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Abstract Many applications deal with multiple data streams, such as supermarket streams of transactional data, stock rating

information, observation data from sensor network and so on. In the data stream environment, correlation patterns among data
streams generated at different time points may be different due to data evolution. In this paper, we propose a generalized mea-
surement to detect the change of multiple continuous data streams. The generalized measurement produces goodness-of-fi
scores online to evaluate whether the new arrival data samples satisfy the existing correlations or not, and tracks local corre-
lations among data streams which enable the user to glean valuable insights into emerging trends in the underlying activity of
data. We demonstrate usefulness, robustness and efficiency of our proposed measurement on a series of image data. As illus
trated in empirical results, our proposed measurement can detect the change of correlations efficiently to classify the images
and recognize the images accurately.

Key words local correlation tracking, evolving data streams, generalized regression measurement.

. nature of such changes, a user may be able to glean valuable insights

1. Introduction , _ _ : y

into emerging trends in the underlying activity.

Recently, a large number of applications deal with multiple data There is a considerable amount of work which focus on incre-
streams, such as supermarket transactions data, stock rating infonental maintenance of data mining models in the context of evolv-
mation, observation data from sensor network and so on. Often, thieg data streams [1-3]. The focus in our paper is correlation among
volume of such data streams may easily range in the millions on data streams. The notion of correlation among data streams is im-
daily basis, and the data may show important changes in the treng®rtant since it allows us to discover groups of data streams with
over time because of fundamental changes in the underlying pheimilar behavior and, consequently, to discover potential anomalies
nomena. This is referred to data evolution By understanding the which may be revealed by a change in correlation. This paper stud-



ies the problem of data evolution in terms of capturing and tracking ) [Z{\il(m —2)(yi — 7))

(4)

local correlations among data streams. o Zj-v—l(ffi —7)? Z{\il(yi _ g)z‘

In the data stream environment, correlation patterns among data 5 .
. . . . The value of R“ is always betweer® and 1. The closer the
streams generated at different time points may be different due to ) o )
] ] ] .value is tol, the better the regression line fits to the data points.
data evolution. In this paper, we propose a generalized regression 5 . .
. L We observe thak” gives absolute score for evaluating how well
measurement for evaluate the goodness-of-fit of existing correla- ) ] )
) ) ) . the sequence¥ and X linearly correlated with each other, unlike
tions among multiple evolving data streams incrementally. Inte- o - )
) ) . o distance-based similarity measurement. In addition, according to
grated with our previous work of incremental Principal Component ] - ) )
. ) ) expression (4)R* is invariant to the regression order of two se-
Analysis [6], the generalized regression measurement produces a
uences.
goodness-of-fit score to evaluate whether the new arrival data sarﬁ- ) ) ) )
. o . The above regression model is call®uinple Regression Model
ples satisfy the existing correlations or not. Therefore, our method o ) )
. since it involves only one independent variaBleand one depen-
can reflect the changes of correlations robustly and accurately. In ) ) .
. . . . dent variableY’. We can add more independent variables to con-
this paper, we mine the correlations among data streams in an on- ) )
) ) ] ] ) . structMultiple Regression Modeids follows:
line fashion; therefore, the technique to be discussed in this paper

achieves to process an incoming data point efficiently in terms of Y = 8o + 51X1 + B2 X2 + ... + B XKk + u. (5)

space usage and execution time, detect changes of correlations d/élo- 8 5y can be estimated similarly using the first order con-

namically and report the changes automatically. ditions

This paper is organized as follows. In Section 2, we provide a . .
In order to address our problem of extracting correlations among

basic background of the traditional regression models. In Section .
multiple sequences, the Simple Regress Model has to be run for

3, we propose the generalized regression measurement for multiple o ) .
evaluating linear regression between each pair of sequences. The

regression model and discuss how it can be used in order to detect - . .
performance cannot be efficient in the context of multiple se-

changes of correlations among evolving data streams. In Section 4, . ) .
gliences. We also cannot uB2 in the Multiple Regression Model

empirical results illustrate the efficient and robust performance of . ) )
to test whether multiple sequences are linearly correlated with each

our approach. Conclusion and future work are presented in Section 5. ) ) .
c other or not, becausB” in the Multiple Regression Model is sen-
' sitive to the order of sequences. When we randomly chdgse

2. Traditional Regression Models substituteY” as dependent variable and ¥tbe independent vari-

) ) ) able, then the regression becomes
In order to evaluate the linear relationship between sequérices

and X, the traditional linear regression model is established as fol- X; =G0+ 81 X1+ ...+ 8Y + ...+ Bx Xi + u. (6)

lows: The R? here will be different from that in expression (5). There-

Y =080+ /X +u. 1) fore, in this paper, we propose a generalized regression measure for

. . . ) detecting correlations among multiple sequences.
The variableu is called theerror term Given a set of data points,

X = [$1,$27...,IN] andY = [yl,yg,...,y]\r],ﬁo andﬂl can be 3. ApproaCh
estimated in the sense of minimization of ) ) . )
In this section, we discuss our approach for tracking local corre-
N N
Z w? = Z(yi — Bo — Brai)? @) lation among data streams based on our proposed generalized mul-
i=1 i=1 tiple regression measurement. In section 3.1, we illustrate the gen-
Using the first order conditions, we can sofeand; as follows:  €ralized measurement and derive some important properties of the
measurement for our purpose of online mining correlations among

Po=19 _Nﬂlx’ multiple dimensional streams. In section 3.2, we give the algorithm
B = Zi:l(}ffi — )y~ 9) . for tracking local correlations due to data evolution integrated with
. )2
iz (@i = 7) our previous work.
wherez = % ZL z; andy = % Zil ¥, are the average of 3.1 Generalized Regression Measurement
sequenced” and X, respectively. After obtaining, and 3;, R- GivenK (K = 2) sequences X Xz, ..., Xk as
squaredmeasurement is defined as follows for evaluating goodness-  / x; 11 Ti2 ... TIN
of-fit of the linear regression line Xs Tol T2 ... Ton
SN w2 A i I : )
RQ -1 = i=1 "1 ) (3) . . . . .
77)2
Zizl(yi - 9) XK TK1 TK2 ... TKN

From expression (3) we can further derive: We first organize them intdV data points in thei-dimensional



space: 0 1 tracking process of local correlation based on generalized regression

T11 T12 T1N mgasure )
Tracking Local Correlations
N S | T2 N For each new arrival data point:
pr= : P2 = : 1o PN= : : 1. Calculate GR¥(i=1..,u) by substituting eigenvectors
. . . corresponding to the largest eigenvalues of existing u
. " " kinds of correlations.
Kl K2 KN 2. Ifthe maximum GR? 2 threshold(j <u)

the new data point satisfies the j correlation,

Here, in order to construct a multiple regressioin model for the . i ; .
update the coefficients of j correlation according

K sequences, that is, we seek to find a regression line irkthe to algorithm [6];
dimensional space that fits to thé data points. Here, we de- 3. FElse . )
the new data point represent a new kind of
fine the error termu; as thevertical distance from data points correlation (u+1) among data streams, initialize

CI xKi) to the regression line. coefficients of the u+1 kind of correlation

Appendix gives in detail how to determine the regression line in

K-dimensional space as follows:
We know expression (1Q} 0, therefore:

= =, . . =0 2k (8) N
D lpi—m|*ze'se=r20, (12)

=1

wherep(7) is the value ofi-th dimensional element of data popnt

[e1,e2,...,ex]" is the eigenvector corresponding to the maximum )
so we conclud® < GR* L 1.

020 If GR® = 1, then} " u? = 0, which means the re-
gression line fits to théV data points perfectly. Therefore, thé

eigenvalue of the scatter matrixX;(j = 1,2,..., K) is the av-
erage of sequence;XIf any data poinp in K-dimensional space

satisfies expression (8), it must lie on the line.

. i . . sequences have exact linear correlation with each other.
Similar to the traditional regression model, after determining the

L ) , 0 30 According to expression (9), this is obvious.
regression line, we define a generalized measurement for evaluate

the goodness-of-fit of the regression line as follows: ) . ) ] '
In the next subsection, we utilize the generalized regression mea-

Zf;l uf ) surementa R? for detecting changes of correlations among multiple

S S (e — X)) evolving data streams.

3.2 Tracking Local Correlations

GR?> =1

We can derive following important properties 61R2:

010 GR?= =x—2>——and0 < GR*< 1. o , . _
D iy lpi—m? representing linear correlations among large collections of numeric
020 GR? = 1 means thel sequences have exact linear cor-

Korn et al. introduced the problem of discoverimatio rulesfor

variables in a database, and proposed an efficient method based on
relation with each other.

0 30 GR?isinvariant to the order of X Xo, ..., Xk, i.e., we

can arbitrarily change the order of tli&sequences, while the value

eigensystem analysis (like Principal Component Analysis [4]) for
extractk ratio rules (combinations of variables) witlgreatest vari-

ances [5]. However, this method cannot be applied to detect corre-

2
of GR” does not change. lations among multiple evolving data streams dynamically due to its

Proof. batch process. In addition, the method of [5] is sensitive to noise.

010 According to Appendix, we have: In data streams environment, due to data evolution, correlation pat-

N terns among data streams generated at different time points may be

N
2 t 2
Z uj = —€'Se+ Z | pi —m | (10) different due to data evolution. Therefore, the tracking of local cor-
=t =t relations is more important for the understanding of evolving data

Thus, streams. In order to track evolution of correlations, we aim to detect
) Z{V . w2 changes of correlation dynamically and report the local correlations
GR” =1- =1 ¢ .
K N Vi
ijl SN (i — X5)? automatically.
ZN W2 In this paper, we propose to utilize the generalized measurement
=1- ZNHZ;“HZ GR? to produces a goodness-of-fit score to evaluate whether the
tls ' new arrival data samples satisfy the existing correlations or not. Ac-
€'Se
= m (11) cording to the algorithm which we have proposed in [6] for calculat-
i—1 | Pi—m . . .
=t t/\l ing eigenvectors incrementally, we can calculate the sco@Rt
e'le . . . . .
= — incrementally from expression (11). Fig. 1 illustrates the tracking
dic lpi—m |2 . . - .
= \ process of local correlations. The following empirical results illus-

m. trate the efficiency and effectiveness of our approach.
=1 K



O 1 Classification ratio of our proposed approach 0O 2 Recognition rate comparison

atio of noise o 0 o 0 20% 30% 40% 50%
Types of nois 20 /0 30 /0 40 /O 50 /0 GR? | Batch | Incre | GR? | Batch |Incre | GR? | Batch | Incre | GR? | Batch | Incre
menta menta menta menta
IPCA | PCA | PCA IPCA
1 088 078 090 086 1/087| 090 | 085 |093| 094 | 092 |088| 094 | 089 | 096 | 0.97 | 0.96
2 0 86 0 89 0 90 O 83 2/084| 08 | 0.83 |086| 0838 | 0.84 087 | 090 | 085 | 098 | 0.99 | 097
) ) ) ) 3(082| 084 | 0.80 |084| 086 | 0.83 |0.86| 084 | 0.96 |0.86| 0.88 | 0.84
3 087 083 087 087 4/081| 087 | 080 |0.83| 086 | 083 |0.84 | 086 | 0.83 |0.85| 0.86 | 0.83
4 0.86 | 0.84 | 0.82 | 0.87

forms the batch process and our previous incremental process.

. 5. Conclusion
4. Empirical Results

) ] ) In this paper, we have proposed a generalized regression mea-
Our experiments illustrate that the proposed generalized measure- . . . .
) ~sure for tracking local correlations among multiple evolving data
ment GR? can reflect the changes of correlation among multiple . . L .
] o streams. As illustrated in empirical results, our approach can mine
evolving data streams efficiently and accurately. . . . . .
the correlations in an online fashion, therefore, it can detect changes
4.1 Data Set and Experiment Environment . . .
) ) of correlations dynamically and report the changes automatically.
The experiments are run on image sequences data. Here we . .
i i ] i For our future work, we aim to expreiment our approach on more
choose images from “Columbia Object Image Library” [7]. There . . .
] ) ) ) ) data sets, such as numerical streams of transactional data in order
are20 objects rotated about their vertical axis, resultitigimages . ) . s
) ] _ to detect spatial information of local correaltions and this kind of
per object. In our experiments, our approach track the correlations L - .
] infomation is useful for prediction, data compression and so on.
of the image sequences, then the accuracy of our approach can be 0 0

evaluated in terms of the classification ratio of objects and recogni-

. . [1]
tion rate of objects.

Key steps of experiments.Our experiments of visual learning
and object recognition are conducted the following steps: 2]

O 10 Random choos&0 images of one kind of object as the
clean dataset.

0O 20 Weinterchange images of the clean dataset with images of
other objects. Here the images of other objects are "noise”. There[3]
are two parameters for generating "noise”. One is the number of
images of "noise”, and the other is the number of kind of "noise”.

As show in Table 2, we randomly interchange clean image datasets4]
with the ratio 0f20%, 30%, 40%, 50%, respectively. On the other 5]
hand, the number of types of "noise” is set tohe, 3, 4, respec-
tively. (6]

0O 30 From one point of view, our approach is used for detecting
the change of correlations, and the efficiency of our approach can be
evaluated by the correct classification ratio. ]

O 40 From the other point of view, we test the local correlations
extracted by our approach with othHr images for illustrating the
accuracy of our approach. Comparing to the batch process of [5]
and our previous work of incremental analysis [6], the recognition
rate of the generalized measurement is higher.

0O 50 The results are the average evaluation@funs for each
combination of parameters.

4.2 Object Classification

I =m+ ae,
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Appendix
Determine Regression Line inK -dimensional space

Suppose, p2, . . .
space, we assume the regression lingpressed as:

,pn are theN data points in-dimensional

(13)

wherem is a point in theK-dimensional spacey is an arbitrary

As illustrated in Table 1, we can see that our approach is able to

scalar, and e is a unit vector in the direction of

detect the changes of correlations accurately and efficiently.

When we project pointg+, ps, . . .

4.3 Object Recognition
As illustrated in Table 2, we can see that our approach outper-

,pn to line [, we have point

m + a;e corresponding tp; (¢ = 1,..., N). The squared error for

point p; is:



u? =| (m+ a;€) — p; H? . (14) Since S generally has more than one eigenvector, we should select

the eigenvector e which corresponds to the largest eigenwalue

Thus, the sum of all the squared-error is to be:

Finally, we needn to complete the solutior} ", || p; —m ||?

N ) N ) should be minimized since it is always non-negative. To minimize
E ui = E [ (m+ aie) —p: || .
— — it, m must be the average of, p», . ..
i i

With m as the average of th& points and e from (18), the re-

N
= Z | cie— (pi —m) ||? gression lind is determined. The line in form of (13) is not easy to
=1

.,ex]" is the eigenvector cor-

understand. Suppose=e [e1, ez, . .

N N . . _ _
_ Z o e Hz 9 Zaiet(pi —m) responding to the largest eigenvalue and= [X1, X2, . .
i—1 =1 can be expressed as:

N

2

+Y lpi—m|
i=1

N N wherep(j) is the element of-th dimension of data point.

The sum of squared error must be minimized. Noteﬁé\le uf
is a function ofm, a; and e. Partially differentiating it with respect
to «; and setting the derivative to be zero, we can obtain:

t

a; =€ (pi —m) (15)

Now, we should determine vector e to minimiZ(:ef\L1 u?. Substi-
tuting (15) to it, we have:

N N N N
Zuf = Zaf722aiai+z | pi —m ||?
i=1 =1 1=1 i=1
N N
==Y al+) Ipi-m|’
i=1 i=1
N N
D €@ —mPE+Y  Ipi-m ]|
=1 i=1

= =Y [ —m)pi—m)'e+ Y Ipi—m|”

N
= —dse+» [pi—ml?
=1
where S= Zil(pi —m)(p; —m)*, calledscatter matrix
Obviously, the vector e that minimizes above equation also max-
imizes éSe. We can see Lagrange multipliers to maximiz8ee
subject to the constraifite ||*= 1. Let:

p=¢eSe— Ae-1). (16)

Differentiatingu with respect to e, we have:

on
% = 2Se— 2)\e. a7

Therefore, in order to maximizé 8e, e must be the eigenvector of
the scatter matrix S:

Se= Je. (18)



