Similarity cannot be used for
adjectives and adverbs because they are not organized into
the is-a relation. In our experiments, the terms in the
metadata part and executed queries are all nouns, so
WordNet::Similarity can be applied to our research.

WordNet::Similarity not only supports the measure of
path length between terms but also some other famous
measures. More detail information can be found in [19].

4.3. Ranking
We now discuss how to rank the results for a given query
Q.

movie, film, pic, …

short subject feature, feature filmthree‐D, 3‐D, 3D

cartoon, toon, … newsreel

documentary, docudrama, …

Western, horse opera

…

 In order to distinguish the different weight for value in
the tuple instance part and metadata part, the weight
function should be divided into two parts.
 For the tuple instance part, as in [7], we use
single-attribute IR-style relevance scores for each textual
attribute.

Score_I t . A , Q

1 ln 1 ln tf w

1 s s
length t . A
avg AQ .A

ln
N 1
df w

where tf(w) is the term frequency of word w in tk.Aij,
df(w) is the number of tuples in Rj with word w in
attribute Aij, length(tk.Aij) is the size of tk.Aij in characters,
avg(Aij) is the average attribute-value size of Aij, N is the
total number of tuples in Rj, and s is a constant which
usually equals to 0.2.
 For the metadata part, we consider “Attribute” and
“Relation” as two levels of metadata and choose maximum
similarity between terms in the query and the metadata
part.

Score_A t . A , Q max Sim w, n
N A

Score_R t . A , Q max Sim w, n
N R

where for a word w of the query, Score_A t . A , Q means
the similarity for the query and Name A ,
Score_R t . A , Q means the similarity for the query and
Name R , Score_A t . A , Q is for attribute level and
Score_R t . A , Q is for relation level. Sim w, n means
the similarity for term w and term n.
 The weight of a tuple instance is boosted by both
attribute level and relation level metadata. So the weight
function for a tuple with annotation is as follows:

Weight t Score_I t . A , Q
S .A

1 α Score_A t . A , Q 1 β Score_R t . A , Q

where α and β are constants.
 The final weight of the result which is a joining tree of
tuples notated as T is as follows:

Combine T
∑ Weight tT

size T

where size(T) is the number of tuples in T.

4.4. Query processing scheme
Figure 3 describes the architecture of query processing
system.

Firstly, we have to construct an inverted index for terms
in tuple instances and in metadata. For the former, we

construct a list to keep the information consisting of two
parts. One is location including the relation name, the
attribute name and tuple ID and the other is term
frequency (tf(w)). For the latter, we do it in almost the
same way. The difference is that in tuple ID part, we
replace it with “ALL”. For relation metadata, we also
replace the attribute name with “ALL”. We store the
average attribute-value size of Aij (avg(Aij)) beforehand in
the database. We also build an another index to store the
size of tk.Aij in characters (length(tk.Aij)) in advance.

Through similarity calculation step, we find the
similarity for every combination of each term in the query
and the metadata part by using WordNet::Similarity.

Figure 3: Architecture of query processing system

Secondly we use the inverted index to find which tuples

contain keywords and to construct tuple sets. We store the
tuple sets in the database. From the inverted index, we can
also get the number of tuples in Rj with word w in
attribute Aij (df(w)). In Figure 3, a tuple set Actor
(“Winslet”) is generated and stored as a new relation TS_1
in the database. Then we can calculate the weight of each
tuple with word “Winslet” and add the weight to this
temporal relation. Therefore, TS_1 = {(a4, 1.624)}. TS_2
= {(a4, 1.624)}. If we get a keyword “Movie”, we can
obtain a tuple set as Movie (“Movie”) = {(ALL, 0)} which
means all tuples in relation Movie contain keyword
“Movie” and the weight for each tuple is 0.

User Query

Inverted
Index

Tuple Sets
Generator

CN
Generator

Execution
Engine

Resutls

Database

Query “Leonardo, Winslet, Movie”

Tuple
Sets

Movie (“Movie”)
={(ALL, 0)}

Actor (“Leonardo”)
= {(a3, 2.177)}

Actor (“Winslet”)
= {(a4, 2.368)}

Candidate
Networks

Actor(“Leonardo”)→Play(“ ”)
←Movie(“Movie”)→Play(“ ”)

← Actor(“Winslet”)

SELECT *
FROM Movie M1, Actor At1, Actor At2, Play

Atp1, Play Atp2
WHERE At1.AID in (SELECT AID FROM TS_1)

and At2.AID in (SELECT AID FROM TS_2)
and At1.AID = Atp1.AID
and At1.MID = M1.MID
and M1.MID = Atp2.MID
and Atp2.AID = At2.AID

Results

Top-1: a3, p2, m2, p3 and a4 (Weight: 0.909)

Similarity
Calculation

Sim(“Movie”,“Name”) = 0.1
Sim(“Movie”,“Actor”)= 0.1111

Sim(“Movie”,“Title”) = 0.1
Sim(“Movie”,“Movie”) = 1

…

“Leonardo” :
{(Actor Name a3, 1)}

“Winslet” :
{(Actor Name a4, 1)}

“Movie” :
{(Movie ALL ALL, 1)}

Then we generate candidate networks which contain all
query keywords by traversing the tuple sets graph. Each
node in the tuple sets graph is a tuple set which is a
non-free tuple set or free tuple set. Each edge represents
primary-foreign key relationship based on the database
schema. For example, for a given query “Leonardo,
Winslet, Movie”, we can obtain one CN as Actor
(“Leonardo”) → Play (“ ”) ← Movie (“Movie”) → Play
(“ ”) ← Actor (“Winslet”) while Play (“ ”) means a free
tuple set of Play.

Finally, by using each CN and its corresponding tuple
IDs in returned tuple sets, we translate CNs into SQL
statements and execute them in RDBMS to retrieve ranked
results based on our proposed weights. In this example,
there is only one result being retrieved, so Top-1 result is
the joining tree of a3, p2, m2, p3 and a4. The final weight
for this result is 0.909.

5. Experiments
In this section we implemented the proposed scheme
described above in RDBMS. For our evaluation, we use
the Internet Movie Database (IMDB) [17]. It is a real on
line dataset of information about movies, actors, directors,
etc.

We decomposed IMDB dataset into relations according
to the database schema shown in Figure 4. We constructed
nine relation tables by converting a subset of IMDB’s raw
files. The scheme of nine relations is shown in Figure 5.

Figure 4: IMDB database schema

(→ represents primary-foreign key relationship)

We ran our experiments using the MySQL v5.0.22 with
their default configurations. The system was run on a PC
with a Xeon 2.13GHz CPU and 2G RAM. The database
server and the client were run on the same PC. We
implemented all query-processing algorithms in Java
through JDBC connecting to the RDBMS.

For the results, we just consider the joining tree T of
tuples of which the size (T) is no more than 5. And we
setboth of α and β as 1. We assume the Boolean-And
semantics, so the result should contain all keywords of the
given query. In our experiments, if the similarity for two
terms is equal or larger than 0.5, we consider the two
terms are the same.

Relation Scheme Number of Tuples

Actor (atID, Name) 873786
Actorplay (atID, mID) 5766668

Actress (asID, Name) 524846

Actressplay (asID, mID) 3291573
Countries (mID, Country) 634924

Director (dID, Name) 140828

Direct (dID, mID) 745202

Genres (mID, Genre) 741437

Movie (mID, Title, Year) 1131831

Figure 5: Relation Scheme for IMDB
(Text attributes are with underline and primary keys are in

italic type)

5.1. Evaluation of results size
We executed 10 queries of three keywords and each query
contains only one keyword which can be considered as the
same to the term from the metadata part such as “Show”,
“Film”, etc. To have a query set where the results are not
always empty, by analyzing inverted index we picked up
keywords which have high term frequency. The detail of
10 queries is shown in Figure 6.

Number Query

Q1 {Jerry, Tom ,Director}

Q2 {City, Frank, Director}

Q3 {Days, World, Actress}

Q4 {American, Tom, Director}

Q5 {Helen, Tom, Actor}

Q6 {Gibson, Kate, Player}

Q7 {Steven, Tom, Head}

Q8 {City, Larry, Show}

Q9 {Street, Victoria, Film}

Q10 {Business, Kim, Head}

Figure 6: The detail of 10 queries

The number of results is shown in Figure 7. By using

our proposed processing scheme considering metadata,
from Figure 7 we can find that most of the queries got

Countries GenresMovie

Actorplay

Actor

Actressplay

Actress

Direct

Director

more results.

Query Q1 Q2 Q3 Q4 Q5

Non_metadata 1 7 0 19 1

Proposed 231 57 10 34 1106

Query Q6 Q7 Q8 Q9 Q10

Non_metadata 0 3 84 0 1

Proposed 143 1981 48 73 15

Figure 7: Number of results for each query
(Non_metadata means the number of results without
considering metadata. Proposed means the number of

results considering metadata)

5.2. Relevance of results
Figure 8 shows the the number of relevant results without
considering metadata. We can observe that most of the
queries cannot get relevant results.

Figure 9 shows the precision for each query with
considering metadata. In Figure 9, the horizontal axis
represents ten queries in Figure 7 and the vertical axis
represents the precision for each query. The precision here
is based on all returned results in “Proposed” row of
Figure 7. Except Query 2 the precision of others queries is
high. The reason for the outlier Query 2 is that a big part
of results with considering metadata were also the results
without considering metadata. And from Figure 8 we know
that results of Query 2 have no relevant ones, so the
precision for Query 2 was affected much.

Query Q1 Q2 Q3 Q4 Q5
Non_metadata 1 7 0 19 1

Relevant 0 0 0 0 0

Query Q6 Q7 Q8 Q9 Q10

Non_metadata 1 3 84 0 1

Relevant 0 2 0 0 0

Figure 8: Number of results and relevant results for
each query

(Non_metadata means the number of results without
considering metadata. Relevant means the number of

relevant results)

In Figure 10, we did another experiment for the average

precision for Top-K results with considering metadata.
The horizontal axis represents Top-K results (K is from 1
to 10) and the vertical axis represents the average
precision for ten queries for each Top-K results. We can
observe that the average precision is larger than 0.7. It has

proved that the proposed weight function works well.

Figure 9: The precision for each query

Figure 10: The average precision for Top-K

Figure 11: Parameters adjustment

(For the value (1, 0) means α = 1 and β = 0, the same
to the other kinds.)

5.3. Parameters adjustment
We assigned two different values to parameters α and β,
so there are four kinds of results showed in Figure
11. The horizontal axis represents Top-K results (K is
from 1 to 5) and the vertical axis represents the average
precision for ten queries for each Top-K results. We
compared the average precision for Top-K among
four kinds of results. We can observe that if we do not

assign weight to the metadata part, the average precision
goes down. It proved the effectiveness of the proposed
weight function for the metadata part. It also proved the
necessity of considering both levels of relation and
attribute metadata.

5.4. Comparison
In our previous work, we just consider the exact match. In
this chapter, we consider the similarity match. Here we
also did a comparison experiment between these two
proposals. For the exact match, we consider that if the
keyword term exactly matches with the term of the
metadata part, the similarity for these two terms is 1. If
not, we consider the similarity for them is 0.

Figure 12 and Figure 13 show the detail of relevance of
retrieved Top-10 results. Figure 12 represents the
similarity-based situation and Figure 13 represents the
exact match situation. The head column of these two
tables means 10 queries and the head row of these two
tables means the n-th result. “○” and “× ” represent
relevant and non-relevant respectively. “ −”means no
results. The red marks in Figure 13 mean changes
compared to Figure 12.

 1 2 3 4 5 6 7 8 9 10

Q1 × × ○ ○ ○ ○ ○ ○ ○ ○

Q2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q3 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Q4 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q5 ○ × × × × × × × × ×

Q6 × × × × ○ ○ ○ ○ ○ ○
Q7 ○ ○ × × × × × × × ×

Q8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q9 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q10 ○ ○ ○ ○ × ○ ○ ○ ○ ○

Figure 12: Top-10 results in similarity-based match for
10 queries

From Figure 12 and Figure 13, we can observe that the

precision of five queries goes down. These five queries are
Q6, Q7, Q8, Q9 and Q10. The same point of these queries
is that all of them contain a metadata-similar keyword
which does not exactly match with the term of metadata
part. Especially for Q6 and Q9, without considering
similarity, there are no results retrieved from the dataset.
Therefore, compared with Figure 12 and Figure 13, it has
proved the necessity of considering similarity-based
match.

We can also observe that the precision of Q5 goes up.
The point of this query is that it contains a keyword
“Actor”. From WordNet::Similarity, we found that the
similarity for “Actor” and “Actress” is 0.5, so these two
terms will be considered as the similar terms in our
experiments and some results which do not contain the
information about “Actor” returned. But in our setting of
the database schema in the experiments, we do not
consider “Actor” and “Actress” are the same. Therefore,
for the exact match, this query can retrieve better results
and the precision of it goes up.

 1 2 3 4 5 6 7 8 9 10

Q1 × × ○ ○ ○ ○ ○ ○ ○ ○

Q2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q3 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q4 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Q5 ○ × × × × × × × ○ ○
Q6 - - - - - - - - - -

Q7 ○ ○ × - - - - - - -

Q8 × × × × × × × × × ×

Q9 - - - - - - - - - -

Q10 × - - - - - - - - -

Figure 13: Top-10 results in exact match for 10 queries

6. Conclusion and future work
In this paper, we proposed a metadata-aware keyword
search approach with considering similarity. In addition,
we proposed a special weight function which considers
tuple instance and metadata both. We implemented the
scheme with real data in RDBMS and from the
experiments our proposed approach has been proved.

 In future work, we are going to do more extensive
experiments on different real databases to evaluate the
weight function. Furthermore, we will plan to consider the
similarity in the level of tuple instances. We will also
consider more complex situation such as keyword search
in multi-database with semantically related information
but different structure.

7. Acknowledgements
This research has been supported in part by Grant-in-Aid
for Scientific Research from MEXT (#19024006).

References
[1] J. M. Smith, D. C. P. Smith. Database Abstractions:

Aggregation and Generalization. In ACM TODS, Vol.
2, No. 2, June 1977, Pages 105-133.

[2] C.J. Date. An introduction to Database Systems
VOLUME I, Fifth Edition, Addison-Wesley, 1990.

[3] W. Kim, I. Choi, S. Gala, M. Scheevel. On resolving
Schematic Heterogeneity in Multidatabase Systems.
In Distributed and Paralled Databases 1 (1993),
pp.251-279.

[4] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
H. Garcia-Molina. Proximity Search in Databases. In
VLDB, 1998.

[5] G. Bhalotia, A. Hulgeri, C.Nakhe, S. Chakrabarti.
Keyword Search in Databases. In IEEE Data
Engineering Bulletin, 2001

[6] V. Hristidis, Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In VLDB,
2002.

[7] V. Hristidis, L. Gravano, Y. Papakonstantinou.
Efficient IR-Style Keyword Search over Relational
Databases. In VLDB, 2003.

[8] C.M. Myss, E.L. Rovertson. Relational Languages for
Metadata Integration. In ACM Transactions on
Database Systems, Vol.30, No.2, June 2005,
pp.624-660.

[9] F. Liu, C. Yu, W. Meng, A. Chowdhury. Effective
Keyword Search in Relational Databases. In
SIGMOD, 2006.

[10] A. Markwetz, Y. Yang, D. Papadias. Keyword Search
on Relational Data Streams. In SIGMOD, 2007.

[11] Y. Luo, X. Lin, W. Wang. SPARKS: Top-k Keyword
Query in Relational Databases. In SIGMOD, 2007.

[12] J. Zhang, Z. Peng, S. Wang, H. Nie. CLASCN:
Candidate Network Selection for Efficient Top-k
Keyword Queries over Databases. In J. Comput. Sci.
& Technol, Mar. 2007, Vol.22, No.2, pp.197-207.

[13] C.M. Wyss, F.I. Wyss. Extending Relational Query
Optimization to Dynamic Schemas for Information
Integration in Multidatabases. In SIGMOD, 2007.

[14] G. Koutrika, A. Simitsis, Y. Ioannidis. Precis: The
Essence of a Query Answer. In ICDE, 2006.

[15] M. Sayyadian, H. LeKhac, A. Doan, L. Gravano.
Efficient Keyword Search Across Heterogeneous
Relational Databases. In ICDE, 2007.

[16] B. Yu, G. Li, K. Sollins. Effective Keyword-based
Selection of Relational Databases. In SIGMOD,
2007.

[17] http://www.imdb.com

[18] http://wordnetweb.princeton.edu

[19] http://wn-similarity.sourceforge.net/

[20] J.Gu, H.Kitagawa. Extending Keyword Search to
Metadata on Relational Databases. In INGS, 2008.

