

DEIM Forum 2012 B7-3

Label-bag based Graph Anonymization by Edge Addition

Chongjie LI† Toshiyuki AMAGASA†‡ and Hiroyuki KITAGAWA†‡

†Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

‡Center of Computer Science, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

E-mail: †lichongjie@kde.cs.tsukuba.ac.jp, ‡{amagasa, kitagawa}@cs.tsukuba.ac.jp

Abstract The privacy concerns in publishing graph data, such as social-network graphs, has been gaining much public

attentions in recent years due to the growing demands for publishing graph data containing privacy. In this paper we address

the K-anonymity problem in edge-labeled graphs based on the label-bag model. To this end we provide greedy algorithms, and

evaluate them by some experiments.

Keyword Graph Privacy, K-anonymity, Label-bag

1. Introduction

Social networks (SNs) have shown remarkable

development in recent years. Due to the rapid proliferation

of SNs, there is a growing concern in privacy. SN data

publishing is one of the main channels for privacy

breaches. SN data owners, such as Facebook and LinkedIn,

sometimes have a responsibility to publish their data for

various purposes. In this case, transforming data in such a

way that privacy information is not released is important.

Such data transformation is called “anonymization.”

In many cases, SN data is represented as a graph

G = (V, E), where vertices (V) represent entities and edges

(E) represent relationship among them. To model more

complex information, a graph may have labels on vertices

and/or edges that describe the attributes of entities or

properties of relationship as shown in Figure 1. By having

access to this graph, adversaries can gain more

information with their existing knowledge about some

involved entities (i.e. Bob has an artist friend). To prevent

the privacy of entities from being violated, an appropriate

graph anonymization method is needed to sanitize the

original graph before publishing.

In this paper we address the K-anonymity problem of

edge-labeled graphs based on the label-bag model. Since it

has been shown that the problem is NP-hard, we provide

heuristic methods based on edge-addition in which we try

to maintain the utility as much as possible. Additionally,

we evaluate the effectiveness of our proposed scheme in

some experiments.

The rest of this paper is organized as follows, Section 2

introduces some related works, and we formalize the

problem in Section 3. Section 4 gives the proposed method

and some discussion of noise vertex is involved in Section

5. We show the results of experiments in Section 6 and

make a conclusion in Section 7.

2. Related Work

Privacy-preserving graph publishing is to transform a

graph into another in such a way that adversaries with

certain background knowledge cannot get the identity and

cannot re-identify the entities and/or relations. So far,

there have been lots of methods proposed to address the

graph anonymization problem.

The problem can be categorized into several classes

according to the graph model and quantity of knowledge

that adversaries are assumed to have, a main part of

researches are focusing on anonymizing structural

information. These methods can be roughly divided to two

categories: unlabeled graph anonymization

[2,3,6,9,10,11,12,15] and labeled graph anonymization

[4,7]. Labeled case can be further divided according

whether vertices or edges (or both) are labeled. Most early

works focus on unlabeled or vertex -labeled cases.

Sweeney [2] gives the early idea of K-anonymity by

replacing the identifiers of published data. Liu [3] defines

the K-degree anonymity that only the degree of certain

vertices are known by the adversary. Zhou[6] considers

neighborhood attacks of certain vertex and is extended by

Tripathy [15] who assumes the adversaries having more

information beyond 1-neighborhood knowledge. Later

researches such like K-automorphism [9] and K-symmetry

[11] propose models with stronger privacy assurance on

the whole structure property of graph. Cheng [10] further

discusses the k-isomorphism situation with consideration

on link information. Recent years, attentions have been

paid on edge-labeled problems like Yuan [7] and Kapron

[4].

In terms of the anonymization methods used, there are

Figure 1: Social Network Graph

proposals focusing on edge addition/deletion [3,4,6,10,15],

vertex/edge addition [11,14], vertex generalization [13],

edge label generalization [7] and class/cluster-based

method [1,12]. Other approaches may be related to active

attacks like Backstrom [5], in which case attackers may

change the data.

Our work is inspired mainly by [4,7]. However, we

focus on edge addition operation instead of label

generalization methods in [7], since its core idea is to

realize degree k-anonymity and generalize edge labels,

which introducing a lot of noises, and it is essentially a

direct extension from unlabeled models (noticing that in

the early grouping and adding steps, edge labels are not

taken into consideration). In some cases we may have

restrictions not to modify the edge labels. Kapron [4]

gives the proof of finding a result for label sequence based

anonymization with minimum cost is 𝑁𝑃 -hard when

𝐾 > 2. However, only the algorithm for bipartite graph

with 𝐾 = 2 is given, which belongs to 𝑃. For this reason,

in this paper, we provide greedy algorithms based on

label-bag graph. Formal definition of the problem is given

in the next section.

3. Problem Definition

In this section we formally define the label -bag based

graph anonymization problem. First we give the definition

of label-bag (𝐿𝐵).

 Definition 1 (𝐿𝑎𝑏𝑒𝑙 𝐵𝑎𝑔 𝐿𝐵): For a vertex 𝑣𝑖, 𝐿𝐵𝑖 is the

set of all labels on edges which has one end point of 𝑣𝑖.

 With the definition of label-bag, we can define the

label-bag based 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦.

 Definition 2 (𝐿𝐵 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦): For any vertex 𝑣 of

𝑉 in graph 𝐺, there exists at least 𝑘 − 1 vertices with the

same label-bag.

For example, Figure 2(b) is an anonymized version of

the original graph by replacing identifies (names) with

meaningless arbitrary unique numbers. The label-bag of

vertex 2 and 3 in Figure 2(b) is ‘𝑎𝑏’ and ‘𝑎𝑏𝑏’

Figure 2: Example of 𝐿𝐵 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦

respectively. Then we are able to give the definition of

label-bag based anonymization problem.

 Definition 3: Given an edge-labeled graph 𝐺 = (𝑉, 𝐸)

and an integer K, find a graph 𝐺’ = (𝑉, 𝐸 𝑈 𝐸’) that

𝐺’ satisfies 𝐿𝐵 𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 and makes |𝐸’| minimal.

 The above definition is modified from that of [4],

where we use the term “label bag”, since we do not

consider the order among labels, whereas “label sequence”

is used in [4].

Figure 2(c) shows how to make a graph 𝐿𝐵 𝐾 −

𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 by adding edges to graph 𝐺 in Figure 2(b).

𝐺’ satisfies 𝐿𝐵 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 for any 𝐾 ≤ 4. Note that

only edge addition is allowed in this setting. In other

words, we do not consider other operations, such as edge

deletion or perturbation..

4. LB K-anonymization Algorithms

According to the definition of 𝐿𝐵 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 problem,

we attempt to achieve it in the following way: 1) make a

division 𝐷, where 𝑉 is dvided into 𝑛 anonymous groups

{𝑔1 , 𝑔2 , . . . , 𝑔𝑛} (𝑛 is unknown); and 2) make all vertices in

same group 𝑔𝑖 have the same LB (after edge addition),

having |𝑔𝑖 | >= 𝐾. The objective is to find a division with

minimum edges added to the original graph. As already

mentioned above, finding optimal solution is an 𝑁𝑃-hard

problem. So, we propose a two-phase greedy algorithm.

Algorithm 1 shows the structure of the basic method.

Algorithm 1: Basic Algorithm Structure

1. {𝑆} ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑜𝑢𝑝𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(|𝑉|, 𝐾)

2. 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

3. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠 𝑖𝑛 𝑆

4. {𝑔} = 𝐺𝑟𝑒𝑒𝑑𝑦𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔(𝑠)

5. 𝑐𝑜𝑠𝑡 = 𝐸𝑑𝑔𝑒𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛({𝑔})
6. 𝑖𝑓 𝑐𝑜𝑠𝑡 < 𝑚𝑖𝑛𝑐𝑜𝑠𝑡

7. 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡
8. 𝑒𝑛𝑑 𝑖𝑓

9. 𝑒𝑛𝑑 𝑓𝑜𝑟

First, we decide the group sizes for all groups. (Appendix

A introduced the detail in size decision.) Each decision is

named as a strategy. For each strategy we perform a

two-phase computation procedure to get the result cost and

find the minimum, which will be introduced in Sections

Figure 3: Illustration of workflow

4.a and 4.b, respectively.

 We give some definitions that will be used in the

algorithm introduction.

 Definition 4 (𝑇𝐿𝐵): For each group 𝑔𝑚, 𝑇𝐿𝐵𝑚 is the

objective 𝐿𝐵 that all members in this group are supposed

to reach.

 Definition 5 (𝑅𝐿𝐵): For every vertex 𝑣𝑖, 𝑅𝐿𝐵𝑖 is the

difference between 𝑇𝐿𝐵𝑚 and 𝐿𝐵𝑖., where 𝑣𝑖 belongs to

𝑔𝑚.

 Definition 5 can be represented as 𝑅𝐿𝐵𝑖 = 𝑇𝐿𝐵𝑚 − 𝐿𝐵𝑖.

Here the operation ” − ” means to compute the label bag

which belongs to mi but not 𝑚𝑗.

a. Greedy grouping

 During the 1st phase, we aim to divide vertices into

different anonymous groups. We utilize the 𝑇𝐿𝐵 as a

measurement to result in good grouping. Algorithm 2

shows the pseudo-code of greedy grouping.

Algorithm 2 : Greedy Grouping

Input: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑠

Output: 𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 {𝑔}

1. {𝑔} ← 𝑒𝑚𝑝𝑡𝑦
2. 𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑠. 𝑛𝑢𝑚𝑂𝑓𝑔𝑟𝑜𝑢𝑝(𝑚)
3. 𝑔𝑚. 𝑠𝑖𝑧𝑒 = 𝑠. 𝑔𝑟𝑢𝑝𝑠𝑖𝑧𝑒(𝑚)

4. |𝑇𝐿𝐵𝑚| = 0

5. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑔𝑚. 𝑠𝑖𝑧𝑒

6. 𝑓𝑖𝑛𝑑 𝑣 𝑖𝑛 𝑉 𝑤𝑖𝑡ℎ 𝑙𝑒𝑎𝑠𝑡 |𝑇𝐿𝐵𝑚| 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

7. 𝑖𝑛𝑠𝑒𝑟𝑡 𝑣 𝑡𝑜 𝑔𝑚, 𝑢𝑝𝑑𝑎𝑡𝑒 𝑇𝐿𝐵𝑚

8. 𝑖 + +

9. 𝑒𝑛𝑑 𝑓𝑜𝑟

10. {𝐺} ← {𝐺} 𝑔𝑚
11. 𝑒𝑛𝑑 𝑓𝑜𝑟

Figure 4 gives an example of how the anonymous

groups for graph in Figure 3(a) are generated according to

algorithm 2. Assume the strategy we get from Algori thm 1

Figure 4: Greedy Grouping

Figure 5: Grouping Result

is {3,3,3}, which means we have three groups with size 3.

In each step, we choose the vertex with least 𝑇𝐿𝐵

increase to be added to the group g until it reaches the

group size. For example, after we have vertex 9 and 1 in

group 1, vertex 6 is the only vertex that would result in no

change to the TLB1 and thus being added to this group.

Such greedy step is performed until all groups reach the

predefined sizes.

 As introduced in Appendix A, usually it is impossible to

examine all possible strategies and in case of large |𝑉|

and 𝐾, we randomly pick 𝑀 strategies to be candidate

answers, thus it becomes a tradeoff between execution

time and utility cost. Also the chosen of M relates to the

ratio of getting answers.

b. Edge addition

After we have assigned vertices to groups, we must add

edges to make all groups satisfying the 𝑇𝐿𝐵 condition.

Algorithm 3 is the pseudo-code of edge addition process.

Two kinds of assignment operations are performed to

achieve final 𝐿𝐵 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 state. "SimpleAssign”

step checks all unconnected pairs of vertices with same

𝑅𝐿𝐵 label. We can find that both vertices 7 and 9 in Figure

5 have a label ‘𝑏’. So, an edge can be added in between

(Figure 3(b)). However, it is impossible to add an edge to

vertices 4 and 8. In this situation, “ComplementAssign”

Algorithm 3: Edge Addition

Input: 𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 {𝑔}

Output: 𝑐𝑜𝑠𝑡

1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇𝐿𝐵 𝑎𝑛𝑑 𝑅𝐿𝐵 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑔𝑟𝑜𝑢𝑝
2. 𝑑𝑜

3. 𝑆𝑖𝑚𝑝𝑙𝑒𝐴𝑠𝑠𝑖𝑔𝑛()
4. 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝐴𝑠𝑠𝑖𝑔𝑛()

5. 𝑢𝑛𝑡𝑖𝑙: 𝑎𝑙𝑙 |𝑅𝐿𝐵| = 0 𝑜𝑟 |𝑅𝐿𝐵| 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑

6. 𝑖𝑓 |𝑅𝐿𝐵𝑚| == 0
7. 𝑐𝑜𝑠𝑡 ← |𝐸’|
8. 𝑒𝑛𝑑 𝑖𝑓

procedure is executed, which is shown in Figure 3(c),

where we increase the 𝑇𝐿𝐵 of group 1 by ‘𝑏’ and have 3

more edges added.

 Since both the two functions are incremental and assure

|𝑅𝑇𝐵𝑚𝑖| is decreasing by each step without increasing the

|𝑅𝑇𝐵𝑚𝑗| for another group mj (unless the situation of no

answer, which would be talked about in Section 5), the

algorithm shall terminate in finite time, and maximum

loop time is sum of |𝑅𝑇𝐵| for all groups.

c. Clustering-based grouping

Since the edge addition procedure highly depends on the

previous stage and the property of a grouping strategy

would have great influence to the final cost, a more

efficient grouping strategy is needed. Inspired by

clustering approaches like Campan [8], we give a

clustering based method shown in Algorithm 4 that

provides an alternative way of grouping algorithm

introduced in Section 4.a.

Algorithm 4: Clustering-based Grouping

Input: 𝐺𝑟𝑎𝑝ℎ 𝐺, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐾

Output: 𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 {𝑔}

1. {𝑔} ← {𝑉}
2. 𝑑𝑜

3. 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 𝑡𝑤𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐶

4. 𝑢𝑛𝑡𝑖𝑙: 𝑎𝑙𝑙 |𝑔| ≥ 𝐾 𝑜𝑟 𝑛𝑜 𝑚𝑜𝑟𝑒 𝑚𝑒𝑟𝑔𝑖𝑛g

5. 𝐺𝑟𝑜𝑢𝑝𝐴𝑑𝑗𝑢𝑠𝑡()

Here condition C refers to:

C: Any clusters with size larger than K are not further

merged.

Considering that traditional clustering methods have no

restrictions on cluster sizes, this condition can effectively

help to reduce the average cluster (group) size and avoid

bias clustering result. A prototype-based hierarchical

clustering method is used: The group set is initialized with

vertex set and we keep merging the closest clusters . The

distance between two clusters is defined as:

 𝐷𝑖𝑠𝑡 1:

𝐷𝑖𝑠𝑡(𝑔𝑚𝑖 , 𝑔𝑚𝑗) = |𝑇𝐿𝐵𝑚𝑖
− 𝑇𝐿𝐵𝑚𝑗

| + |𝑇𝐿𝐵𝑚𝑗
− 𝑇𝐿𝐵𝑚𝑖

|

The final step would be responsible for the situation

when only one cluster is under size 𝐾 while it cannot be

merged to any other one according to 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐶. In that

case, we can merge this clusters with a previous cluster

which would results in minimum increase to the original

value of |𝑇𝐿𝐵|.

A major drawback of this clustering grouping method is

that group size is not taken into consideration when

choosing closest clusters, while in fact it could be much

easier to satisfy the same 𝑇𝐿𝐵 for a group with smaller

size than a larger one. So, we give two alternative distance

metrics as follows:

 𝐷𝑖𝑠𝑡 2: 𝐷𝑖𝑠𝑡 (𝑔𝑚𝑖
, 𝑔𝑚𝑗

) = 𝐷𝑖𝑠𝑡1 ∗ (|𝑔𝑚𝑖
| + |𝑔𝑚𝑗

|)

𝐷𝑖𝑠𝑡 3: 𝐷𝑖𝑠𝑡 (𝑔𝑚𝑖
, 𝑔𝑚𝑗

) = (𝑇𝐿𝑆𝑚𝑖
− 𝑇𝐿𝑆𝑚𝑗

) ∗ |𝑔𝑚𝑗
|

+(𝑇𝐿𝑆𝑚𝑗
− 𝑇𝐿𝑆𝑚𝑖

) ∗ |𝑔𝑚𝑖
|

 The comparison would be introduced in Section 6.

d. Complexity analysis

The time complexity for Greedy Grouping method can

be easily computed from Algorithm 2, which is 𝑂(𝑁2). By

using dynamic lists of arrays to represent the adjacent lists,

the memory needed for nodes information is only 𝑂(𝑘𝑁),

constant k can be set to 2𝐷 initially, where 𝐷 is the

average degree of vertices. The space needed for group

information is also linear to input size, 𝑂(|𝑉|/𝐾).

 In case of using clustering method, traditional

agglomerative hierarchical clustering method requires

𝑂(𝑁3) execution time, which is not applicable to large

real data. So. we use the implementation of Fastcluster by

Mullner [16], which has most time complexity of 𝑂(𝑁2) .

We modify the distance metric during procedure according

to our setting and we tend not to use the distance matrix to

record pairwise distance since it requires 𝑂(𝑁2) space.

In the second phase, the Edge Addition algorithm costs

𝑂(𝑘′𝑁2), coefficient 𝑘′ can be viewed as iteration time,

which is positively correlated to sum of |𝑅𝑇𝐵| . This is

why grouping phase would have influence on the

execution time of Edge Addition.

Figure 6

5. Noise Vertex

It should be noticed that the label -bag based K-anonymity

problem is not assured to have a result in the case that

only edge addition is allowed and no noise

vertex can be added. For example, Figure 6 is a complete

graph, which means no more edges can be added.

Obviously, this graph does not satisfy 𝐿𝐵 𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦

when 𝑘 ≥ 2. Since 𝑘 = 1 is meaningless, decreasing 𝐾

or increasing 𝑀 in algorithm 2 also fail to solve the

problem

To prove an arbitrary graph cannot get a 𝐿𝐵 𝑘 −

𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 result is also NP hard, since the worst case

requires to try every possible edge -addition operation,

which is in O(2𝑛). One of the ways to issue this problem is

to introduce noise vertex.

Her,e we provide a naive way to realize 𝐿𝐵 𝑘 −

𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 by edge addition using noise Vertex in

Algorithm 5.

Algorithm 5: Edge Addition with Noise Vertex

Input: 𝐺𝑟𝑎𝑝ℎ 𝐺’
Output: 𝑐𝑜𝑠𝑡

1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇𝐿𝐵 𝑎𝑛𝑑 𝑅𝐿𝐵 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑔𝑟𝑜𝑢𝑝

2. 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑙𝑎𝑏𝑒𝑙 𝑙 𝑖𝑛 {𝑅𝐿𝐵}

3. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑤𝑖𝑡ℎ 𝑛𝑔𝑙 𝑖𝑛 𝑠𝑖𝑧𝑒 𝐹

4. 𝑄 ← {𝑣| 𝑐𝑅𝐿𝐵𝑖(𝑙) > 0}
5. 𝑠𝑜𝑟𝑡 𝑄 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑐𝑅𝐿𝐵𝑖(𝑙)

6. 𝑤ℎ𝑖𝑙𝑒 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

7. 𝑢 < − 𝑃𝑜𝑝(𝑄)
8. 𝑎𝑑𝑑 𝑒𝑑𝑔𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑛𝑔𝑙

9. 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

10 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛 𝑛𝑔𝑙
11. 𝑒𝑛𝑑 𝑓𝑜𝑟𝑒𝑎𝑐ℎ

12. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑠𝑡

Let 𝐺’ be the original graph or Graph state after being

processed Algorithm 2 for purpose of reducing the number

of noise vertices added. In line 3, the size 𝐹 is computed

according this formula:

𝐹 = {
3 , 𝐾 = 2, ∑ 𝑐𝑅𝐿𝐵𝑖(𝑙)𝑖∈𝑉 = 1

max(𝐾, ∑ 𝑐𝑅𝐿𝐵𝑖(𝑙)𝑖∈𝑉) , 𝑒𝑙𝑠𝑒

 In line 4, 𝑐𝑅𝐿𝐵𝑖(𝑙) is the number of label 𝑙 in 𝑐𝑅𝐿𝐵𝑖.

While executing step 8, we always start from vertex with

least degree in 𝑛𝑔. We give an example in Appendix C.

6. Experiment

We conduct a series of experiments to evaluate the

efficiency and utility of our algorithms. Experiments are

conducted in environment as Table 1.

CPU 2.26 GHz Intel Core 2 Duo

Memory 4GB 1067MHz DDR3

Language/Compiler c/gcc-4.2

Data Synthetic: Small world Graph [17]

Real_1: Speed Dating Data[18]
Real_2: Collaboration network [19]

Table 1: Experimental Environment

We compare the execution time for different grouping

methods and choose the number of edges added as the

measurement for utility.

 Results of synthetic data are shown in Figure 7. Figure

7(a) compares different greedy grouping algorithms and

0

20

40

60

80

100

120

140

160

100,4 500,6 1000,8

cost

Figure 7 (a)

C-dist1

C-dist2

C-dist3

Greedy

Grouping
40

60

80

100

120

140

160

180

200

3 4 5 6

cost

Figure 7 (b)

C-dist1

C-dist2

C-dist3

Greedy

Grouping
0

50

100

150

200

250

300

350

400

3 4 5 6

cost

Figure 7 (c)

C-dist1

C-dist2

C-dist3

Greedy

Grouping

0

20

40

60

80

100

120

140

160

180

3 4 5

cost

Figure 8

c-dist1

c-dist2

c-dist3

greedy

grouping

660
680
700
720
740
760
780
800
820
840
860
880

c-dist1 c-dist2 c-dist3 greedy

grouping

cost

Figure 9 (a)

0

50

100

150

200

250

300

c-dist1 c-dist2 c-dist3 greedy

grouping

Time/s

Figure 9 (b)

phase 2

phase 1

clustering in varied distance metrics. We use 15 random

generated data set having vertex size |𝑉| = 500, average

degree 𝐷 =6, label kinds 𝑙 =2 and 𝐾 =3. For greedy

grouping algorithm, the iteration time M is set as 5.

(Default parameters are the same in following experiments

if without specific explanation.) The result shows the

average cost of all the datasets. We can observe that

clustering based algorithms have less cost than the Greedy

Grouping algorithm. Figure 7(b) shows the variance of

cost with increase of 𝐾. The cost grows with the growth

of 𝐾 because that larger group sizes usually lead to larger

values of |𝑇𝐿𝐵|. Figure 7(c) shows the different cost while

increasing the number of label kinds. The growing trends

remain the same and the priority of clustering algorithms

is exhibited again.

Figure 8 shows the results of real data 1. The graph is

constructed by 551 vertices, 8368 edges and 2 kinds of

labels. The result is close to that of synthetic data and

again reflects the utility gain by using clustering-based

method.

In result of Figure 9 we use a larger dataset extracted

from the co-author network on condensed Matter section

of arXiv E-Print Archive [19]. The graph consists of

16726 vertices and 47594 edges with the number of labels

set as 3. Figure 9(a) shows the number of edges need for

each algorithm. Figure 9(b) is the execution time of two

phases for each algorithm. The phase 1 time is almost the

same (For Greedy Grouping algorithm is the sum of 5

iterations). The phase 2 execution time differs from

algorithms due to the grouping result passed by the

previous stage. The Efficiency of all algorithms consists

with our analysis in Section 4.d.

7. Conclusion

In this paper, we discussed the K-anonymity problem in

privacy-preserving data publishing. This is an extension

from the unlabeled model and can be applied to many

real-world situations. We provide a greedy algorithm

based on label-bag model and realize it in two different

ways. We evaluate them by some experiments on both

synthetic and real data. Through the results, it is proved to

be efficient and of good utility. Als,o we investigate how

choices in parameters would influent the cost. In

consideration of the problem when there doesn’t exist an

answer, we give an algorithm based on noise vertex.

A lot of other attack models such as K-automorphism

[9] and K-symmetry [11] have been proposed in case of

unlabeled graph. To extend our model against stronger

structural attack is our future work.

Acknowledgement

This research has been supported in part by the Grant-Aid

for Scientific Research from JSPS (# 21240005).

Reference
[1] Smriti Bhagat, Graham Cormode, Balachander

Krishnamurthy, Divesh Srivastava. Class -based graph
anonymization for social network data. VLDB
Endowment 2009.

[2] L. Sweeney. k-anonymity: a model for protecting
privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems 2002.

[3] Kun Liu, Evimaria Eerzi. Towards identity
anonymization on graphs. SIGMOD 2008.

[4] Bruce Kapron, Gautam Srivastava, S. Venkatesh .
Social network anonymization via edge addition.
ASONAM 2011.

[5] Lars Backstrom, Cynthia Dwork, Jon Kleinberg.
Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural
steganography. WWW’ 2007.

[6] Bin Zhou, Jian Pei. Preserving Pr ivacy in Social
Networks Against Neighborhood Attacks. ICDE
2008.

[7] Mingxuan Yuan, Lei Chen, Philip S.Yu. Personalized
privacy protection in social networks. VLDB
Endowment 2010.

[8] Alina Campan, Traian Marius Truta. Aclustering
approach for data and structural anonymity in social
networks. PinKDD 2008.

[9] Lei Zou, Lei Chen,M. Tamer Özsu. k -automorphism:
a general framework for privacy preserving network
publication. VLDB Endowment 2009.

[10] James Cheng, Ada Wai -chee Fu, Jia Liu.
K-isomorphism: privacy preserving network
publication against structural attacks. SIGMOD
2010.

[11] Wentao Wu, Yanghua Xiao, Wei Wang, Zhenying He,
Zhihui Wang. K-symmetry model for identity
anonymization in social networks. EDBT 2010.

[12] Brian Thompson, Danfen Yao. The union-split
algorithm and cluster-based anonymization of social
networks. ASIACCS 2011.

[13] Michael Hay, Gerome Miklau, David Jensen, Don
Towsley, Philipp Weis. Resisting structural re -
identification in anonymized social networks. VLDB
Endowment 2008.

[14] Sean Chester, Bruce Kapron, Ganesh Ramesh,
Gautam Srivastava, Alex Thomo. k -anonymization of
social networks by vertex addition. ADBIS2011.

[15] Tripathy, B.K.; Panda, G.K.. A New Approach to
Manage Security against Neighborhood Attacks in
Social Networks. ASONAM 2011.

[16] Fastcluster. http://math.stanford.edu/~muellner.

[17] Networkx1.6. http://networkx.lanl.gov/index.html .

[18] Speed Dating Data. http://flowingdata.com.

[19] Newman’s scientific collaboration network. Mark
Newmam. The structure of scientific collaboration
networks. PNAS 98, 404-409.

http://networkx.lanl.gov/index.html
http://flowingdata.com/

Appendix

A. Compute Group Strategy

Our target is to divide vertex set |𝑉| into several

groups within size at least 𝐾 . We use a backtrack

algorithm to numerate all combinations of group sizes that

sum to |𝑉|. Theoretically, to find the best grouping

strategy, it needs computing all possible combinations

which is too large for large node set and 𝐾. To reduce the

total number of combinations, the following theorem can

be used which will be proved in Appendix B.

Theorem 1: Every result anonymous groups should be in

size of [𝐾, 2𝐾).

By using theorem 1, the group sizes range can be

restricted to [𝐾, 2𝐾). As an example, let |𝑉| = 9, and 𝐾 =

3,then two possible strategies are {3,3,3} and {4,5}.

However, it still results in large consumption since the

number of strategies grows exponentially and a threshold

value 𝑀 is required to limit the execution time. In our

experiments, default 𝑀 is set to be 5, and we can increase

it to achieve better utility when single iteration time is

small.

B. Prove of Theorem 1

We prove theorem 1 using the following description:

Let original Graph be 𝐺 = (𝐸, 𝑉), 𝐺’ = (𝐸 ∪ 𝐸’, 𝑉) is the

anonymized graph that satisfy LB K-anonymity, let

{𝑔} = {𝑔1 , 𝑔2 , … , 𝑔𝑛} be all the anonymized groups. We can

assume 𝑔𝑖 is one of the groups with size larger than

2𝐾 − 1 without loss of generalization. We construct

another grouping strategy {𝑔’} = 𝑔′1 , 𝑔′2 , … , 𝑔′𝑛 , 𝑔′𝑛+1} ,

satisfying (1) 𝑔𝑗 = 𝑔’𝑗| 𝑗 = 1 … 𝑛 , 𝑗 ≠ 𝑖 ,(2) 𝑔𝑖 = 𝑔’𝑖 ∪

 𝑔’𝑛+1,(3)|𝑔’𝑖 | ≥ 𝐾, |𝑔’𝑛+1| ≥ 𝐾, and the resulted anonymized

graph is 𝐺’’ = (𝐸 𝑈 𝐸’’ , 𝑉). Then if it can be proved that

formula 𝑐𝑜𝑠𝑡(|𝐸’|, 𝑔) ≥ 𝑐𝑜𝑠𝑡(|𝐸’’|, 𝑔’) holds for any

combinations of 𝑔’𝑖 and 𝑔’𝑛+1, theorem 1 holds too. To

prove the above inequality, let’s first consider 𝐸’’ equals

to 𝐸’ . Since 𝐺’ satisfy the 𝐿𝐵 𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 , so every

vertex in 𝑔𝑖 has the same 𝐿𝐵 , also 𝑓𝑜𝑟 ∀𝑢, 𝑢 ∈ 𝑔’𝑖 ∪

𝑔’𝑛+1 → 𝑢 ∈ 𝑉 − {𝑔’1 , … , 𝑔’𝑖−1 , 𝑔’𝑖+1,…, 𝑔’𝑛}, → 𝑢 ∈ 𝑉 −

{𝑔1 , … , 𝑔𝑖−1 , 𝑔𝑖+1,…, 𝑔’𝑛} → 𝑢 ∈ 𝑔𝑖. We have every vertex in

group𝑔’𝑖 and 𝑔’𝑛+1 having the same 𝐿𝐵, and 𝐺’’ satisfy

𝐿𝐵 𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 too. So we can always find a graph 𝐺’’

satisfying 𝐿𝐵 𝐾 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 and 𝑐𝑜𝑠𝑡(|𝐸’|, 𝑔) 𝑐𝑜𝑠𝑡(|𝐸’’|, 𝑔’)

(if not, set 𝐸’’ to be 𝐸’).

Figure 10 Noise Vertex

C. Example of Edge Addition with Noise Vertex

Figure 10 an example of noise vertex situation. The

original graph in Figure 10(a) is a complete graph such

that it’s impossible to realize 𝐿𝐵 4 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 with onl y

edge addition operation. We illustrates how to use

algorithm 5 to achieve 𝐿𝐵 4 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 trough edge

addition with noise vertex. First compute the RLB for

10(a) and we have: 𝑅𝐿𝐵1 = 𝑏, 𝑅𝐿𝐵2 = 𝑎, 𝑅𝐿𝐵3 = 𝑏, 𝑅𝐿𝐵4 = 𝑎.

There are two vertices with an label a in 𝑅𝐿𝐵, a noise

group in size max(2,4) =4 is initialized (vertex 5,6,7,8 in

10(b)), edges between vertices in or iginal graph and noise

group (e(1,6),e(3,5)) and make assure the left vertices in

same LB with e(7,8). Similarly we deal with label b in

same steps and the final 𝐿𝐵 4 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 graph is shown

in 10(c). Although to reduce the number of noise vert ices

added it’s better to merge the two groups in this example,

the required edges would not decrease. We leave the

problem to minimize the noise group size as our future

work.

