
DEIM Forum 2012 D10-2

A Rank Aggregation Algorithm for Efficiently Searching Top-k Semantic

Similar Sentences

Yanhui GU†, Zhenglu YANG†, and Masaru KITSUREGAWA†

† Institute of Industrial Science, the University of Tokyo

4–6–1 Komaba, Meguro–ku, Tokyo 153–8505 Japan

E-mail: †{guyanhui,yangzl,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract Measuring semantic similarity between sentences is an important issue in many applications, such as,

text mining, Web page retrieval, dialogue systems, and so forth. Although it has been explored for several years ago,

most of these studies focus on how to improve the effectiveness issue but not efficiency. In this paper, we address

the efficiency issue, i.e., for a given sentence collection, how to efficiently discover the top-k most semantic similar

sentences to the query. It is a very important issue for real applications while existing state-of-the-art strategies

cannot satisfy the performance requirement of the users. We introduce a general framework to tackle the issue, in

which several efficient strategies are proposed. Extensive experimental evaluations demonstrate that our approach

outperforms the state-of-the-art methods.

Key words rank aggregation, threshold algorithm, semantic, Top-k

1. Introduction

In many applications, searching semantic similar sentences

is an important issue, such as text mining, Web page re-

trieval, and dialogue systems, etc. The framework for such

application is: given a collection of sentences, the system

gives the most (i.e., top-k) semantically similar sentences to

a query.

The problem can be solved by firstly measuring the se-

mantic similarity score between the query and each sen-

tence in the data collection using the state-of-the-art tech-

niques [6], [9], [11], [12], [14], and then sorting them with re-

gard to such similarity score and finally returning the top-k

ones. However, when the size of the data collection increases,

the scale of the problem has dramatically increased. Note

that almost all the previous studies focus on improving the

effectiveness of the problem while in this paper we firstly

propose the strategy which addresses the efficiency issue in

the literature. Secondly, most of the previous approaches are

threshold-based, i.e., the similarity threshold is predefined.

But it is the case that such threshold is difficult for user to

predefine because the returned results are sensitive with the

threshold value, i.e., if the threshold is too small, few results

will be returned while too many results will be returned when

the threshold is set to be too large. Therefore, searching top-

k similar sentences seems to be very challenging.

Traditionally, techniques for measuring similarity between

long texts (e.g., documents) have centered on analyzing co-

occurred words [13]. Such methods are usually effective when

dealing with long texts because similar long texts usually

contain a degree of sharing words. However, in short texts

(e.g., sentences), word co-occurrence may be rare or even

null. This problem poses a difficult computational challenge

that we cannot apply the document similarity measurement

strategies in sentences directly.

To remedy such problem, extensive studies have been ex-

plored based on the feature of sentence and can be classi-

fied into the following main groups: (1) knowledge-based

strategies [11], [14]; (2) corpus-based strategies [6]; (3) com-

mon word order based strategies [6], [9]; (4) hybrid strate-

gies [6], [9]. Since words are the components of sentences,

word similarity is a non neglectable feature when we mea-

sure the sentence similarity [6], [9], [11].

In this paper, we studied a comprehensive framework and

conducted experiments to find how to tackle the efficiency of

searching top-k semantic similar sentences, which is different

from previous works which focus on the effectiveness aspect.

2. Problem Statement

Formally, for a query sentence Q, finding a set of k sen-

tences P in a given sentence collection S which are most

similar to Q, i.e., ∀p ∈ P and ∀r ∈ (S − P) will yield

sim(Q,p) >= sim(Q, r).

To measure the similarity sim(Q,P) between two sen-

tences, we apply the state-of-the-art strategies by assembling

multiple similarity metric features together [6], [9]. Because

we focus on tackling the efficiency issue in this paper, we se-

lect several representative features from the main categories

based on the framework which has been proposed in [6].

2. 1 Similarity Measurement Strategies

• String-based Similarity

String similarity measures the difference of syntax between

strings. An intuitive idea is that two strings are similar to

each other if they have enough common subsequences (i.e.,

LCS [4]). We focus on three representative string similar-

ity measurement strategies, i.e., NLCS, NMCLCS1 and NM-

CLCSn!JCm1!Kwhich are denoted as SimNLCS , SimMCLCS1 and

SimMCLCSn in the following.

NLCS LCS is a common string similarity measurement

strategy and it measures the longest common subsequence of

two strings. The similarity score is the length of LCS nor-

malized by the product of the length of two strings. For two

strings wi, wj , Formula 1 tells us how to evaluate their NLCS

similarity.

SimNLCS(wi, wj) =
length(LCS)

length(wi)length(wj)
(1)

We take two strings abacd and acadb as an example.

These two strings have common subsequence a, aa, ad or

aad while aad is the longest. So LCS(abacd, acadb)=3 and

SimNLCS(abacd, acadb)=
9

25
.

NMCLCS1 NMCLCS1 measures the similarity between

two strings where they have the maximal consecutive LCS

from the first character which tells us whether these two

strings have the maximal consecutive prefix substring. Dif-

ferent from NLCS, NMCLCS1 has two properties: (1) The

longest common subsequence in NMCLCS1 should be con-

secutive; (2) The two strings should have the same first char-

acter. So the NMCCLS1 similarity between wi and wj is

indicated as the following formula.

SimNMCLCS1(wi, wj) =
length(MCLCS1)

length(wi)length(wj)
(2)

We take examples to illustrate how NMCLCS1 works.

(1) Two strings abcd and abed have the longest com-

mon subsequence abd, but not consecutive. Therefore

MCLCS1(abcd,abed)=ab and SimNMCLCS1(abcd,abed)=
4

16
.

(2) Although abcd and bbcd have the longest common sub-

sequence bcd and also be consecutive, they are different

!JCm1!K!’NLCS: Normalized Longest Common Substring, NMCLCS1:

Normalized Maximal Consecutive LCS starting at character 1, NM-

CLCSn: Normalized Maximal Consecutive LCS starting at any char-

acter n [6]

in the first character. So MCLCS1(abcd,bbcd)=0 and

SimNMCLCS1(abcd,bbcd)=0;

NMCLCSn Similar to NMCLCS1, NMCLCSn measures

the similarity between two strings where they have the max-

imal consecutive common subsequence. The only difference

here is that it starts at any position. We show the NMCLCSn

similarity measurement strategy of two strings wi and wj as

follows:

SimNMCLCSn(wi, wj) =
length(MCLCSn)

length(wi)length(wj)
(3)

For better under how NMCLCSn works, we take two

strings abcd and bbcd as an example. Because NM-

CLCSn does not take the first character into account, so

MCLCS(abcd,bbcd)=bcd and SimNMCLCSn(abcd,bbcd)=
9

16
.

• Corpus-based Similarity

Corpus-based similarity measurement strategy is to recog-

nize the degree of similarity between words using large cor-

pora [8]. There are several kinds of strategies: PMI (Point-

wise Mutual Information) [15] applies the search engine to

gather the existence information from the Web; LSA (Latent

Semantic Analysis) [7], [8] analyzes a large corpus of natural

language text and generates a representation that captures

the similarity of words and text passages; HAL (Hyperspace

Analogues to Language) [1] uses lexical co-occurrence to pro-

duce a high-dimensional semantic space to capture the se-

mantic information. There also exist some other strategies,

e.g., chi-square, log-likelihood, and so forth. In this paper, we

use the SOC-PMI (Second Order Co-occurrence PMI) word

similarity method [5] that uses PMI to sort lists of important

neighbor words in a context window of the two target words

from a large corpus. The underlying idea is that the neigh-

bors of the two target words have the abundant semantic

context with each other and aggregate the more important

information. PMI for two words wi,wj is defined as follows:

fpmi(w1, w2) = log2
f(w1, w2)×m

f(w1)f(w2)
(4)

where f(wi) is the frequency of wi in the corpus and

f(wi, wj) is the frequency of co-occurrence of wi and wj , m

is the size of the whole corpus. We apply Formula 4 to calcu-

late each neighbor and target pair then aggregate important

PMI values which is introduced in [5].

• Common Word Order

Common word order!JCm2!Kmeasures the syntax similarity be-

tween the common words of sentence pair. If two sentences

!JCm2!K!’Although syntactic information has low importance for the

semantic processing of sentences according to [16], some work such

as [6], [9] incorporate common word order similarity to make their work

more generic.

String Similarity base Semantic Similarity base

NLCS NMCLCS1 NMCLCSn

Common Word Order

Sentence Similarity

Similarity base
(SO-PMI)

(Three Strategies)

Fig. 1 The concept of the general framework.
have some words in common, we can measure how similar

the order of the common-words in these two sentences. For

example, we have two sentences P and Q, and there are δ

words appear in both sentences. We assign a unique index

number for each common word in P from 1 to δ, that is

X = x1, ..., xδ and them mark the index number to the com-

mon word Y in Q based on such unique index number. So the

common word order similarity of two sentence is as follows:

So = 1−
| x1 − y1 | + | x2 − y2 | +...+ | xδ − yδ |

| x1 − xδ | + | x2 − xδ−1 | +...+ | xδ − x1 |
.

2. 2 A General Framework

To measure the overall similarity between two sentences,

a general framework is needed to incorporate all the similar-

ity measurement strategies. From the previous works, [6] is

the most comprehensive approach which incorporates string

similarity, semantic similarity and common word order sim-

ilarity into its framework. Fig. 1 shows the concept of the

framework. The string similarity base is composed of three

different similarity measurement strategies, i.e., NLCS, NM-

CLCS1 and NMCLCSn. The final sentence pair similarity is

the aggregation of string similarity, semantic similarity and

common word order similarity. The common words plays

syntax information in sentence pair. However the number

of common word is rare and [6] demonstrates that common

word order similarity plays a less important role in semantic

processing of short text, e.g., sentence. Therefore, they ig-

nore the such similarity in the implementation of their frame-

work.

3. Experimental Evaluation

In this paper, we propose an efficient framework based

on [6] which is the most effective in the literature of measur-

ing sentence semantic similarity. Our key idea is by building

appropriate index in the preprocessing, we only need access

a small part but not the whole data collection.

The query sentence and each candidate in the data collec-

tion are sent to two modules (i.e., String similarity evaluator,

Corpus-based similarity evaluator) respectively, to obtain the

corresponding similarity score. Then, the scores from differ-

ent modules are assembled and ranked, resulting in the final

ranked list.

We introduce the best first search strategies of string sim-

ilarity and semantic similarity evaluator, respectively. Af-

ter that, the final assembled framework will be introduced.

There are many studies on exploring how to efficiently search

top-k similar words with respect to string similarity [18]. In

this paper, we apply NLCS, NMCLCS1, NMCLCSn as string

similarity features.

Our task is to find the top-k similar semantic sentences.

We introduce an efficient approach to hasten the process of

searching top-k similar sentences, based on the rank aggre-

gation algorithm [2].

To evaluate our approach, we conducted extensive experi-

ments by using 16-core Intel(R) Xeon(R) E5530 server run-

ning Debian 2.6.26-2. All the algorithms were written in C

language and compiled by GNU gcc.

Our proposal is based on a baseline framework which has

been proposed in [6]. Since the source code is unavailable, we

first reimplemented the whole framework and checked the

accuracy. We conducted our experiment on a benchmark

data which has been used in [9] and also it is the same data

with [6]. We denote our implementation as baseline. The

experiment result is illustrated in Fig. 2. From the figure,

we can see that almost the results are similar with [6] paper.

Some different results come from the following factors: BNC

version and the stop word set. For the accuracy, we also

checked four stop word sets, and chose the best proper one

in the whole experiment.

Fig. 2 Accuracy of Baseline

3. 1 Effect of Size of Data Collection

We evaluate the framework and reported results in Fig.

3(a) and Fig. 3(b).

(a) Query time on different size of

data collection

(b) #Candidates accessed

Fig. 3 Effect on size of data collection

3. 2 Effect of k value

We randomly select 10 queries from the data collection and

with the size of data collection of 5k. From Fig. 4(a), we

can see that the baseline should access all the sentence in the

data collection, the query time is the same whenever how k

is. We also can see that, the top-1 value can return almost

instantly and with the k increasing, we obtain the further

results. From other hands, the results also illustrate the effi-

ciency of our proposal with the small k size. We also record

the number of the candidates accessed. Fig. 4(b) reports the

number of candidates accessed in the data collection.

(a) Query time of different k-value (b) #Candidates accessed

Fig. 4 Effect of k-value

4. Conclusion and Future Work

In this paper, we proposed an efficient searching top-k se-

mantic similar sentences strategy based on a state-of-the-art

framework which has been proposed in [6]. This is the first

work in searching semantic similar in large data collection.

Several efficient best search strategies are proposed to tackle

the efficiency issue in the traditional similarity measurement

approach. Our experimental evaluation demonstrate the ef-

ficiency on searching top-k semantic similar sentences. In

the future, we will research on other similarity measurement

strategies to further evaluate the efficiency and effectiveness.

5. Related Work

Measuring the semantic similarity between sentences is not

similar with the methods of measuring the similarity be-

tween documents [3] and words. Sentence is shorter than

document but longer than individual words. There is less

work related to the measurement the semantic similarity be-

tween sentences. The methods of measurement can be classi-

fied into the following major categories: word co-occurrence

or vector-based document model methods [10], corpus-based

methods [6]!A[8], hybrid methods [9], [15]. However, the doc-

ument model methods are not very effective when we mea-

sure the sentence level similarity. The corpus-based methods

uses the outside resource to measure the semantic similar-

ity. The hybrid methods fuse two or more methods into

a uniform model, e.g., corpus-based and document model

based, corpus-based and knowledge-based, etc. However, all

the approaches above is not take the efficiency into account.

When we search top-k semantic similar sentence, the meth-

ods above should access all the sentences in the data collec-

tion.

To the best of our knowledge, we firstly propose a strategy

on searching top-k semantic similar sentence in the litera-

ture. Our work is similar with [17], while [17] focus on word

level, i.e., their approach in on searching top-k semantic sim-

ilar words but not sentences.

References

[1] C. Burgess, K. Livesay, and K. Lund. Explorations in con-

text space: words, sentences, discourse. Discourse Pro-

cesses, 1998.

[2] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation

algorithms for middleware. In PODS, 2001.

[3] V. Hatzivassiloglou, J. L. Klavans, and E. Eskin. Detecting

text similarity over short passages: Exploring linguistic fea-

ture combinations via machine learning. In EMNLP/VLC,

1999.

[4] D. S. Hirschberg. A linear space algorithm for computing

maximal common subsequences. Commun. ACM, 1975.

[5] A. Islam and D. Inkpen. Second order co-occurrence PMI

for determining the semantic similarity of words. In LREC,

2006.

[6] A. Islam and D. Inkpen. Semantic text similarity using

corpus-based word similarity and string similarity. ACM

Transactions on Knowledge Discovery from Data, 2008.

[7] T. Landauer and S. Dumais. A solution to plato’s problem:

The latent semantic analysis theory of acquisition, induc-

tion and representation of knowledge. Psychological Review,

1997.

[8] T. K. Landauer, P. W. Foltz, and D. Laham. An intro-

duction to latent semantic analysis. Discourse Processes,

1998.

[9] Y. Li, D. McLean, Z. A. Bandar, J. D. O’Shea, and

K. Crockett. Sentence similarity based on semantic nets

and corpus statistics. IEEE Trans. on Knowl. and Data

Eng., 2006.

[10] C. T. Meadow. Text information retrieval systems. Aca-

demic Press, 1992.

[11] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based

and knowledge-based measures of text semantic similarity.

In AAAI, 2006.

[12] M. Sahami and T. D. Heilman. A web-based kernel func-

tion for measuring the similarity of short text snippets. In

WWW, 2006.

[13] G. Salton, editor. Automatic text processing. Addison-

Wesley Longman Publishing Co., Inc., 1988.

[14] G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis. Text re-

latedness based on a word thesaurus. J. Artif. Intell. Res.

(JAIR), 2010.

[15] P. D. Turney. Mining the web for synonyms: Pmi-ir versus

lsa on toefl. In EMCL, 2001.

[16] P. Wiemer-Hastings. Adding syntactic information to lsa.

In Proceedings of the 22nd Annual Conference of the Cog-

nitive Science Society, 2000.

[17] Z. Yang and M. Kitsuregawa. Efficient searching top-k se-

mantic similar words. In IJCAI, 2011.

[18] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for

top-k approximate string matching. In AAAI, 2010.

