
   

DEIM Forum 2011 B10-1 

 

グラフデータベースにおける冗長解抑制を伴った Top-k キーワード検索
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あらまし  近年のデータベース研究の課題の一つに、大量情報をグラフデータベースとして表してキーワード検索を行う研

究がある。著者らのグループは、先行研究である DPBF 算法を改良して、上位ｋ個の正確な答えを効率良く求める算法 MDPBF を

既に提案している。しかし、MDPBF は、1000 ノード級のグラフでキーワード数 6による検索でも計算効率が悪くなっていた。こ

の状況を改善するため、本研究では、上位ｋ個の解を求めるときの冗長解削除戦略として複数の異なる手法を導入し、それらの

下で MDPBF により得られる答えの品質と計算効率を調べ、両者のバランスをとった冗長解削除戦略を提案する。そして、探索空

間の削減戦略と併用することにより、10万ノード級のグラフデータベースにおいても効率的に MDPBFが動作することを目指す。 
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Abstract  In this paper, by modifying an existing graph-database search algorithm DPBF [1] in a straightforward strategy, we propose 

such an algorithm that can find exact top-k answers, with eliminating redundant answers, in an exact ranked order in 𝑂((2𝑙+1𝑚𝑘 + 3𝑙𝑛𝑘 ∙

log𝑘)log(2𝑙𝑛𝑘)) run time (l: the number of keywords; k: top-k; n: the number of nodes in the graph database; m: the number of edges in the 

graph database) with the space complexity of 𝑂(2𝑙+1𝑛𝑘). 
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1. Introduction 

Recently, keyword search has been a very popular way 

to explore information. And many studies supporting 

keyword search on graph databases have been proposed 

like DPBF [1], BLINKS [2]. In these studies, a database is 

modeled by a graph, when a set  P of keywords is given as 

a query, how to find an appropriate sub-graph with smaller 

cost which satisfies P in that graph is the problem in this 

field [1, 2, 3, 4].  

One definition of this problem is to find the top-k 

answers which contain all the keywords in the ranked 

order of the increasing costs of connected trees. This  

definition is adopted in DPBF [1] and is known as finding 

the top-k min-cost connected trees based on the algorithm 

of GST-k (Group Steiner Tree).  

DPBF [1] is  an algorithm which repeats tree 

grow/merge operations until GST-k are found.  DPBF 

grows and merges all the trees at different root nodes, so it 

can get the accurate top-1. It just keeps the min-cost one 

of the trees with the same root node and the same 

keywords, so the answers from top-2 to top-k cannot be 

exact. Furthermore DPBF for finding top -k answers  

(exactly, DPBF-k in [1]) must produce some redundant 

answers which are not explained in [1].  

Consequently, in order to get the top-k answers exactly 

and eliminate redundant answers , we propose an improved 

method named MDPBF by modifying DPBF by a 

straightforward strategy. 

2. The limitation of DPBF 

DPBF [1] is a method which aimed at finding the top-k 

min-cost connected trees which contain all the keywords . 

The connected tree with smaller cost presents more 

important information. The main idea of DPBF is  

repeating tree grow/merge operations to produce GST-k. 



 

 

Because DPBF loses many potential connected trees which 

may be answers, the top-k answers got by it are 

approximate. In [1] there is not clear explaining about the 

redundancy elimination. In this section, we will introduce 

three Cases of redundant answers as shown in Figure 1 . 

 

Figure 1: Redundant answers (Cases 1, 2 and 3) 

 

 Case 1: the trees which have the same edges but with 

different root nodes. We call these trees redundant 

answer of isomorphs.  

 Case 2: the tree which is the super set of the tree which 

has contained all the keywords. Because this Case of 

redundant answer is produced after tree-grow operation, 

we call it redundant answer of growing.  

 Case 3: the tree which contains the same edge more 

than once. This case of redundant answer happens after 

tree-merge operation, so we call it redundant answer of 

merging. DPBF just keeps the min-cost one of the trees 

with the same root node and the same keywords, so this  

kind of redundant answer can be avoided automatically 

in DPBF. 

3. MDPBF 

In order to find the exact top-k answers and eliminate 

redundant answers, we newly propose an improved method 

named MDPBF.  

3.1 Find exact top-k 

From [1], we can see that DPBF just keeps the min-cost 

one of the trees with the same root node and the same 

keywords, and that is why DPBF loses answers. In order to 

improve the quality of answers, instead of keeping the 

min-cost one, MDPBF keeps top-k of the trees with the 

same root node and the same keywords. The main idea of 

MDPBF is the same as DPBF.  

The modified equations which are based on equations of 

[1] are shown as follows.  

If node v directly contains a keyword subset  𝑝 ⊆ P: 

 𝑇1 𝑣, 𝑝 = 𝑣           (1) 

If a tree has more than one node:  

𝑇𝑛 𝑣, 𝑝 = 𝑚𝑖𝑛_𝑛{ 𝑇𝐺(𝑣, 𝑝) ∪ 𝑇𝑀 𝑣, 𝑝  }    (2) 

Tree Grow:    𝑇𝐺 𝑣, 𝑝 =    𝑣, 𝑢 ⨁𝑇𝑖 𝑢, 𝑝   

𝑢 ∈ 𝑁 𝑣 , 1 ≤ 𝑖 ≤ 𝑘 }   (3)  

Tree Merge:  𝑇𝑀 𝑣, 𝑝 = { 𝑇𝑖(𝑣, 𝑝1)⨁𝑇𝑗 (𝑣, 𝑝2)| 

 𝑝1⋂𝑝2 = ∅ ⋀ 𝑝1 ∪ 𝑝2 = 𝑝, 𝑖 × 𝑗 ≤ 𝑘  }  (4) 

As notations: 

 Eq(1): is a leaf node tree without any edge, so its cost 

is 0. 

 ⨁ is an operation to merge two trees into a new tree.  

 𝑁(𝑣) is a set of neighbor nodes of node v.  

 𝑇𝑛 𝑣, 𝑝  means the n-th smallest connected tree with 

root node v and keyword subset p  where (1 ≤ 𝑛 ≤ 𝑘) 

got by function min_n.. 

When we do the merge operation, there are at least 𝑖 × 𝑗 

combinations, for reducing the size of queue, we just do 

merge where  𝑖 × 𝑗 ≤ 𝑘.  

MDPBF enumerates candidate trees by using 𝑄𝐺  

(global queue) and 𝑄𝐿  (local queue) [5, 6] in the creasing 

order of their costs until top-k answers are found.  

3.2 Avoiding redundant answers 

3.2.1 New redundant answer of MDPBF 

In fact, except the three cases of redundant answers of  

DPBF, MDPBF produces a new kind of redundant answer 

as shown in Figure 2. Note that MDPBF allows keeping 

top-k of the trees with the same root node and the same 

keywords. Thus it  is possible to keep the top-k trees with 

the same root node and the same leaf nodes but different 

paths (Case 4).  

See an example shown in Figure 2. Suppose that 

 𝑇1 𝑢,   𝑝1, 𝑝2, 𝑝3    grows to  𝑇1
′ 𝑥,   𝑝1, 𝑝2, 𝑝3    (=

𝑇1⨁(𝑢, 𝑥)) and further 𝑇1
′  grows (along the dotted path 

from x  to v in Figure 2) to  𝑇2 𝑣,   𝑝1 , 𝑝2 , 𝑝3   . If T2 

further grows to 𝑇3 𝑣,   𝑝1 , 𝑝2 , 𝑝3    (= 𝑇2⨁ 𝑣, 𝑥 ), T3 has 

a cycle and the cycle does not contain any new 

information about keywords.  

 

Figure 2: New redundant answer (Case 4) 

 

3.2.2 Redundancy elimination 

There are four cases of redundant answers in MDPBF; 

next we introduce the elimination methods.  



 

 

Firstly, we eliminate the Case 1 of redundant answers.  

 Method 1 ( isomorphs checking): Because we aim at 

finding the top-k connected trees which contain all 

the keywords in ranked order of increasing costs of 

connected trees, there are not more than k answers. In 

order to avoid the Case 1, we just need to check the 

answers found whether they are the isomorphs.  

Second is the Case 2 of redundant answers. We propose 

two alternative methods to avoid Case 2: 

 Method 2 (redundancy labeling) : When a tree has  

contained all the keywords, the new grow/ merge trees  

from it will be redundant answers, so we can give this 

kind of redundant answers a label to record that they 

are redundant, and are not allowed to be result..  

 Method 3 (grow stopping) : Because the merge 

operation is done when two trees do not have the 

same keywords, the Case 2 of redundant answers just 

happens on grow operation. In order to avoid it, when 

a tree has contained all the keywords, we dequeue it 

directly without doing the grow operation from it.  

Next is the Case 3 of redundant answers. DPBF just 

keeps the min-cost one of the trees  having the same root 

node and the same keywords, so this case of redundancy 

can be avoided automatically in DPBF. MDPBF keeps 

top-k of the trees having the same root node and the same 

keywords, so this case of redundant answers can be 

produced by MDPBF.  

 Method 4 (edges checking) : In Case 3   𝑇𝑚(𝑢, 𝑃) 

counts the cost of edge  (𝑣, 𝑢) twice, hence its cost is 

bigger than   𝑇𝑔 𝑢, 𝑃 (= 𝑇 𝑣, 𝑝1 ∪ 𝑝2 ⊕  𝑣, 𝑢 )  which 

counts the cost of edge  (𝑣, 𝑢) only once ( 𝑇 𝑣, 𝑝1 ∪

𝑝2 = 𝑇1 𝑣, 𝑝1 ⊕ 𝑇2(𝑣, 𝑝2)). In order to avoid this kind 

of redundant answer, when a new edge is added into a 

tree, we can check whether the new edge has been 

contained, if  so, give up this merge operation.  

Final is the Case 4 which contains a cycle.   

 Method 5 (nodes checking) : In order to avoid the 

Case 4, one way is to remember all the nodes of a tree 

directly, then when a new node is added into a tree, 

we firstly check whether this new node has been 

contained, if  so, we can give up this grow operat ion.  

Except the above the methods, we also proposed a 

method named leaf nodes checking  to avoid Cases 3 and 4 

at the same time.  

 Method 6 (leaf node checking) : In Case 3 and Case 

4, MDPBF may produce some answers which contain 

useless edges or nodes, so in order to avoid them, we 

can check all the trees with the same root node and 

the same leaf nodes. As a side effect, for each root 

node v with any keyword subset p , those trees  

remembered by MDPBF can have the same root node 

v but they must have different sets of leaf nodes that 

satisfy p . For example, in Figure 2, we just keep the 

smaller one between T1
′  and T3 not both.  

In summary, we prepare several algorithms with 

different redundancy elimination methods referred above. 

 DPBF1.1 : with the redundancy elimination methods 

1 and 2.  

 DPBF1.2 : with the redundancy elimination methods 

1 and 3. The difference with DPBF1.1 is that 

DPBF1.2 stops the tree grow/merge operations on the 

trees which have been answers.  

Because the DPBF just keeps the min-cost one of the 

trees with the same root node and the same keywords, 

DPBF can avoid the Case 3 automatically. Of course, 

DPBF cannot find exact top-k. 

  As a practical MDPBF, we propose three versions:  

 MDPBF1.1 : with the redundancy elimination 

methods 1, 2 and 6. The method 1 is used to avoid the 

Case 1 and the method 2 is used to avoid the Case 2. 

The method 6 can avoid Cases 3 and 4.   

 MDPBF1.2 : with the redundancy elimination 

methods 1, 3, 4 and 5. We used the same method to 

avoid the Case 1 as MDPBF1.1. We used method 3 to 

reduce the productions of the redundant candidate 

trees. And the method 4 is to hold back happens of 

Case 3 and method 5 aimed at stopping the 

production of Case 4.  

 MDPBF1.3 : with the redundancy elimination method 

1, 3 and 6. In fact, it has the same definition about  

answer tree as MDPBF1.1. But the difference 

between them is that MDPBF1.3 stops the tree 

grow/merge operations on the trees which have 

contained all the keywords.  

3.3 Time and space complexities 

Let the size of keyword query be l . When the number of 

nodes of graph is n , we have to keep  2𝑙𝑛𝑘 candidate 

connected trees. So the maximum size of 𝑄𝐺   is  2𝑙𝑛𝑘. The 

time complexity of MDPBF is  𝑂((2𝑙+1𝑚𝑘 + 3𝑙𝑛𝑘 ⋅

log𝑘)log(2𝑙𝑛𝑘).  

MDPBF uses   𝑄𝐺 and 𝑄𝐿  (see [5, 6]) to keep all the 

trees. The maximum number of trees is 2𝑙𝑛𝑘 at worst. So 

the space complexity of MDPBF is 𝑂(2𝑙+1𝑛𝑘). 

4. Comparison Results  

We did experiments to compare these algorithms 

DPBF1.1, DPBF1.2, MDPBF1.1, MDPBF1.2 and 



 

 

MDPBF1.3. All the experiments were performed on a 

2.66GHz CPU machine with 3GB memory and 

implemented by JAVA l_5.  

4.1 Experiments on small Graph 

Firstly, we did experiments to compare answers  quality 

between DPBF and MDPBF. And we found that DPBF 

produced low quality answers.  

Next we performed preliminary experiments to compare 

the answer quality of MDPBF1.1, MDPBF1.2 and 

MDPBF1.3. Take Figure 3 as an example, give a set of 

keywords {p2, a1}, and the nodes 5, 8 and 9 are leaf nodes. 

MDPBF1.1 and MDPBF1.3 can produce Trees 1, 2 and 3. 

MDPBF1.2 can produce Trees 1, 2, 3 and 4. In MDPBF1.1 

and MDPBF1.3, Tree 4 is considered as redundant because 

it contains the same leaf nodes and the same root node 

with Tree 1. Although Tree 4 has different information 

with Tree 1, its cost is much higher than Tree 1. So we can 

see that the answer definition of MDPBF1.1 and 

MDPBF1.3 is different from MDPBF1.2. MDPBF1.1 and 

MDPBF1.3 try to find the combinations of different leaf 

nodes at different root nodes. And MDPBF1.2 considers 

that all the trees with different paths are different and all 

of them can be answers.  

 

 

Figure 3: A simple example 

 

4.2 Experiments on 1000-nodes Graph 

Next we performed experiments to compare 

performance of five algorithms referred above. The tests 

are based on the random graph with 1000 nodes and 1500 

edges. Every edge-cost is set to 1. The hit rate for each 

keyword is 1% (1% of all nodes of graph are leaf nodes for 

each keyword). k (of top-k) =10. We changed the number 

of keywords from 1 to 5. The experimental results are 

shown in Figures 4, 5 and 6. From the experimental results, 

we can see that MDPBF1.2 and MDPBF1.3 can reduce the 

size of priority queue and find the top -10 efficiently. 

Although the quality of answers produced by MDPBF1.1 

is high, the performance of MDPBF1.1 is not very well. 

That is because it produces many candidate trees and the 

GST-k are found in a wide range. MDPBF1.2 maybe finds 

the top-k in a narrow range but its efficiency is best. So 

next we will pay attention on the two algorithms 

MDPBF1.2 and MDPBF1.3 to make them work well on 

large graphs. 

 

Figure 4: The number of main loop vs. l  (k=10, n=1000) 

 

 

Figure 5: Run time (ms) vs. l  (k=10, n=1000) 

 

 

Figure 6: The size of priority queue vs. l  (k=10, 

n=1000) 

4.3 Experiments on 10000-nodes Graph 

Next we uses a random graph contained 10000 nodes 

and 15000 edges to do experiments. And the hit rate per 

keyword is 0.1%. The results are shown in Tables 1 and 2. 

As notations: 
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 k: equals to 10 

 L: the number of keywords  

 Loops: the number of loops when GST-k are found 

 QgSize: the maximum size of priority queue (global 

queue: keep all the candidate connected trees)  

 Tmax: the maximum size of edges sets of answer trees  

 N1: the number of the trees with the same root node 

and leaf nodes in candidate trees  

 N2 : the number of the trees with the same root node 

and leaf nodes in answers 

 N3: the number of the trees with the same leaf nodes in 

answers.  

 N4: the number of the trees with the same leaf nodes in 

candidate trees 

From Tables 1 and 2, we can see that MDPBF1.2 and 

MDPBF1.3 just work well when the number of keywords 

is not bigger than 4. That is because the graph is very 

sparse, and before we find the top-k, the programs need to 

repeat tree grow/merge operations many times and the size 

of priority queue becomes bigger and bigger.  However 

from the two tables, we can also find the size of edges of 

answer trees (Tmax) is not so big. In order to make 

MDPBF work well on large graph databases, we need to 

reduce the search space.  

 

Table 1: Test result of MDPBF1.2 on 10,000 nodes 

(k=10) 

L Loops  
Run 

time(msec) 
QgSize Tmax N1 N2 

2 2,000 800 6,500 13 130 0 

3 10,000 10,000 32,000 16 1,600 0 

4 23,000 170,000 100,000 23 7,000 0 

 

Table 2: Test result of MDPBF1.3 on 10 ,000 nodes 

(k=10) 

L Loops  
Run time 

(msec) 
QgSize Tmax N3 

2 1,900 1000 7,700 14 2 

3 10,900 27,000 45,000 19 4 

4 27,000 450,000 135,000 25 1 

 

5. Search space limitation methods  

In order to reduce the search space (the size of priority 

queue), we propose three limitation methods.  

Limitation method 1 (L1): limit the max-number (Tmax: 

an given upper bound) of the edges of connected trees .  

Limitation method 2 (L2): limit the max-number of the 

edges of connected tree based on the number of keywords 

of this  tree (the number of edges ≤ (the number of 

keywords  𝑙𝑖 )* h))(  𝑙𝑖 ≤ L) (h: a given parameter) .  

Limitation method 3(L3): limit the max-height (H: a 

given parameter) of the connected tree, in other words L3 

limits the max-number of edges between any leaf node and 

root node. 

In fact, when we give a same parameter to L2 and L3  

(h=H), the answers got by L2 will contain all the answers  

got by L3. Namely, L3 has stricter limitation than L2.  

Figures 7 and 8 showed the new experimental results on 

10,000 nodes graph when Tmax=25, and h=H=5. 

 

 

Figure 7: MDPBF1.2 (k=10, n=10000) 

 

 

Figure 8: MDPBF1.3 (k=10, n=10000) 

 

 Form the Figures 7 and 8, we can say that L2 and L3 can 

reduce the size of priority queue distinctly and improve 

search efficiency clearly.  When the number of keywords is 

smaller than 4, L1 cannot reduce search space distinctly.  

 Finally, we did experiments on a large graph which 

contains 100,000 nodes and 150,000 edges. The hit rate 

per keyword is 0.1%. 

Tables 3 and 4 are the test results  of MDPBF1.2. And 

Tables 5 and 6 are the results of MDPBF1.3.  
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Table 3: Test result of MDPBF1.2withL2 on 100,000 

nodes (k=30) 

L loops 
Run time 

(msec) 
QgSize 

The number of 

trees with the 

same root 
node and leaf 

nodes  

2 5,224 3,900 6,890 1 

3 11,753 10,637 16,600 0 

4 25,600 33,100 38,950 0 

 

Table 4: Test result of MDPBF1.2withL3 on 100,000 

nodes (k=30) 

L  loops  
Run time 

(msec)  
QgSize  

The number 

of trees 

with the 

same root 
node and 

leaf nodes  

2  5,484  4,215  7,256  1  

3  21,000  18,759  23,200  0  

4  54,200  75,785  57,200  0  

 

 

Table 5: Test result of MDPBF1.3withL2 on 100,000 nodes 

(k=30) 

L loops 
Run time 

(msec) 
QgSize 

2 5,113 4,800 8,785 

3 10,700 10,500 20,000 

4 25,925 44,600 50,600 

 

Table 6: Test result of MDPBF1.3withL3 on 100,000 nodes 

(k=30) 

L loops 
Run time 

(msec) 
QgSize 

2 4,790 4,428 8,400 

3 21,050 23,600 30,800 

4 52,131 106,700 75,000 

 

Form the four tables, we can find that MDPBF1.2 with 

Limitation method 2 has the best performance.  

6. Conclusions  

This paper described redundant answers of DPBF-k and 

their elimination methods that are not described explicitly 

in [1]. We next proposed an improved method named 

MDPBF to find the top-k min-cost connected trees exactly 

with redundancy elimination.  

From the experimental results, we found that MDPBF 

can produce exact top-k. MDPBF1.1 has working limit on 

1000-nodes graph, and MDPBF1.2 and MDPBF1.3 have 

working limit on 10000-nodes graph. By using the search 

space limitation methods 2 and 3, MDPBF1.2 and 

MDPBF1.3 can work well on large graph databases 

(100000 nodes).  
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