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Abstract
such an algorithm that can find exact top-k answers, with eliminating redundant answers, in an exact ranked order in 0((2"*'mk + 3'nk -
logk)log(2!nk)) run time (I: the number of keywords; k: top-k; n: the number of nodes in the graph database; m: the number of edges in the

In this paper, by modifying an existing graph-database search algorithm DPBF [1] in a straightforward strategy, we propose

graph database) with the space complexity of 0(2!+1nk).
Keyword Top-k, Keyword Search, Graph Database

1. Introduction

Recently, keyword search has been a very popular way
to explore information. And many studies supporting
keyword search on graph databases have been proposed
like DPBF [1], BLINKS [2]. In these studies, a database is
modeled by a graph, when a set P of keywords is given as
a query, how to find an appropriate sub-graph with smaller
cost which satisfies P in that graph is the problem in this
field [1, 2, 3, 4].

One definition of this problem is to find the top-k
answers which contain all the keywords in the ranked
order of the increasing costs of connected trees. This
definition is adopted in DPBF [1] and is known as finding
the top-k min-cost connected trees based on the algorithm
of GST-k (Group Steiner Tree).

DPBF [1] is an repeats tree
grow/merge operations until GST-k are found. DPBF

algorithm  which

grows and merges all the trees at different root nodes, so it
can get the accurate top-1. It just keeps the min-cost one
of the trees with the same root node and the same
keywords, so the answers from top-2 to top-k cannot be
exact. Furthermore DPBF for finding top-k answers
(exactly, DPBF-k in [1]) must produce some redundant
answers which are not explained in [1].

Consequently, in order to get the top-k answers exactly
and eliminate redundant answers, we propose an improved
method named MDPBF by modifying DPBF by a
straightforward strategy.

2. The limitation of DPBF

DPBF [1] is a method which aimed at finding the top-k
min-cost connected trees which contain all the keywords.
The connected tree with smaller cost presents more
important information. The main idea of DPBF is
repeating tree grow/merge operations to produce GST-k.



Because DPBF loses many potential connected trees which
may be answers, the top-k answers got by it are
approximate. In [1] there is not clear explaining about the
redundancy elimination. In this section, we will introduce
three Cases of redundant answers as shown in Figure 1.
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Figure 1: Redundant answers (Cases 1, 2 and 3)

e Case 1: the trees which have the same edges but with
different root nodes. We call these trees redundant
answer of isomorphs.

e Case 2: the tree which is the super set of the tree which
has contained all the keywords. Because this Case of
redundant answer is produced after tree-grow operation,
we call it redundant answer of growing.

* Case 3: the tree which contains the same edge more
than once. This case of redundant answer happens after
tree-merge operation, so we call it redundant answer of
merging. DPBF just keeps the min-cost one of the trees
with the same root node and the same keywords, so this
kind of redundant answer can be avoided automatically
in DPBF.

3. MDPBF
In order to find the exact top-k answers and eliminate
redundant answers, we newly propose an improved method
named MDPBF.
3.1 Find exact top-k
From [1], we can see that DPBF just keeps the min-cost
one of the trees with the same root node and the same
keywords, and that is why DPBF loses answers. In order to
improve the quality of answers, instead of keeping the
min-cost one, MDPBF keeps top-k of the trees with the
same root node and the same keywords. The main idea of
MDPBEF is the same as DPBF.
The modified equations which are based on equations of
[1] are shown as follows.
If node v directly contains a keyword subset p < P:
Ti(v,p) =v (1)
If a tree has more than one node:
T, (v,p) = min_n{ TG(v,p) U TM(v,p) } (2)
TG(v,p) = { (v, W@T;(u, p)|
ueNw),1<i<k} (3)

Tree Grow:

~Ty(u, P,
; .
/

Tree Merge: TM(v,p) = {T;(v,p1)®T; (v, p2)|
(P1Np2 = OA(P1UDp, =p,iXj<k)} (4)

As notations:

e Eq(1): is a leaf node tree without any edge, so its cost
is 0.

* @ is an operation to merge two trees into a new tree.

* N(v) is a set of neighbor nodes of node v.

* T,(v,p) means the n-th smallest connected tree with
root node v and keyword subset p where (1<n<k)
got by function min_n..

When we do the merge operation, there are at least i X j
combinations, for reducing the size of queue, we just do
merge where i xj < k.

MDPBF enumerates candidate trees by using Qg
(global queue) and Q; (local queue) [5, 6] in the creasing
order of their costs until top-k answers are found.

3.2 Avoiding redundant answers

3.2.1
In fact, except the three cases of redundant answers of

New redundant answer of MDPBF

DPBF, MDPBF produces a new kind of redundant answer
as shown in Figure 2. Note that MDPBF allows keeping
top-k of the trees with the same root node and the same
keywords. Thus it is possible to keep the top-k trees with
the same root node and the same leaf nodes but different
paths (Case 4).

See an example shown in Figure 2. Suppose that
Ty(w{pl,p2,p3}) grows to  T(x{plLp2p3}) (=
T,®(w,x)) and further T, grows (along the dotted path
from x to v in Figure 2) to Th(v,{pl,p2,p3}. If T,
further grows to T3(v,{p1l,p2,p3}) (=T.®(,x)), T3 has
a cycle and the cycle does not contain any new
information about keywords.
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Figure 2: New redundant answer (Case 4)

3.2.2
There are four cases of redundant answers in MDPBF;

Redundancy elimination

next we introduce the elimination methods.



Firstly, we eliminate the Case 1 of redundant answers.

. Method 1 (isomorphs checking): Because we aim at
finding the top-k connected trees which contain all
the keywords in ranked order of increasing costs of
connected trees, there are not more than k answers. In
order to avoid the Case 1, we just need to check the
answers found whether they are the isomorphs.

Second is the Case 2 of redundant answers. We propose

two alternative methods to avoid Case 2:

. Method 2 (redundancy labeling): When a tree has
contained all the keywords, the new grow/merge trees
from it will be redundant answers, so we can give this
kind of redundant answers a label to record that they
are redundant, and are not allowed to be result..

. Method 3 (grow stopping): Because the merge
operation is done when two trees do not have the
same keywords, the Case 2 of redundant answers just
happens on grow operation. In order to avoid it, when
a tree has contained all the keywords, we dequeue it
directly without doing the grow operation from it.

Next is the Case 3 of redundant answers. DPBF just
keeps the min-cost one of the trees having the same root
node and the same keywords, so this case of redundancy
can be avoided automatically in DPBF. MDPBF keeps
top-k of the trees having the same root node and the same
keywords, so this case of redundant answers can be
produced by MDPBF.

. Method 4 (edges checking): In Case 3 T, (uP)
counts the cost of edge (v,u) twice, hence its cost is
bigger than Ty(w,P)(=T(v,p; Up2) @ (v,u)) which
counts the cost of edge (v,u) only once (T(v,p;VU
p2) = T1(v,p1) @ T2(v,p2)). In order to avoid this kind
of redundant answer, when a new edge is added into a
tree, we can check whether the new edge has been
contained, if so, give up this merge operation.

Final is the Case 4 which contains a cycle.

. Method 5 (nodes checking): In order to avoid the
Case 4, one way is to remember all the nodes of a tree
directly, then when a new node is added into a tree,
we firstly check whether this new node has been
contained, if so, we can give up this grow operation.

Except the above the methods, we also proposed a

method named leaf nodes checking to avoid Cases 3 and 4

at the same time.

. Method 6 (leaf node checking): In Case 3 and Case
4, MDPBF may produce some answers which contain
useless edges or nodes, so in order to avoid them, we
can check all the trees with the same root node and

the same leaf nodes. As a side effect, for each root
node v with any keyword subset p, those trees
remembered by MDPBF can have the same root node
v but they must have different sets of leaf nodes that
satisfy p. For example, in Figure 2, we just keep the
smaller one between T; and T; not both.

In summary, we prepare several algorithms with
different redundancy elimination methods referred above.
. DPBF1.1: with the redundancy elimination methods

1 and 2.

. DPBF1.2: with the redundancy elimination methods
1 and 3. The difference with DPBF1.1 is that
DPBF1.2 stops the tree grow/merge operations on the
trees which have been answers.

Because the DPBF just keeps the min-cost one of the
trees with the same root node and the same keywords,
DPBF can avoid the Case 3 automatically. Of course,
DPBF cannot find exact top-k.

As a practical MDPBF, we propose three versions:

. MDPBF1.1: with the redundancy elimination
methods 1, 2 and 6. The method 1 is used to avoid the
Case 1 and the method 2 is used to avoid the Case 2.
The method 6 can avoid Cases 3 and 4.

. MDPBF1.2: with the redundancy
methods 1, 3, 4 and 5. We used the same method to
avoid the Case 1 as MDPBF1.1. We used method 3 to
reduce the productions of the redundant candidate

elimination

trees. And the method 4 is to hold back happens of
Case 3 and method 5 aimed at stopping the
production of Case 4.

. MDPBF1.3: with the redundancy elimination method
1, 3 and 6. In fact, it has the same definition about
answer tree as MDPBF1.1. But the difference
between them is that MDPBF1.3 stops the tree
grow/merge operations on the trees which have
contained all the keywords.

3.3 Time and space complexities

Let the size of keyword query be I. When the number of
nodes of graph is n, we have to keep 2!nk candidate
connected trees. So the maximum size of Q; is 2!nk. The
time complexity of MDPBF is 0(Q2"'mk+ 3'nk-
logi)log(2ink).

MDPBF uses Q; and Q, (see [5, 6]) to keep all the
trees. The maximum number of trees is 2!nk at worst. So
the space complexity of MDPBF is 0(2!*1nk).

4. Comparison Results

We did experiments to compare these algorithms
DPBF1.1, DPBFl1.2, MDPBF1.1, MDPBF1.2 and



MDPBF1.3. All the experiments were performed on a
2.66GHz CPU machine with 3GB memory and
implemented by JAVA | _5.
4.1 Experiments on small Graph

Firstly, we did experiments to compare answers quality
between DPBF and MDPBF. And we found that DPBF
produced low quality answers.

Next we performed preliminary experiments to compare
quality of MDPBF1.1, MDPBF1.2 and
MDPBF1.3. Take Figure 3 as an example, give a set of

the answer

keywords {p2, al}, and the nodes 5, 8 and 9 are leaf nodes.
MDPBF1.1 and MDPBF1.3 can produce Trees 1, 2 and 3.
MDPBF1.2 can produce Trees 1, 2, 3 and 4. In MDPBF1.1
and MDPBF1.3, Tree 4 is considered as redundant because
it contains the same leaf nodes and the same root node
with Tree 1. Although Tree 4 has different information
with Tree 1, its cost is much higher than Tree 1. So we can
see that the answer definition of MDPBF1.1 and
MDPBF1.3 is different from MDPBF1.2. MDPBF1.1 and
MDPBF1.3 try to find the combinations of different leaf
nodes at different root nodes. And MDPBF1.2 considers
that all the trees with different paths are different and all
of them can be answers.

The graph database Tree 4
® D ® ., O
{02}
O O 0, D O
(9) ta}
Tree 1 Tree 2 Tree 3

Figure 3: A simple example

4.2 Experiments on 1000-nodes Graph

Next we performed experiments to compare
performance of five algorithms referred above. The tests
are based on the random graph with 1000 nodes and 1500
edges. Every edge-cost is set to 1. The hit rate for each
keyword is 1% (1% of all nodes of graph are leaf nodes for
each keyword). k (of top-k) =10. We changed the number
of keywords from 1 to 5. The experimental results are
shown in Figures 4, 5 and 6. From the experimental results,

we can see that MDPBF1.2 and MDPBF1.3 can reduce the

size of priority queue and find the top-10 efficiently.
Although the quality of answers produced by MDPBF1.1
is high, the performance of MDPBF1.1 is not very well.
That is because it produces many candidate trees and the
GST-k are found in a wide range. MDPBF1.2 maybe finds
the top-k in a narrow range but its efficiency is best. So
next we will pay attention on the two algorithms
MDPBF1.2 and MDPBF1.3 to make them work well on
large graphs.
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Figure 4: The number of main loop vs. | (k=10, n=1000)
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Figure 5: Run time (ms) vs. | (k=10, n=1000)
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Figure 6: The size of priority queue vs. | (k=10,
n=1000)
4.3 Experiments on 10000-nodes Graph
Next we uses a random graph contained 10000 nodes
and 15000 edges to do experiments. And the hit rate per
keyword is 0.1%. The results are shown in Tables 1 and 2.
As notations:



* k:equalsto 10

e L:the number of keywords

* Loops: the number of loops when GST-k are found

e QgSize: the maximum size of priority queue (global
queue: keep all the candidate connected trees)

e Tmax: the maximum size of edges sets of answer trees

e N1: the number of the trees with the same root node
and leaf nodes in candidate trees

* N2 : the number of the trees with the same root node
and leaf nodes in answers

* N3: the number of the trees with the same leaf nodes in
answers.

* N4: the number of the trees with the same leaf nodes in
candidate trees
From Tables 1 and 2, we can see that MDPBF1.2 and

MDPBF1.3 just work well when the number of keywords

is not bigger than 4. That is because the graph is very

sparse, and before we find the top-k, the programs need to

repeat tree grow/merge operations many times and the size

of priority queue becomes bigger and bigger. However

from the two tables, we can also find the size of edges of

answer trees (Tmax) is not so big. In order to make

MDPBF work well on large graph databases, we need to

reduce the search space.

Table 1: Test result of MDPBF1.2 on 10,000 nodes

(k=10)

Run .
L Loops time(msec) QgSize Tmax N1 N2
2 2,000 800 6,500 13 130 0
3 10,000 10,000 32,000 16 1,600 0
4 23,000 170,000 100,000 23 7,000 0

Table 2: Test result of MDPBF1.3 on 10,000 nodes

(k=10)
L Loops Run time QgSize Tmax N3
(msec)
2 1,900 1000 7,700 14 2
3 10,900 27,000 45,000 19 4
4 27,000 450,000 135,000 25 1

5. Search space limitation methods

In order to reduce the search space (the size of priority
queue), we propose three limitation methods.

Limitation method 1 (L1): limit the max-number (Tmax:
an given upper bound) of the edges of connected trees.

Limitation method 2 (L2): limit the max-number of the

edges of connected tree based on the number of keywords
of this tree (the number of edges < (the number of
keywords [;)* h))([; <L) (h: a given parameter).

Limitation method 3(L3): limit the max-height (H: a
given parameter) of the connected tree, in other words L3
limits the max-number of edges between any leaf node and
root node.

In fact, when we give a same parameter to L2 and L3
(h=H), the answers got by L2 will contain all the answers
got by L3. Namely, L3 has stricter limitation than L2.

Figures 7 and 8 showed the new experimental results on
10,000 nodes graph when Tmax=25, and h=H=5.
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Figure 7: MDPBF1.2 (k=10, n=10000)
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Figure 8: MDPBF1.3 (k=10, n=10000)

Form the Figures 7 and 8, we can say that L2 and L3 can
reduce the size of priority queue distinctly and improve
search efficiency clearly. When the number of keywords is
smaller than 4, L1 cannot reduce search space distinctly.

Finally, we did experiments on a large graph which
contains 100,000 nodes and 150,000 edges. The hit rate
per keyword is 0.1%.

Tables 3 and 4 are the test results of MDPBF1.2. And
Tables 5 and 6 are the results of MDPBF1.3.



Table 3: Test result of MDPBF1.2withL2 on 100,000
nodes (k=30)

The number of
Run time trees with the
L loops (msec) QgSize same root
node and leaf
nodes
2 5,224 3,900 6,890 1
3 | 11,753 10,637 16,600 0
4 | 25,600 33,100 38,950 0

Table 4: Test result of MDPBF1.2withL3 on 100,000
nodes (k=30)

The number
of trees
Run time . with the
L loops (msec) QgSize same root
node and
leaf nodes
2 5,484 4,215 7,256 1
3 | 21,000 18,759 23,200 0
4 | 54,200 75,785 57,200 0

Table 5: Test result of MDPBF1.3withL2 on 100,000 nodes

(k=30)
Run time :
L loops (msec) QgSize
2 5,113 4,800 8,785
3 10,700 10,500 20,000
4 25,925 44,600 50,600

Table 6: Test result of MDPBF1.3withL3 on 100,000 nodes

(k=30)
Run time :
L loops (msec) QgSize
2 4,790 4,428 8,400
3 21,050 23,600 30,800
4 52,131 106,700 75,000

Form the four tables, we can find that MDPBF1.2 with
Limitation method 2 has the best performance.
6. Conclusions

This paper described redundant answers of DPBF-k and
their elimination methods that are not described explicitly

in [1]. We next proposed an improved method named
MDPBF to find the top-k min-cost connected trees exactly
with redundancy elimination.

From the experimental results, we found that MDPBF
can produce exact top-k. MDPBF1.1 has working limit on
1000-nodes graph, and MDPBF1.2 and MDPBF1.3 have
working limit on 10000-nodes graph. By using the search
space limitation methods 2 and 3, MDPBF1.2 and
MDPBF1.3 can work well on large graph databases
(100000 nodes).
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