

DEIM Forum 2011 B10-1

グラフデータベースにおける冗長解抑制を伴った Top-k キーワード検索

アルゴリズムに関する研究

王 美蓉† 張 麗茹† 金 銀実† 大森 匡†

†電気通信大学大学院情報システム学研究科〒182–8585 東京都調布市調布ヶ丘 1–5–1

E-mail: †{wang, zhangliru, kim, omori}@hol.is.uec.ac.jp

あらまし 近年のデータベース研究の課題の一つに、大量情報をグラフデータベースとして表してキーワード検索を行う研

究がある。著者らのグループは、先行研究である DPBF 算法を改良して、上位ｋ個の正確な答えを効率良く求める算法 MDPBF を

既に提案している。しかし、MDPBFは、1000ノード級のグラフでキーワード数 6による検索でも計算効率が悪くなっていた。こ

の状況を改善するため、本研究では、上位ｋ個の解を求めるときの冗長解削除戦略として複数の異なる手法を導入し、それらの

下で MDPBFにより得られる答えの品質と計算効率を調べ、両者のバランスをとった冗長解削除戦略を提案する。そして、探索空

間の削減戦略と併用することにより、10万ノード級のグラフデータベースにおいても効率的に MDPBFが動作することを目指す。

キーワード Top-k、キーワード検索、グラフデータベース

Top-k Keyword Search Algorithms with Redundancy Elimination on Large

Graph Databases

Meirong WANG† Liru ZHANG† Yinshi JIN† and Tadashi OHMORI†

†Graduate School of Information Systems, The University of Electro-Communications

1-5-1, Chofugaoka, Chofu City,Tokyo, 182-8585 Japan

E-mail: †{wang, zhangliru, kim, omori}@hol.is.uec.ac.jp

Abstract In this paper, by modifying an existing graph-database search algorithm DPBF [1] in a straightforward strategy, we propose

such an algorithm that can find exact top-k answers, with eliminating redundant answers, in an exact ranked order in 𝑂((2𝑙+1𝑚𝑘 + 3𝑙𝑛𝑘 ∙

log𝑘)log(2𝑙𝑛𝑘)) run time (l: the number of keywords; k: top-k; n: the number of nodes in the graph database; m: the number of edges in the

graph database) with the space complexity of 𝑂(2𝑙+1𝑛𝑘).

Keyword Top-k，Keyword Search，Graph Database

1. Introduction

Recently, keyword search has been a very popular way

to explore information. And many studies supporting

keyword search on graph databases have been proposed

like DPBF [1], BLINKS [2]. In these studies, a database is

modeled by a graph, when a set P of keywords is given as

a query, how to find an appropriate sub-graph with smaller

cost which satisfies P in that graph is the problem in this

field [1, 2, 3, 4].

One definition of this problem is to find the top-k

answers which contain all the keywords in the ranked

order of the increasing costs of connected trees. This

definition is adopted in DPBF [1] and is known as finding

the top-k min-cost connected trees based on the algorithm

of GST-k (Group Steiner Tree).

DPBF [1] is an algorithm which repeats tree

grow/merge operations until GST-k are found. DPBF

grows and merges all the trees at different root nodes, so it

can get the accurate top-1. It just keeps the min-cost one

of the trees with the same root node and the same

keywords, so the answers from top-2 to top-k cannot be

exact. Furthermore DPBF for finding top -k answers

(exactly, DPBF-k in [1]) must produce some redundant

answers which are not explained in [1].

Consequently, in order to get the top-k answers exactly

and eliminate redundant answers , we propose an improved

method named MDPBF by modifying DPBF by a

straightforward strategy.

2. The limitation of DPBF

DPBF [1] is a method which aimed at finding the top-k

min-cost connected trees which contain all the keywords .

The connected tree with smaller cost presents more

important information. The main idea of DPBF is

repeating tree grow/merge operations to produce GST-k.

Because DPBF loses many potential connected trees which

may be answers, the top-k answers got by it are

approximate. In [1] there is not clear explaining about the

redundancy elimination. In this section, we will introduce

three Cases of redundant answers as shown in Figure 1 .

Figure 1: Redundant answers (Cases 1, 2 and 3)

 Case 1: the trees which have the same edges but with

different root nodes. We call these trees redundant

answer of isomorphs.

 Case 2: the tree which is the super set of the tree which

has contained all the keywords. Because this Case of

redundant answer is produced after tree-grow operation,

we call it redundant answer of growing.

 Case 3: the tree which contains the same edge more

than once. This case of redundant answer happens after

tree-merge operation, so we call it redundant answer of

merging. DPBF just keeps the min-cost one of the trees

with the same root node and the same keywords, so this

kind of redundant answer can be avoided automatically

in DPBF.

3. MDPBF

In order to find the exact top-k answers and eliminate

redundant answers, we newly propose an improved method

named MDPBF.

3.1 Find exact top-k

From [1], we can see that DPBF just keeps the min-cost

one of the trees with the same root node and the same

keywords, and that is why DPBF loses answers. In order to

improve the quality of answers, instead of keeping the

min-cost one, MDPBF keeps top-k of the trees with the

same root node and the same keywords. The main idea of

MDPBF is the same as DPBF.

The modified equations which are based on equations of

[1] are shown as follows.

If node v directly contains a keyword subset 𝑝 ⊆ P:

 𝑇1 𝑣, 𝑝 = 𝑣 (1)

If a tree has more than one node:

𝑇𝑛 𝑣, 𝑝 = 𝑚𝑖𝑛_𝑛{ 𝑇𝐺(𝑣, 𝑝) ∪ 𝑇𝑀 𝑣, 𝑝 } (2)

Tree Grow: 𝑇𝐺 𝑣, 𝑝 = 𝑣, 𝑢 ⨁𝑇𝑖 𝑢, 𝑝

𝑢 ∈ 𝑁 𝑣 , 1 ≤ 𝑖 ≤ 𝑘 } (3)

Tree Merge: 𝑇𝑀 𝑣, 𝑝 = { 𝑇𝑖(𝑣,𝑝1)⨁𝑇𝑗 (𝑣, 𝑝2)|

 𝑝1⋂𝑝2 = ∅ ⋀ 𝑝1 ∪ 𝑝2 = 𝑝, 𝑖 × 𝑗 ≤ 𝑘 } (4)

As notations:

 Eq(1): is a leaf node tree without any edge, so its cost

is 0.

 ⨁ is an operation to merge two trees into a new tree.

 𝑁(𝑣) is a set of neighbor nodes of node v.

 𝑇𝑛 𝑣,𝑝 means the n-th smallest connected tree with

root node v and keyword subset p where (1 ≤ 𝑛 ≤ 𝑘)

got by function min_n..

When we do the merge operation, there are at least 𝑖 × 𝑗

combinations, for reducing the size of queue, we just do

merge where 𝑖 × 𝑗 ≤ 𝑘.

MDPBF enumerates candidate trees by using 𝑄𝐺

(global queue) and 𝑄𝐿 (local queue) [5, 6] in the creasing

order of their costs until top-k answers are found.

3.2 Avoiding redundant answers

3.2.1 New redundant answer of MDPBF

In fact, except the three cases of redundant answers of

DPBF, MDPBF produces a new kind of redundant answer

as shown in Figure 2. Note that MDPBF allows keeping

top-k of the trees with the same root node and the same

keywords. Thus it is possible to keep the top-k trees with

the same root node and the same leaf nodes but different

paths (Case 4).

See an example shown in Figure 2. Suppose that

 𝑇1 𝑢, 𝑝1, 𝑝2, 𝑝3 grows to 𝑇1
′ 𝑥, 𝑝1, 𝑝2, 𝑝3 (=

𝑇1⨁(𝑢, 𝑥)) and further 𝑇1
′ grows (along the dotted path

from x to v in Figure 2) to 𝑇2 𝑣, 𝑝1 , 𝑝2 , 𝑝3 . If T2

further grows to 𝑇3 𝑣, 𝑝1 , 𝑝2 ,𝑝3 (= 𝑇2⨁ 𝑣, 𝑥), T3 has

a cycle and the cycle does not contain any new

information about keywords.

Figure 2: New redundant answer (Case 4)

3.2.2 Redundancy elimination

There are four cases of redundant answers in MDPBF;

next we introduce the elimination methods.

Firstly, we eliminate the Case 1 of redundant answers.

 Method 1 (isomorphs checking): Because we aim at

finding the top-k connected trees which contain all

the keywords in ranked order of increasing costs of

connected trees, there are not more than k answers. In

order to avoid the Case 1, we just need to check the

answers found whether they are the isomorphs.

Second is the Case 2 of redundant answers. We propose

two alternative methods to avoid Case 2:

 Method 2 (redundancy labeling) : When a tree has

contained all the keywords, the new grow/ merge trees

from it will be redundant answers, so we can give this

kind of redundant answers a label to record that they

are redundant, and are not allowed to be result..

 Method 3 (grow stopping) : Because the merge

operation is done when two trees do not have the

same keywords, the Case 2 of redundant answers just

happens on grow operation. In order to avoid it, when

a tree has contained all the keywords, we dequeue it

directly without doing the grow operation from it.

Next is the Case 3 of redundant answers. DPBF just

keeps the min-cost one of the trees having the same root

node and the same keywords, so this case of redundancy

can be avoided automatically in DPBF. MDPBF keeps

top-k of the trees having the same root node and the same

keywords, so this case of redundant answers can be

produced by MDPBF.

 Method 4 (edges checking) : In Case 3 𝑇𝑚(𝑢, 𝑃)

counts the cost of edge (𝑣, 𝑢) twice, hence its cost is

bigger than 𝑇𝑔 𝑢, 𝑃 (= 𝑇 𝑣, 𝑝1 ∪ 𝑝2 ⊕ 𝑣,𝑢) which

counts the cost of edge (𝑣, 𝑢) only once (𝑇 𝑣, 𝑝1 ∪

𝑝2 = 𝑇1 𝑣,𝑝1 ⊕ 𝑇2(𝑣, 𝑝2)). In order to avoid this kind

of redundant answer, when a new edge is added into a

tree, we can check whether the new edge has been

contained, if so, give up this merge operation.

Final is the Case 4 which contains a cycle.

 Method 5 (nodes checking) : In order to avoid the

Case 4, one way is to remember all the nodes of a tree

directly, then when a new node is added into a tree,

we firstly check whether this new node has been

contained, if so, we can give up this grow operat ion.

Except the above the methods, we also proposed a

method named leaf nodes checking to avoid Cases 3 and 4

at the same time.

 Method 6 (leaf node checking) : In Case 3 and Case

4, MDPBF may produce some answers which contain

useless edges or nodes, so in order to avoid them, we

can check all the trees with the same root node and

the same leaf nodes. As a side effect, for each root

node v with any keyword subset p , those trees

remembered by MDPBF can have the same root node

v but they must have different sets of leaf nodes that

satisfy p . For example, in Figure 2, we just keep the

smaller one between T1
′ and T3 not both.

In summary, we prepare several algorithms with

different redundancy elimination methods referred above.

 DPBF1.1 : with the redundancy elimination methods

1 and 2.

 DPBF1.2 : with the redundancy elimination methods

1 and 3. The difference with DPBF1.1 is that

DPBF1.2 stops the tree grow/merge operations on the

trees which have been answers.

Because the DPBF just keeps the min-cost one of the

trees with the same root node and the same keywords,

DPBF can avoid the Case 3 automatically. Of course,

DPBF cannot find exact top-k.

 As a practical MDPBF, we propose three versions:

 MDPBF1.1 : with the redundancy elimination

methods 1, 2 and 6. The method 1 is used to avoid the

Case 1 and the method 2 is used to avoid the Case 2.

The method 6 can avoid Cases 3 and 4.

 MDPBF1.2 : with the redundancy elimination

methods 1, 3, 4 and 5. We used the same method to

avoid the Case 1 as MDPBF1.1. We used method 3 to

reduce the productions of the redundant candidate

trees. And the method 4 is to hold back happens of

Case 3 and method 5 aimed at stopping the

production of Case 4.

 MDPBF1.3 : with the redundancy elimination method

1, 3 and 6. In fact, it has the same definition about

answer tree as MDPBF1.1. But the difference

between them is that MDPBF1.3 stops the tree

grow/merge operations on the trees which have

contained all the keywords.

3.3 Time and space complexities

Let the size of keyword query be l . When the number of

nodes of graph is n , we have to keep 2𝑙𝑛𝑘 candidate

connected trees. So the maximum size of 𝑄𝐺 is 2𝑙𝑛𝑘. The

time complexity of MDPBF is 𝑂((2𝑙+1𝑚𝑘 + 3𝑙𝑛𝑘 ⋅

log𝑘)log(2𝑙𝑛𝑘).

MDPBF uses 𝑄𝐺 and 𝑄𝐿 (see [5, 6]) to keep all the

trees. The maximum number of trees is 2𝑙𝑛𝑘 at worst. So

the space complexity of MDPBF is 𝑂(2𝑙+1𝑛𝑘).

4. Comparison Results

We did experiments to compare these algorithms

DPBF1.1, DPBF1.2, MDPBF1.1, MDPBF1.2 and

MDPBF1.3. All the experiments were performed on a

2.66GHz CPU machine with 3GB memory and

implemented by JAVA l_5.

4.1 Experiments on small Graph

Firstly, we did experiments to compare answers quality

between DPBF and MDPBF. And we found that DPBF

produced low quality answers.

Next we performed preliminary experiments to compare

the answer quality of MDPBF1.1, MDPBF1.2 and

MDPBF1.3. Take Figure 3 as an example, give a set of

keywords {p2, a1}, and the nodes 5, 8 and 9 are leaf nodes.

MDPBF1.1 and MDPBF1.3 can produce Trees 1, 2 and 3.

MDPBF1.2 can produce Trees 1, 2, 3 and 4. In MDPBF1.1

and MDPBF1.3, Tree 4 is considered as redundant because

it contains the same leaf nodes and the same root node

with Tree 1. Although Tree 4 has different information

with Tree 1, its cost is much higher than Tree 1. So we can

see that the answer definition of MDPBF1.1 and

MDPBF1.3 is different from MDPBF1.2. MDPBF1.1 and

MDPBF1.3 try to find the combinations of different leaf

nodes at different root nodes. And MDPBF1.2 considers

that all the trees with different paths are different and all

of them can be answers.

Figure 3: A simple example

4.2 Experiments on 1000-nodes Graph

Next we performed experiments to compare

performance of five algorithms referred above. The tests

are based on the random graph with 1000 nodes and 1500

edges. Every edge-cost is set to 1. The hit rate for each

keyword is 1% (1% of all nodes of graph are leaf nodes for

each keyword). k (of top-k) =10. We changed the number

of keywords from 1 to 5. The experimental results are

shown in Figures 4, 5 and 6. From the experimental results,

we can see that MDPBF1.2 and MDPBF1.3 can reduce the

size of priority queue and find the top -10 efficiently.

Although the quality of answers produced by MDPBF1.1

is high, the performance of MDPBF1.1 is not very well.

That is because it produces many candidate trees and the

GST-k are found in a wide range. MDPBF1.2 maybe finds

the top-k in a narrow range but its efficiency is best. So

next we will pay attention on the two algorithms

MDPBF1.2 and MDPBF1.3 to make them work well on

large graphs.

Figure 4: The number of main loop vs. l (k=10, n=1000)

Figure 5: Run time (ms) vs. l (k=10, n=1000)

Figure 6: The size of priority queue vs. l (k=10,

n=1000)

4.3 Experiments on 10000-nodes Graph

Next we uses a random graph contained 10000 nodes

and 15000 edges to do experiments. And the hit rate per

keyword is 0.1%. The results are shown in Tables 1 and 2.

As notations:

0

5000

10000

15000

20000

25000

2 3 4 5

T
h

e
 n

u
m

b
e
r
 o

f
L

o
o
p

s

The number of keywords: l

DPBF1.1

DPBF1.2

MDPBF1.1

MDPBF1.2

MDPBF1.3

0

50000

100000

150000

200000

250000

300000

2 3 4 5

R
u

n
 t

im
e
 (

m
s)

The number of keywords: l

DPBF1.1

DPBF1.2

MDPBF1.1

MDPBF1.2

MDPBF1.3

0

20000

40000

60000

80000

100000

120000

140000

2 3 4 5

T
h

e
 s

iz
e
 o

f
q

u
e
u

e

The number of keywords: l

DPBF1.1

DPBF1.2

MDPBF1.1

MDPBF1.2

MDPBF1.3

 k: equals to 10

 L: the number of keywords

 Loops: the number of loops when GST-k are found

 QgSize: the maximum size of priority queue (global

queue: keep all the candidate connected trees)

 Tmax: the maximum size of edges sets of answer trees

 N1: the number of the trees with the same root node

and leaf nodes in candidate trees

 N2 : the number of the trees with the same root node

and leaf nodes in answers

 N3: the number of the trees with the same leaf nodes in

answers.

 N4: the number of the trees with the same leaf nodes in

candidate trees

From Tables 1 and 2, we can see that MDPBF1.2 and

MDPBF1.3 just work well when the number of keywords

is not bigger than 4. That is because the graph is very

sparse, and before we find the top-k, the programs need to

repeat tree grow/merge operations many times and the size

of priority queue becomes bigger and bigger. However

from the two tables, we can also find the size of edges of

answer trees (Tmax) is not so big. In order to make

MDPBF work well on large graph databases, we need to

reduce the search space.

Table 1: Test result of MDPBF1.2 on 10,000 nodes

(k=10)

L Loops
Run

time(msec)
QgSize Tmax N1 N2

2 2,000 800 6,500 13 130 0

3 10,000 10,000 32,000 16 1,600 0

4 23,000 170,000 100,000 23 7,000 0

Table 2: Test result of MDPBF1.3 on 10 ,000 nodes

(k=10)

L Loops
Run time

(msec)
QgSize Tmax N3

2 1,900 1000 7,700 14 2

3 10,900 27,000 45,000 19 4

4 27,000 450,000 135,000 25 1

5. Search space limitation methods

In order to reduce the search space (the size of priority

queue), we propose three limitation methods.

Limitation method 1 (L1): limit the max-number (Tmax:

an given upper bound) of the edges of connected trees .

Limitation method 2 (L2): limit the max-number of the

edges of connected tree based on the number of keywords

of this tree (the number of edges ≤ (the number of

keywords 𝑙𝑖)* h))(𝑙𝑖 ≤ L) (h: a given parameter) .

Limitation method 3(L3): limit the max-height (H: a

given parameter) of the connected tree, in other words L3

limits the max-number of edges between any leaf node and

root node.

In fact, when we give a same parameter to L2 and L3

(h=H), the answers got by L2 will contain all the answers

got by L3. Namely, L3 has stricter limitation than L2.

Figures 7 and 8 showed the new experimental results on

10,000 nodes graph when Tmax=25, and h=H=5.

Figure 7: MDPBF1.2 (k=10, n=10000)

Figure 8: MDPBF1.3 (k=10, n=10000)

 Form the Figures 7 and 8, we can say that L2 and L3 can

reduce the size of priority queue distinctly and improve

search efficiency clearly. When the number of keywords is

smaller than 4, L1 cannot reduce search space distinctly.

 Finally, we did experiments on a large graph which

contains 100,000 nodes and 150,000 edges. The hit rate

per keyword is 0.1%.

Tables 3 and 4 are the test results of MDPBF1.2. And

Tables 5 and 6 are the results of MDPBF1.3.

0

20000

40000

60000

80000

100000

120000

2 3 4 5

T
h

e
si

ze
 o

f
q

u
eu

e

The number of keywords

MDPBF1.2withL1

MDPBF1.2withL2

MDPBF1.2withL3

MDPBF1.2

170sec

100sec

15sec

10sec

0

20000

40000

60000

80000

100000

120000

140000

160000

2 3 4 5

T
h

e
si

ze
 o

f
q

u
eu

e

The number of keywords

MDPBF1.3withL1

MDPBF1.3withL2

MDPBF1.3withL3

MDPBF1.3

460sec

350sec

15sec

10sec

Table 3: Test result of MDPBF1.2withL2 on 100,000

nodes (k=30)

L loops
Run time

(msec)
QgSize

The number of

trees with the

same root
node and leaf

nodes

2 5,224 3,900 6,890 1

3 11,753 10,637 16,600 0

4 25,600 33,100 38,950 0

Table 4: Test result of MDPBF1.2withL3 on 100,000

nodes (k=30)

L loops
Run time

(msec)
QgSize

The number

of trees

with the

same root
node and

leaf nodes

2 5,484 4,215 7,256 1

3 21,000 18,759 23,200 0

4 54,200 75,785 57,200 0

Table 5: Test result of MDPBF1.3withL2 on 100,000 nodes

(k=30)

L loops
Run time

(msec)
QgSize

2 5,113 4,800 8,785

3 10,700 10,500 20,000

4 25,925 44,600 50,600

Table 6: Test result of MDPBF1.3withL3 on 100,000 nodes

(k=30)

L loops
Run time

(msec)
QgSize

2 4,790 4,428 8,400

3 21,050 23,600 30,800

4 52,131 106,700 75,000

Form the four tables, we can find that MDPBF1.2 with

Limitation method 2 has the best performance.

6. Conclusions

This paper described redundant answers of DPBF-k and

their elimination methods that are not described explicitly

in [1]. We next proposed an improved method named

MDPBF to find the top-k min-cost connected trees exactly

with redundancy elimination.

From the experimental results, we found that MDPBF

can produce exact top-k. MDPBF1.1 has working limit on

1000-nodes graph, and MDPBF1.2 and MDPBF1.3 have

working limit on 10000-nodes graph. By using the search

space limitation methods 2 and 3, MDPBF1.2 and

MDPBF1.3 can work well on large graph databases

(100000 nodes).

Reference
[1] B.Ding, J.X. Yu, L.Qin, X. Zhang, and X. Lin.

Finding Top-k Min-Cost Connected Trees in
Databases. In proc. of the 23rd International
Conference on Data engineering (ICDE ’07),
pp.836-845, 2007.

[2] H. He, H. Wang, J. Yang and P. S. Yu. BLINKS
ranked Keyword Searches on Graphs. In SIGMOD’07,
pp.305-316, 2007.

[3] K. Golenberg, B. Kimelfeld and Y. Sagiv. Keyword
Proximity Search in Complex Data Graphs. In ACM
SIGMOD’08, pp.927-940, 2008.

[4] B. Kimelfeld and Y. Sagiv. Finding and
Approximating Top-k Answer in Keyword Proximity
Search. In ACM PODS’06, pp.173-182, 2006.

[5] M.R. Wang, L.J Jiang, L.R. Zhang and T. Ohmori.
Exact Top-k Keyword Search on Graph Databases. In
SAC’11. 2011. To appear.

[6] M.R. Wang, L.R. Zhang and T. Ohmori. A report on
Top-k Keyword Search Algorithms with Redundancy
Elimination on Graph Databases. In IPSJ SIG
Technical Report (DBS-151-28) Japan. 2010.

