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Abstract This paper proposes a novel window operator, pattern-based windows, for data stream processing. By

using pattern-based windows, user-specified complex events could be extracted from data stream under the frame-

work of Continuous Query Language (CQL), which integrates the current data stream processing research and

event processing technologies. In the paper, pattern-based window is formally defined and the query language of

pattern-based windows is designed. A simple pattern matching algorithm is introduced to show logical expression

of the query language. We also give serial examples to show the usage of the query language by using pattern-based

windows.
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1. Introduction

Network and sensor device technologies are developing

rapidly, and a variety of sensor devices such as network cam-

eras, wireless sensor nodes and RFID readers are widely used

in our daily lives. A variety of sensor devices such as network

cameras, wireless sensor devices and RFID readers are widely

used to catch and process the data from numerous primitive

physical events which happen continually everyday. How to

process this kind of primitive event streams has been focused

increasingly by database community.

One of the most important problems is the processing of

a sequence of primitive events for analyzing raw data from

the sensor networks. Although stream processing techniques

are discussed in depth, event processing (sequence pattern

matching) has not been well defined under the framework of

data stream processing systems.

The purpose of this research is to present the design of an

event stream processing engine which can support pattern

matching over data streams.

In this paper, we propose a novel window operator,

pattern-based windows, to support event detection under the

framework of data stream processing and continuous queries.

We show that we can well integrated the existing data stream

processing and event stream processing technologies. All the

general operators in data stream processing including selec-

tion, projection, join, union, and duplicate-elimination, are

supported in this research.

The rest of this paper is organized as follows: Section 2

introduces the related work of this research.

Section 3 illustrates the data model of data stream process-

ing over data streams. Section 4 puts forward our proposal,

pattern-based windows through using definition and exam-

ples.

Section 5 concludes the paper and indicates the future

work.

2. Related Work

In this section we provide a brief introduction to the re-

lated works.

Stream processing engines such as Streamspinner [11],

TelegraphCQ [4], STREAM [7] and Borealis [1] have been

well developed over the last several years both in research

and industrial communities. CQL [2] has been introduced by

STREAM project team. It shows a strict model of stream

processing and defines three kinds of window operators in

their data model. However, all data processing systems

above are awkward for expressing the event sequences and

conducting pattern matching.

Event processing system such as Cayuga [6], SASE

[8], [12] and Lahar [9] are close in spirit to this research.

Cayuga [6] is a prototype event stream processing system,
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which enables high-speed processing of large sets of queries

expressed in the Cayuga algebra. SASE [8], [12] describes

events in a formalism related to regular expressions and

uses some variants of a NFA model. One recent paper [8]

of SASE presents a rich declarative event language called

SASE+. SASE+ can be used to define a wide variety of

Kleene closure patterns to extract a finite yet unbounded

number of events with a particular property from the input

stream. Such patterns always appear in event streams in

RFID and sensor network applications. Paper [10] and La-

har [9] are event processing systems over probabilistic event

streams. But the event processing systems do not deal with

general data stream processing operators such as join and

duplicate-elimination.

In our research, we want to integrate both the technologies

to increase the usability of a stream processing system.

3. Preliminaries

In this paper, we utilize a data stream model based on

CQL [2].

CQL is the short form of Continuous Query Language.

In [2], a concrete query language and the abstract seman-

tics were proposed. Tuples have timestamps, and there is

no order between tuples with the same timestamps. The

data model consists of streams and updatable relations for

time-driven continuous queries.

In CQL model of defining stream and updatable relations,

the authors assume a discrete and ordered time domain.

Thus, the notion of timestamp is proposed to extend the con-

ventional stream. The attribute of timestamp is not included

in schema of a stream. And one timestamp can correspond to

one element in a stream. A finite but unbounded number of

elements with a concrete given timestamp is always required

by users. A relation R defines a multiset of tuples at any

timestamp which is including in time domain.This definition

for relation is quite ingenious to add timestamp attribute to

traditional relation model.

A tuple t is conforming to the schema Stream(a1, ..., an)

A stream S is a finite (but unbounded) multiset of elements

< s, τ >, where s is a tuple belonging to the schema of S

and τ is the timestamp. A relation R defines an unordered

multiset of tuples at any time τ , denoted instant R(τ).

Basing SQL, CQL formalized streams and updatable rela-

tions through defining three black-box classes of operators:

1)stream-to-relation operators that produce a relation from

a stream; 2)relation-to-relation operators that produce a re-

lation from one or more other relations; and 3)relation-to-

stream operators that produce a stream from a relation. The

stream-to-stream operators can be composed by the preced-

ing three operators.

Stream-to-relation operators: all stream-to-relation

operators in CQL are based on sliding window concept over a

data stream. By utilizing slide window, the operators inter-

cept and capture a finite portion of the stream at any times-

tamp. In CQL, there are three kinds of windows: time-based

windows, tuple-based windows, and partitioned windows.

A time-based sliding window is specified by a time inter-

val T and outputs relation over time by sliding window to

capture the last portion. A tuple-based sliding window is

specified by a length N of number of tuples and capture the

newest N tuples. Partitioned windows are quite different to

the prior two operators. This window partitions stream ref-

erencing subset e.g. A1,...,Ak. (A is the name of attribute of

the stream.)

All of them cannot support to predicate a sliding-window

which satisfies a user-defined sequence pattern.

Relation-to-relation operators: In relation-to-relation,

CQL refers all the operators from SQL by adding time vari-

able to them.

Relation-to-stream operators: There are three

relation-to-stream operators in CQL: Istream, Dstream and

Rstream. Istream (for”insert stream”) is the most commonly

used operator, which indicates a insert stream to insert tu-

ples according to the time τ by the difference of the relation

results between τ and τ − 1. Dstream(for ”delete stream”),

on the contrary, searches the deleted tuples and insert them

into a stream. Rstream(for ”relation stream”) output all tu-

ples satisfied by filter condition until now to construct an

updated stream.

4. Pattern-based Windows

We first show the definition of pattern-based windows and

sequence functions, then give some examples to show the

usage of pattern windows and how they can process with

normal relational operators in CQL model.

4. 1 Definition

A pattern-based window on a stream S takes a specifi-

cation of a sequence pattern P. Intuitively, a pattern-based

window logically selects tuples on a stream which satisfy the

user-defined pattern. The timestamp of the last tuple of the

window is time τ . More formally, we can write the definition

of the output relation R of pattern P as:

R(τ) = {< s1, τ1 >, < s2, τ2 >, ..., < sn, τ >}
τ1 < τ2 < ... < τn−1 < τ

s1, s2, ..., sn satisfy pattern P

Tuples s1, s2, ..., sn should be in time order and satisfy

the sequence pattern. The relation only has values when

the last tuple is at the current timestamp τ . Thus, in this

case pattern-based windows are similar to a special window,

NOW window “S [NOW]” in CQL. But NOW window only
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outputs a relation with tuples in the current timestamp,

while a pattern-based window outputs a relation with tuples

in different timestamps.

4. 2 Syntax

We define the syntax of pattern-based windows as follows:

Stream [ Pattern By

( s ta r t−cond i t i on ;

terminat ion−cond i t i on ;

i t e r a t i o n −cond i t i on ;

f i l t e r −cond i t i on ) ]

By the inspiration of FOLD clause in Cayuga event lan-

guage [5], four conditions as four parameters in a pattern-

based window are defined. Here, the meaning of the condi-

tions is introduced followed by a simple algorithm to indicate

the logical processing of pattern matching using the four con-

ditions.

The four parameters are as follows. (1) The first parame-

ter, start-condition, is the condition to start a pattern-based

window. Therefore, the first tuple in a pattern-based window

should satisfy start-condition. (2) Termination-condition on

the other side denotes the condition to end a pattern-based

window. When a tuple in the window meets termination-

condition, the pattern-based window is closed and should be

output to the next operator. (3) Iteration-condition is the

condition of matching iteration of a window and preserv-

ing the correctness of a pattern-based window. If iteration-

condition is not satisfied, the iteration is stopped and the

window is deleted. We can set iteration-condition as FALSE

to find two directly consecutive tuples on a data stream. (4)

Filter-condition is the condition to select the tuples in the

window. If we set the filter-condition as TRUE, all the tuples

after the first tuple are added to the buffer of a pattern-based

window. If we set it as FALSE on the contrary, only the first

tuple and the last tuple are contained in the window.

A simple algorithm of matching process using the four

conditions is shown in Algorithm 1. We can see from the

algorithm that we first check start-condition when a tuple

arrives. A new pattern-based window will be created if ap-

plicable. Then, we check the current tuple in each past open

window. If termination-condition is satisfied, the window is

output as relation to the next operator. Otherwise, iteration-

condition is checked to decide whether the iteration should

be continued. If iteration-condition is satisfied, we check the

filter-condition to decide whether the current tuple should

be added into the matching buffer in the window.

4. 3 Sequence functions

Sequence functions are similar to aggregation functions for

a relation. But the general aggregation functions do not

consider the time order for the tuples in a relation. Users,

Algorithm 1 Simple algorithm for pattern matching

1: Get a new tuple at τ

2: if start-condition then

3: Create an empty window and add the tuple into the win-

dow;

4: Iter = 1; Num = 1;

5: end if

6: for each open window, in which the timestamp of the last

tuple less then τ do

7: if termination-condition then

8: Add the tuple into the window;

9: Close and output the window;

10: else if iteration-condition then

11: Iter = Iter + 1;

12: if filter-condition then

13: Add the tuple into the window;

14: Num = Num + 1;

15: end if

16: else

17: Drop the window;

18: end if

19: end for

for example, usually want to find the first occurred tuple in

a relation. Thus aggregation functions coping with times-

tamps should be introduced. In this paper, we propose five

sequence functions. They are FIRST(), LAST(), PREV(),

ITER() and NUM().

In pattern-based windows, attribute names are directly

used to denote the attribute values of tuple in the current

iteration. FIRST() denotes the attributes in the first tuple

(the tuple with the minimum timestamp) in the relation and

the matched sequence. LAST(), similarly, denotes the last

tuple (the tuple with the maximum timestamp) in a relation.

FIRST() can be used in the SELECT clause and in all con-

ditions in pattern-based windows and LAST() can be only

used in the SELECT clause. In SELECT clause, they work

as the normal aggregation functions and the parameter of the

functions is a list of attribute names. When the functions are

used in pattern-based windows, the parameter has to be only

one attribute name. The function return the attribute value

in a matching buffer for an open window. PREV() can only

be used in pattern-based windows, which represents the at-

tribute in the previous tuple in a window. Please note that

PREV() cannot be used in the start-condition because the

first tuple does not have a previous tuple. We also define

function ITER() as the current number of iteration in an

open window and as the finial number of iteration times of

a window in SELECT clause. Similarly, Function NUM() is

defined to return the number of tuples in a window.

4. 4 Examples

We introduce the query language through several exam-
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ples. We first assume a location stream for different per-

sons from sensor networks. The schema of the stream is

At(Person, Location), which simply describes someone is at

some place at a certain time.

People usually want to find the next event after something

happened. So, we can assume the simplest pattern with two

tuples. The first tuple indicates that the some event hap-

pens at first, then the query find the next interesting tuple

by user-defined pattern. We show a relatively simple exam-

ple as follows.

Example 1. Suppose we want to find the next place where

Tom go after in the laboratory. We can formulate this query

in pattern-based window as follows.

ISTREAM(

SELECT LAST( Locat ion )

FROM At [ Pattern By

( Person = ’Tom’ AND

Locat ion = ’Lab ’ ;

Person = ’Tom’ ;

TRUE;

FALSE) ]

WHERE Locat ion <> ’Lab ’ )

Iteration-condition is set as TRUE and filter-condition is set

as FALSE. So, tuples in iteration are not added to the win-

dow. This pattern help to find a window with only two

consecutive tuples. The first state is that Tom is in the lab-

oratory. The second tuple represents that Tom is at some

place. When we find such a pattern-based window, we fil-

ter the tuple in the laboratory by selection in the WHERE

clause, because we want to find some other places besides

the laboratory. Finally, Istream operator is used to translate

the result into a stream.

Example 2. Suppose we want to find next place where

someone is after in the laboratory. We can formulate this

query in pattern-based window as follows.

ISTREAM(

SELECT LAST( Locat ion )

FROM At [ Pattern By

( Locat ion = ’Lab ’ ;

Person = FIRST( Person ) ;

TRUE;

FALSE) ]

WHERE Locat ion <> ’Lab ’ )

In this example, we change Tom to someone in the

query. Therefore, a constraint condition is “Person =

FIRST(Person)”. The attribute Person in the current it-

eration can be directly written as “Person”. First tuple

is quoted in the termination-condition by using FIRST().

We can force the same person in a pattern-based window

by checking equality in termination-condition and filter-

condition.

Example 3. Suppose we want to find someone first in the

laboratory and the directly next location is Room101. We

can formulate this query as follows.

ISTREAM(

SELECT LAST( Locat ion )

FROM At [ Pattern By

( Locat ion = ’Lab ’ ;

Person = FIRST( Person ) AND

Locat ion = ’Room101 ’ ;

Person <> FIRST( Person ) ;

FALSE) ]

WHERE Locat ion <> ’Lab ’ )

In this query, we use filter-condition to find the same per-

son for iteration. But the iteration-condition is set as “Per-

son ¡¿ FIRST(Person)”, which means only direct next place

“Room101” after “Lab” for a certain person is allowed for

the pattern. Otherwise the window will be dropped.

Example 4. Suppose we have another data stream indi-

cating the states of rooms with a schema RoomState(Room,

State). We can join pattern-based window results in Ex-

ample 3 and Stream RoomState to find someone’s state af-

ter leaving the laboratory. We can formulate this query in

pattern-based window as follows.

ISTREAM(

SELECT Person , State

FROM At [ Pattern By

( Locat ion = ’Lab ’ ;

Person = FIRST( Person ) ;

TRUE;

FALSE) ] ,

RoomState [ Range 2min ]

WHERE At . Locat ion = RoomState .Room

AND At . Locat ion <> ‘Lab ’ )

In this query, we use two kinds of window operators in the

FROM clause. The first is a pattern-based window same to

Example 2. The second is a time-based window. For the

pattern-based window performs as NOW window. We ob-

tain a new relation from the join operator only when the

current tuple meets the termination-condition of a pattern-

based window. Please note that in our model we can rename

the original timestamp of a data stream as a new attribute

after window operators. The new timestamps are given by

relation-to-stream operators by CQL model. This is impor-

tant because the original timestamps contain the occurrence

order of the tuples in a pattern-based window.
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Example 5. Suppose we want to find that a person at first

is in laboratory, finally returns home. The passes from labo-

ratory to home are not considered (i.e. The person may pass

some places and arrive at home indirectly or he go home from

lab directly. )We also want to calculate the duration time

between the laboratory and the home. We can formulate

the query in pattern-based window and sequence functions

as follows.

ISTREAM(

SELECT FIRST( Person ) ,

LAST(Timestamp ) − FIRST(Timestamp )

FROM At [ Pattern By

( Locat ion = ’Lab ’ ;

Person = FIRST( Person ) AND

Locat ion = ’Home ’ ;

Person <> FIRST( Person ) OR

Locat ion <> ’Lab ’ ;

Person = FIRST( Person ) ) ] )

This query can find a window for a certain person with

the sequence from “Lab” to “Home”. We can see here

that FIRST(), LAST() work as aggregation functions. So

the relation after SELECT clause contains only one tuple.

ISTREAM then converts the relation into stream for out-

put.

Example 6. Suppose we want to find that a person is in

laboratory at first, and sometime later he he/she is at home.

Similar to Example 5, the person might go home directly or

pass some other places and finally arrive home. The user of

this query wants to know all the passes from the laboratory

to the home. We can formulate the query in pattern-based

window and sequence functions as follows.

RSTREAM(

SELECT ∗
FROM At [ Pattern By

( Locat ion = ’Lab ’ ;

Person = FIRST( Person ) AND

Locat ion = ’Home ’ ;

Person <> FIRST( Person ) OR

Locat ion <> ’Lab ’ ;

Person = FIRST( Person ) ) ]

WHERE Locat ion <> ’Lab ’ AND

Locat ion <> ’Home ’ )

In this query, different from Example 5 using aggregation,

our system also can output the whole relation as Rstream if

users needed.

5. Evaluation

Recall the Example 4 in the previous section. There is

showing an instance that how to find someone’s state accord-

ing to the room in which the person is at that time. In this

case, there are two updating data streams. One of them is a

stream of person’s location noted as AT; the other one is the

state of room noted as RoomState. Firstly, we process the

AT by our pattern-based window and obtain one concrete

relation. Similarly, we obtain a relation from RoomState

by using time-based window. Then, we do a join operation

between them to realize the purpose of survey some person’s

state. And then, after processing by selection operator, the

tuples only with attributes of Person and State are ready to

output into the purpose stream. At last, ISTREAM opera-

tor accomplishes the final work by outputting each tuple to

form the updated stream.

Figure 1 shows the expression of the operator tree. As

described in above, pattern-based window is naturally in-

tegrated into usual operator tree and realize the pattern

function with natural join operator in the course of stream-

to-stream, which cannot be processed in system of SASE+

[8], [12] and Cayuga [6] because there are no definitions about

join operator in them. About the last examples, pattern-

図 1 Operator Tree Expression

based windows can output the complete relation after ag-

gregation processing. However, Cayuga does not have such

operation because they do not consider to support full rela-

tional operators.

Compared with CQL [2], our model of pattern-based win-

dow can be considered as an extension to the window opera-

tors of CQL. We can present one kind of snapshots of query

plans which satisfy the user’s intending query through our

model.

6. Conclusions and Future Work

In this paper, we proposed a novel window operator,

pattern-based window, to integrate the current data stream
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processing research and event processing technologies. The

definition of pattern-based windows is given and the query

language and algorithm of pattern matching process for

pattern-based windows are designed. The usage of pattern-

based windows was also showed through several concrete ex-

amples.

As future work, we will implement the system with

pattern-based windows and consider optimization of the pat-

tern matching algorithm, since the performance is also im-

portant for stream processing systems. To realize the per-

formance improvement, we are considering a parallel execu-

tion technique of pattern matching and a shared execution

technique. Probabilistic data model should be considered in

future work to exploit the uncertain nature of data streams

from sensor devices. Lineage will be a powerful tool for prob-

ability computation and data traceability.
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