

DEIM Forum 2012 D10-3

Evaluation of Multiple Fat-Btrees on a Parallel Database

Min LUO† Takeshi MISHIMA‡ Haruo YOKOTA†

†Dept. of Computer Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan

‡NTT Information Sharing Platform Laboratories 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
E-mail: †luomin@de. cs.titech.ac.jp, ‡mishima.takeshi@lab.ntt.co.jp, †yokota@cs.titech.ac.jp

Abstract Fat-Btree, as well as the following contribution work for its efficient concurrent control, load balancing and data
reliability, has been proposed for the high-speed access in parallel database systems on shared-nothing environment. Because
these contributions are focus on the index accessing and maintenance efficiency only, a single Fat-Btree structure in a parallel
database system is sufficient for all the previous evaluations. However, databases with multiple relations require multiple
Fat-Btrees for the parallel accessing. In this work, we introduce the construction of a multiple Fat-Btree index system for
multiple relations, a study of the throughput in this system using PostgreSQL based DBMS cluster is provided.

Keyword Fat-Btree，Multiple Relation，Parallel Database

1. Introduction

“Cluster computing” has attracted considerable
attentions in high performance and scalable distributed
systems research. In these systems, a large number of
low-end servers are lined up and work in parallel to act as
a smaller set of high-end servers. Many data accessing
methods and distributed execution frameworks have been
proposed to coordinate the clusters [2, 3, 4, 5, 6, 7].

In these frameworks, Map-Reduce [2] is one of the most
famous one and there are numerous academic and
commercial implementations of Map-Reduce framework
because it offers a simple, functional interface that
transparently executes the computations with a good
system scalability. On the other hand, [5], [6], [7] provide
many data accessing methods in parallel databases for data
processing on the “clusters”. Besides the contributions
made over the past two decades, many ongoing academic
projects are also engaged to provide better performance,
scalability and failure tolerance parallel database systems
[11], [12], [13], [14].

Although the parallel database and Map-Reduce based
systems may seem to target different applications, it is in
fact possible to write the parallel processing tasks for
almost all the applications with Map-Reduce jobs or
database queries with these two systems, individually [15].
Therefore, lots of comparisons between these two systems
have been carried out for the users’ information. For
instance, [8] showed that DBMSs on shared-nothing
clusters outperform Map-Reduce by a large factor in a
variety of tasks. Additional comparisons in [9] showed
that the Fat-Btree [7] based parallel DBMSs possess

higher scalability and less data loading time than
Map-Reduce system as well, which are different
observations from [9], especially for small file I/O.

Besides the scalable and efficient data accessing
performance, the variant of Fat-Btree, a compound
Fat-Btree has been introduced for dynamical access-skew
balancing ability [1, 10]. It balances the skew without
high-cost data migration or index reconstruction processes
as in ordinary parallel DBMSs, but only modifies the data
accessing paths to the replicas on other nodes by
switching the flag identifier in the compound index.

The previous work [1, 7, 9 10] have verified the high
scalability and availability in the Fat-Btree, but these
contributions are focus on the index accessing and
maintenance efficiency, and only one single Fat-Btree
structure is constructed in a parallel database system.

However, databases with multiple relations require
multiple Fat-Btrees for their efficient parallel accessing.
Furthermore, parallel join-operations could be optimized
by the multiple Fat-Btree parallel indices. Therefore, it is
important to provide a parallel database of multiple
Fat-Btree indices, and study the system performance as the
first step work.

In this paper, we complete this work. We introduce the
construction of a multiple Fat-Btree indices system for
multiple relations. Different from a straightforward full
duplication of Fat-Btree modules, we only duplicate the
contention parts in the system, which is also the original
point of this paper. We also provide comparison and
discussion of the experimental results of this multi-FBT
system with that of the single Fat-Btree system.

2. Background
We briefly review the existing technologies for high

scalable and available parallel index and introduce a
shared-nothing parallel database based on Fat-Btree index.
2.1 Parallel Indexing Structures

There are two main methods of distributed data
accessing. DHT-based methods uniformly map nodes and
data objects into a single ID space, and each node is
responsible for a specific range of the ID space. On the
other hand, B-tree based parallel index is efficient in
range-query, but skewed range access may lead to obvious
performance degradation, unless the migration of the
skewed data and index structure.

Fig.1 Fat-Btree

The Fat-Btree [7] is introduced to reduce the update

maintenance and index migration cost, as a parallel B-tree
index. An example of a four-PE Fat-Btree is given in Fig.
1, where multiple copies of index nodes close to the root
node with relatively low update frequency are replicated
on several PEs, while leaf nodes with relatively high
update frequency are distributed across the PEs. Thus the
index nodes that require synchronization in different PEs
are greatly reduced and it also provides load index
migration methods [7] than other parallel Btree structures.

2.2 One Fat-Btree Based System

We introduce the architecture of a proposed one
Fat-Btree based parallel database system here. As shown
in Fig. 2, each PE in this system contains two main
modules. The open-source PostgreSQL DBMS is chosen
for the DBMS module and the Fat-Btree parallel index is
implemented inside the FBT module.

For the relation with Fat-Btree, its tuples are sorted and
every 60 tuples are put into one data-page which is stored
in the Page Server. To index these data-pages by Fat-Btree,
the min_value of the tuple in a data-page is used as the

key_id. As described in Sec. 2.1, the root index node is
replicated on all the PEs, and there are redundant
intermediate index nodes between any neighbor PEs.
Because of these redundant intermediate index nodes, a
parent node has pointers to their child nodes in the
neighbor PE. Thus, the root node has a point path to any
leaf node in any PE. Therefore, a client is able to retrieve
any tuples from any PE in the system.

Fig. 2 also shows a query processing flow in this system.
The sequence of the red arrow lines illustrates how to
handle a remote query. We assume all the queries are
querying the Fat-Btree indexed attribute. Their processing
sequences are shown as the red ordered arrows in Fig. 2.

a). Clients send query through a socket connection to
the Fat-Btree system.

b). A thread pool receives these queries and issues a
“SQL Server” for processing each query.

c). “SQL Server” extracts the ‘key’ in the query and
send it to “FBT Mgr.” (Fat-Btree manager) through the
“Comm. Mgr.” (communication manager).

d). Based on the information at local Fat-Btree, “FBT
Mgr.” forwards the query to a remote PE, where the target
data is located, through “Comm. Mgr.”.

e). The target PE receives the query, and its local “FBT
Mgr.” verifies the ‘key’ is contained by current PE.

f). Start query processing in the DBMS module.
f1). If the target page is already in the PGSQL buffer,

return the tuple in the page.
f2). If the target page is not in the PGSQL buffer,

load the target page from Page Server by using the ‘key’ of
target tuple.

f2.1). traverse Fat-Btree to find the leaf node
that contains the ‘key’

f2.2) get the data page No. in the index leaf
f2.3) fetch the page in Page Server by the No.
f2.4) load the page into PGSQL buffer.
f2.5) return the target tuple in the page

f3). Increase the accessing account of the page
If the above query is for a non-Fat-Btree indexed

relation, DBMS module follows the query handling
process in original PostgreSQL.

Note that, in the step-d) above, remote queries have to
be transmitted between PEs by the “Comm. Mgr” through
socket connections. This transmission overhead grows
when the number of PEs or clients increases.

3. Multiple Fat-Btrees System Structure
3.1 System Structure Discussion

As described in Sec. 2.2, in the Fat-Btree index module,
the independent thread pool handles query issuing, the
Comm. Mgr. handles the remote query transmission, the
FBT Mgr. handles Fat-Btree traversing, and the Page
Server stores the Fat-Btree indexed data pages. These

resources are competitive even within the one Fat-Btree
system, when there are multiple threads processing client
queries concurrently. Therefore, we duplicated them when
constructing multiple Fat-Btrees.

Fig.2 One Fat-Btree System Structure

Because it requires data I/O between PGSQL buffer and

hard disk when retrieve a non-Fat-Btree indexed relation.
While indexing the relation by a Fat-Btree in the
Multi-FBT system will load the relation into the Page
Server in memory. Therefore, the Multi-FBT system
improves the data retrieving efficiency by avoiding the
disk I/Os. In addition, Fat-Btree index will also provide
efficient access to its data pages stored in the Page Server.

3.2 Multiple Fat-Btrees System Structure
In this multiple Fat-Btree system structure, relations are

range partitioned across the PEs, and they have their own
FBT modules on every PE to manage their data tuples.

Fig. 3 gives an image of two PEs in our system structure.
The Page Servers ‘m’ on each PE stores the data of
relation ‘m’ that is partitioned on its PE. The Fat-Btree for
relation ‘m’ is constructed to index the data pages stored

on all these Page Servers ‘m’.
In the DBMS module, the PostgreSQL source code is

modified. The index_ids and relation_ids of the Fat-Btrees
and Fat-Btree indexed relations are recorded in
PostgreSQL. A Postgre instance searches the local buffer
based on the relation_id first. If the target data page is in
the PGSQL buffer, the Postgre returns the target tuple in
this buffered page. Otherwise, Postgre starts to load the
page from the corresponding Page Server. The correct FBT
Module is chosen by mapping the relation_id to the
corresponding index_id. And the data page is retrieved
from the target Fat-Btree’s Page Server, through the
correct socket connection to the FBT Module..

4. Experimental Comparison
In this section, we provide the evaluations of the

proposed multiple Fat-Btree parallel database. We check

its throughput scalability when the number of clients in
the cluster scales. Then we examine the efficiency of a
single Fat-Btree in the Multi-FBT system by comparing it
with that of the single Fat-Btree in the original
Single-FBT system. At last, we check the Multi-FBT
system scalability when the number of PEs scales.

4.1 Environmental Setup

We initialize two FBT relations in the multiple FBTs
system and one FBT relation in the original single FBT
system. Each relation has a 10,000 tuples on each PE, and
each tuple has 134 bytes. Each PE receives simultaneous

requests from its client nodes; the key in each request is
generated randomly within the data range. For instance, in
a four-PEs configuration, these queries are: key = random
(1, 40000); select* from table X where id = key; update
table X set value += 1 where id = key. In addition, in one
testing course, each client sent 20 queries in series. The
tps (throughput per second) value in our experimental
result is the average tps result of 20 testing courses.

In addition, on every PE, the number of SQL Server
threads is set to the same number of clients per PE, thus
all the client threads are processed in parallel, and the
requests in one client thread are processed in serial.

Fig.3 Multiple Fat-Btrees System Structure

TABLE 1
EXPERIMENTAL ENVIRONMENT 1

Process Type: Intel Xeon E5620
Cores:
Core Frequency

4*2
2..4GHz

Hard Drives:
Memory:

1TB, (Model:MB1000EBNCF)
24GB (4GB DDR3 * 6)

OS: Ubuntu11.10
Java VM: Sun J2SE SDK 1.6.018 Server VM
Network: 1000BASE-T

4.1 Evaluation Results
We provide the experimental results to examine the

Multi-FBT system efficiency and scalability by evaluating
its throughputs. There are up to 8 PEs in our cluster, each
PE is consisted of the same environment in Table 1.

Fig. 4 shows the experiment results of all-select &
all-update throughput in the Multi-FBT system and

original single-FBT system. We run the experiments on
4-PEs and 8-PEs scales in our cluster. The ‘x’-axis shows
the number of clients on each PE. For example, value ‘16’
means there are 16 clients on one PE querying all the
relations evenly in the system. Thus, for the Multi-FBT
system of this experiment (two Fat-Btree relations), each
relation has 8 clients on each PE.

Fig. 4 Comparison of Multiple-FBT vs. Single-FBT system

In the 4-PEs scale test, the throughput of both systems

is almost the same, which verifies the extension of another
Fat-Btree index does not introduce obvious overhead into
the original single-FBT system. We note the throughput of
all-select saturated and reached plateau while the
scalability of all-update also declined in both systems,
when increasing the number of clients. This is because the
more number of clients is being served in parallel; the
more query transfer messages have to be transmitted and
processed between PEs in one parallel index.

In the 8-PEs scale test, the Multi-FBT has higher
throughput. Because when the system scales, the number
of remote queries also increases. Compared with the
single-FBT system, there are two Fat-Btree modules in the
Multi-FBT system to share these remote queries
transmission. In addition, because the number of clients
per each relation in Multi-FBT system is times less than
that in Single-FBT system, there are much less conflict
update in index nodes modification. Therefore, the
Multi-FBT has better performance when system scales up.

 In addition, we compare the extended Fat-Btree
indices in the Multi-FBT system to examine their same
efficiency. Fig. 5 shows the results on our 8-PEs cluster.
In this experiment, all the clients in the Multi-FBT system
query only one of the relations in the same testing. The
results illustrate that the different FBT modules in
Multi-FBT system has no obvious difference in their
efficiency.

Because the cluster used in these experiments has only
8-PEs. We used another low-end cluster in our lab to
examine the system scalability when system scales up to
16 PEs. Its environment is shown in Table 2.

Fig. 5 Comparison of the extended indices

TABLE 2
EXPERIMENTAL ENVIRONMENT 2

Blade server: Sun Fire B200x Blade Server
CPU: AMD Athlon XP-M 1800+ (1.53 GHz)
Network: 1000BASE-T
Gigabit Ethernet
Switch:

Catalyst 6505 (720GB/s backbone)

Hard Drives: TOSHIBA MK3019GAX(30 GB, 5400
rpm, 2.5 inch)

OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.6.018 Server VM

In this experiment, we simulate 16 clients on each PE,
and each of the two Fat-Btree indexed relations will be
queried simultaneously by 8 of them. Experimental result
graph in Figure 6 illustrates that the multiple Fat-Btree
system has over 90% scalability when the number of PEs
is doubled from 4 to 16 in both all-read & all-update
transactions.

Fig. 6 Scalability Evaluation

In conclusion, we have verified the better throughput

and high scalability of the proposed Multi-FBT system by
scaling both the number of PEs and clients in the
experiments. The multiple Fat-Btrees provides higher
performance and scalability than that of the previous
single Fat-Btree index system.

5. Future Work
In this paper, we have introduced the architecture of a

multiple Fat-Btree based parallel database system. Our
evaluation results have shown the proposed Multi-FBT
system has higher salability than the single-FBT system
when the number of PEs or clients scales up.

With the multiple Fat-Btree parallel indices, parallel
join-operation is able to be optimized in the Multi-FBT
system. [16, 17] have shown the parallel B-tree index is
able to provide the best parallel join performance than
other well-known non-parallel-Btree based join algorithms.
Because the Fat-Btree has better efficiency than the
traditional parallel Btree used in [17], we believe this
Multi-FBT system is able to provide high join efficiency.
We tend to provide the parallel-join comparisons with
other parallel databases as our future work.

Reference

[1] M. Luo, A. Watanabe, and H. Yokota, “Compound
treatment of chained declustered replicas using a
parallel btree for high scalability and availability”, in
Proc. of the 21st international conference on

Database and expert systems applications (DEXA
2010), Vol.6262, pp. 49-63 of LNCS. Springer, 2010

[2] Dean and S. Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters”, In OSDI ’04,．

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. “Bigtable: A distributed storage system for
structured data”, In OSDI, 2006.

[4] S. Ghemawat, H. Gobioff, , and S.-T. Leung. “The
Google file system”, In SOSP, 2003．

[5] H. Boral, W. Alexander, L. Clay, G. Copeland, S.
Danforth, M. Franklin, B. Hart, M. Smith, and P.
Valduriez, “Prototyping Bubba, a highly parallel
database system”, IEEE TKDE, vol. 2, no. 1, pp. 4–
24, 1990．

[6] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A.
Bricker, H. I. Hsiao, and R. Rasmussen, “The Gamma
database machine project”, IEEE TKDE, vol. 2, no. 1,
pp. 44–62, 1990.

[7] H. Yokota, Y. Kanemasa, and J. Miyazaki,
“Fat-Btree: An update conscious parallel directory
structure”, in ICDE '99. IEEE Computer Society, Mar.
1999, pp. 448.457．

[8] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. “A
comparison of approaches to large-scale data
analysis”, In SIGMOD, 2009.

[9] M. Luo and H. Yokota, “Comparing hadoop and
fat-btree based access method for small file i/o
applications,” in WAIM ’10: Proc. of the 11th
Web-Age Information Management Int’l Conference,
July, ser. LNCS, vol. 6184. Springer, 2010.

[10] M. Luo, and H. Yokota, “An Evaluation on Dynamic
Access-Skew Balancing Performance of Compound
Parallel Btree for Chained Declustering Parallel
Systems”, in Proc. of the 3rd Forum on Data
Engineering and Information Management (DEIM),
Feb. 2011

[11] http://dev.mysql.com/doc/refman/5.1/en/overview.ht
ml

[12] Wu, S. and Kemme, B. 2005. “Postgres-R(SI):
Combining Replica Control with Concurrency
Control Based on Snapshot Isolation”, in Proc. of the
21st Int’l Conf. on Data Engineering, ICDE ’2005,
April 05 – 08 Washington, DC. pp. 422-433

[13] E. Pacitti, M. T. Ozsu, and C. Coulon, “Preventive
multi-master replication in a cluster of autonomous
databases”, in In Euro-Par, 2003, pp. 318-327.

[14] http://slony.info/documentation/failover.html
[15] A. Gupta, D. Agrawal, and A. El Abbadi,

“Approximate range selection queries in
peer-to-peer”, in Proc. Conf. Innovative Data
Systems Research (CIDR), 2002.

[16] Jianzhong Li, Hong Gao, Jizhou Luo, Shengfei Shi,
and Wei Zhang. “InfiniteDB: a pc-cluster based
parallel massive database management system”, in
Proc. of the 2007 ACM SIGMOD Int’l Conf. on
Management of data (SIGMOD '07). ACM, New York,
NY, USA, 899-909.

[17] Jianzhong Li, Wenjun Sun, and Yingshu Li. “Parallel
Join Algorithm based on Parallel B+-trees”, in Proc.
of the 3rd Int’l Symposium on Cooperative Database
Systems for Advanced Applications (CODAS '01).
IEEE Comp. Society, Washington DC, USA, 178-.,.

http://slony.info/documentation/failover.html

	Evaluation of Multiple Fat-Btrees on a Parallel Database
	Min LUO† Takeshi MISHIMA‡ Haruo YOKOTA†
	†Dept. of Computer Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
	‡NTT Information Sharing Platform Laboratories 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
	E-mail: †luomin@de. cs.titech.ac.jp, ‡mishima.takeshi@lab.ntt.co.jp, †yokota@cs.titech.ac.jp
	1. Introduction
	2. Background
	3. Multiple Fat-Btrees System Structure
	4. Experimental Comparison
	5. Future Work

