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Abstract This paper introduces a new database programming language and execution environment, named

SQLET, for analytical SQL processing on shared-nothing RDBMSs. The goal of our system is making parallel

SQL processing system over bunch of plain RDBMSs as well as providing a domain-specific language giving the user

a powerful mechanism to facilitate bunch of nodes and processors. We discuss the issues and design objectives, as

well as the unique requirements and challenges that we found through building SQLET.
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1 Introduction

Many successful online service providers (e.g., facebook,

twitter and mixi) use horizontal table partitioning to cope

with enormous growths in transaction volume and size of

application databases. Each of them typically builds a

custom infrastructure of so-called database sharding, an

application-level range (or hash) partitioning technique on

shared-nothing servers, particularly due to lack of a corre-

sponding feature for scaling on open source databases. These

application-level load balancing schemes work well for OLTP

uses (e.g., look up by user-id), but not for analytical uses such

as daily statistical reporting over the partitioned databases.

Fig. 1 illustrates a typical configuration of database shard-

ing. In this example, there are one or more replicas for data

durability and shared 1 to 3 are used for managing a user

table of the ID range 1 to 15,000. Each database in a shared

manages 5,000 rows until 2009–2011; however, shared 4 that

manages a user table of the ID range 15,000 to 30,000 is

added in 2012. It is notable that hardware configuration,

size of each partition and the number of replicas could vary

over time, e.g., between 2012 and the before. The newer

servers that have larger memory spaces and/or cutting-edge

processors get a greater share of the workload than others by

design. Though the physical database design might work well

at the beginning, it is mandatory that workloads change over

time and then dynamic load balancing is required. Dynamic

load balancing becomes feasible by dynamically redistribut-

ing data.

We assume the above setting given throughout this paper

and then introduce a new database programming language

User application
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Fig. 1 Range partitioning by user ID

and execution environment dedicated to the situation. The

goal of this paper is making parallel SQL processing system

over bunch of plain RDBMSs and giving the users a powerful

mechanism to facilitate bunch of nodes and processors. This

gives unique requirements and challenges for middleware-

based parallel query processing to parallel databases as fol-

lows:

1) Partitioning information is managed outside databases.

So, in contrast to parallel databases, the parallel query pro-

cessing module has to use partitioning information in various

external modules. A standardized way to load partitioning

information is expected for the execution environment.

2) Support for online reprovisioning. A database adminis-

trator (DBA) may initially allocate 10 nodes to accomplish

warehouse processing. The load later rises, and the desire

is to allocate 20 nodes to the task originally done by 10.

This requires the database to be repartitioned over double

the number of nodes. Hardly anybody wants to take the re-



quired amount of down time to dump and reload the DBMS.

A much better solution is for the DBMS to support online

reprovisioning, without going offline.

3) Avoid impacts on online databases. Being linked to

the above issue, the execution environment must avoid con-

siderable impacts on the online databases and online ser-

vices. Though requirements from business world are becom-

ing more real-time, not every client can justify the costs of

real-time data warehousing to online transactions.

With these issues in mind, we introduce a new database

programming language and execution environment, named

SQLET, for analytical SQL processing on shared-nothing

RDBMSs. We assume SQLET as a building block of a par-

allel database environment and made a design choice that

advanced features such as online reprovisioning are going to

be built on the top of it. The objective of this paper is not

only introducing a technique for parallel SQL processing but

also proposing an software architecture enabling that trans-

actional and analytical processing reside in one single system.

Though the development is partly on-going, we discuss the is-

sues and design objectives, as well as the unique requirements

and challenges that we found in building parallel analytical

SQL processing on top of shared-nothing RDBMSs.

The rest of this paper is organized as follows. Section 2

introduces the design and implementation of SQLET lan-

guage and its execution environment. Section 3 discusses

characteristics that a map-reduce style execution essentially

involves. The following Section 4 introduces the advanced

use of SQLET. We conclude the paper in Section 5.

2 Design and Implementation

2. 1 Analytical SQL Processing on Slave Databases

Both transactional databases and analytical databases are

based on the same database theory but analytical operations

are usually moved off from operational databases to a ded-

icated data warehouse. This design imposes the additional

management of extracting, transforming and loading data,

as well as controlling the redundancy. Though, for many

years, the discussion seemed to be closed and enterprise data

was split into OLTP databases and data warehouses, recent

demands for timely and fast decision making opened an op-

portunity to reconsider the common practice [1, 2].

We take the same position to them but take a different

approach to those who uses a columnar database [1, 2] or

main memory databases [2] towards the achievement; we use

slave databases (that has k-safety [3]) in database shards,

as one in Fig. 1, to avoid the impacts on online databases.

Those slave databases are typically configured to replicate

the master databases asynchronously and are used only for

data redundancy and high availability. We propose to use

them for analytical purposes as well as availability.

2. 2 SQLET Execution Environment

Following on the successful commercial systems (say

SQL/MapReduce) [4–6], we introduce MapReduce [7] func-

tionality into relational databases. We introduce a new

database programming language and execution environ-

ment that has a SQL/MapReduce functionality, named

SQLET (pronounced secret), for analytical SQL processing

on shared-nothing RDBMSs.

Differences to Other SQL/MapReduce

The major differences between existing SQL/MapReduce

systems and SQLET are:

• First, SQLET is designed to run on any relational

databases. It also support mixed environments of different

databases. Columnar databases can be used only for re-

duce processing when the table is partitioned over row-store

databases. This gives us an optimization opportunity to use

the right database in the right job.

• Second, SQLET does not control partitioning. In-

stead, the SQLET execution environment provides a feature

to load partitioning information, described in a general CSV

format, from external modules. We consider this design is

particularly beneficial where the database is already parti-

tioned as in Fig. 1.

• Third, SQLET is designed to provide building blocks

for making parallel database environments. It is usual that

parallel constructs of parallel databases (e.g., shuffle oper-

ator in algebra [8]) are hidden from the user who operates

higher-level concepts of relational database; primitive opera-

tors are proprietary assets of each particular database prod-

uct and are never disclosed. Our motivation here is, on the

contrary, giving the users a flexibility to use the parallel con-

structs such as shuffling because we believe that it helps users

to build their requisites such as online reprovisioning. Of

course, users can restrict the flexibilities at their higher-level

abstraction.

Architecture of SQLET

Fig. 2 shows the architecture of the SQLET execution en-

vironment. SQLET takes a master-less/multi-master archi-

tecture. A processor element (PE) that the client connected

will be the master in the session. The APIs provided for the

SQLET is through Thrift RPC [9], a cross-language RPC

service. Users invoke parallel SQL processing through the

Thrift and retrieve the final output table through standard

database access APIs such as JDBC and ODBC. There are

two essential service endpoints in SQLET:

• executeCommand that takes a parsed SQLET query

(we call it SQLET command) and returns the result.

• executeQueries that takes sequence of SQLET queries

and executes them in a single session.
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Fig. 2 Architecture of the SQLET execution environment

The SQLET parser transforms SQLET queries into a se-

quence of SQL commands and the SQLET processor evalu-

ates the sequence of SQLET commands. Taking the sequence

of SQLET commands and catalog information as the input,

the SQLET processor submits SQLET jobs to the job man-

ager. Each SQLET job is responsible for submitting queries

as SQLET tasks to the right processor element.

The map queries of SQLET run on each partitioned

database where data exists in parallel. Each processor el-

ement in the worker pool are used for aggregate processing

in the reduce phase. The catalog service takes a key role in

controlling the map and reduce query execution where they

are actually executed; it manages the following two informa-

tion: partitions and reducers. The partitions involves pro-

cessor elements where some partition is stored as well as a

master/slave attribute. The map queries are launched at the

every processor element listed in partitions. The reducers in-

volves processor elements where the map output are going

be stored (we call them reducer). To control the partitions

and reducers, the following DDLs are prepared that replaces

catalog values.

LOAD PARTITIONS INTO CATALOG <name> FROM FILE <uri>;

LOAD REDUCERS INTO CATALOG <name> FROM FILE <uri>;

Various standard protocols (e.g., http protocol) are sup-

ported for the URI format to load the CSV data into the

execution environment.

2. 3 SQLET Language

SQLET is a domain-specific language for parallel analyt-

ical SQL processing on shared-nothing RDBMSs. There

are mainly three types of SQLET commands that form the

essence of SQLET language: map, map-and-shuffle and re-

duce. We explain these directives by giving examples.

The map is the most simple directive that takes any SQL

queries and just forward the queries to the processor elements

specified in the given catalog. Any possible SQL queries are
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Fig. 3 An example of MapReduce processing using SQLET

map {

alter table name set c1 = ”test1”;

select * from table where ..;

} catalog name = ‘tpch100’;

accepted in the block statement. The execution does not

have the return value. The map directive is useful for a

batch operation as well as DDL operations over the specified

databases. The default catalog is used when catalog name is

not specified.

map-and-shuffle {

SELECT .. FROM ..;

} distributed by hash(c1, c2), catalog name=‘tpch100’;

The map-and-shuffle invokes a SELECT statement in the

partitioned databases and distributes the execution result

among reducers. A single SELECT statement is valid for

the statement of map-and-shuffle directive. The results of

SELECT statement are exported into a file using a COPY

INTO on each execution. And then, the result is distributed

over the specified reducers. The distributed by clause controls

how to distribute the result tuples in the shuffle phase. In

the following example, the first and the second column are

used for hash partitioning. Range and round-robin partition-

ing is also to be supported. As seen in Fig. 3, the reducers

used in the first map-and-shuffle execution could be the in-

puts of the next map-and-shuffle or reduce. If there are more

than one replica, the map-and-shuffle execution supports a

task-level failure handling on node failures and a speculative

execution to cope with straggler nodes as those seen in the

original MapReduce [7].

reduce at <PE> {

SELECT .. FROM ..;

} catalog name=‘catalogName’;

The reduce directive is used for the final aggregation as seen

in Fig. 3. It invokes a SELECT statement in the partitioned

databases and distributes the results as similar to map-and-

shuffle. The reduce directive can be considered as a syntax



sugar of map-and-shuffle with only one reducer. The dis-

tinction is that reduce is used for gathering the map output

while map-and-shuffle is for scattering the map output. The

gathering destination is specified through “at <PE>” clauses.

In contrast to map-and-shuffle, reduce needs not to parse the

map output for shuffling; it just forward the result to the

gathering destination.

3 Performance Model

This section describes a performance model of SQLET to

highlight what we found through building SQLET. We in-

troduce the computation complexbility of MapReduce to see

characteristics that map-reduce style execution essentially

involves.

3. 1 Computational Cost of MapReduce

MapReduce is inspired by the map and reduce func-

tions commonly used in functional programming, although

MapReduce frameworks [7,10] are not making full use of the

characteristics behind thier original forms [11].

The original forms of map and reduce can be formalized as

follows:

• map f [x1, x2, · · · , xn] = [fx1, fx2, · · · , fxn]

applies the function f to each element of the list. This

can be computed at the same time to f when assumming

enough processors for the parallel computation.

• reduce (⊕) [x1, x2, · · · , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

computes the reduction of the list as with the associa-

tive binary operator ⊕. ⊕ can be computed using O(logN)

parallel time (N denotes the size of the list) on a tree-like

structure when ⊕ is associative. If the binary operation is

also commutative, then the order of combining results from

sub-reductions can be arbitrary.

It is known that MapReduce has bottlenecks in reduce

phase where single or few reducers are mandatory as shown

in the following aggregate query.

Q1: SELECT SUM(CountWords(txtField))/COUNT(*) FROM T1

Google’s Dremel [12] showed significant (order of magni-

tude) advantages over MapReduce (even with a columnar

storage) for this sort of aggregate intensive computation be-

cause of its efficienties in partial aggregations [13].

Analysis and Reduction of Glitches in MapReduce

Two reasons can be considered why Dremel [12] showed

the order of magnitude advantage over MapReduce.

（ 1） Optimization for large aggregations. Dremel hierar-

chically executes aggregate queries on a multi-level serving

tree [12]. With large aggregations, having more levels in the

serving tree can result in speedups since there is more partial

aggregation of intermediate results. Dremel can compute ag-

gregation queries like Q1 at O(log(n)) parallel time whereas

MapReduce requires O(n) parallel time for computing them.
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Fig. 4 An example that requires cross-shared joins

（ 2） Avoidance of intermediate results materialization on

disks. MapReduce materializes intermediate results at sev-

eral points in time to checkpoint the computing progress

done by mappers and reducers. First, the map output is

sorted and stored in local disks in order to deal with node

failures. Second, the map outputs are copied (pulled) to the

reducer’s memory if they are small enough; otherwise, they

are copied to disk. As the copies accumulate on reducers, a

k-way (external) merge sort is carried to merge them on each

reducer. Moreover, both mapper and reducer rely on a dis-

tributed file system as the underlying storage layer to read

input and store output. The output of reducers are stored

and replicated in a distributed file system for each iteration

and the output becomes the input to the mappers. This re-

quires lots of I/Os and unnecessary computations and makes

MapReduce unfeasible for iterative algorithms such as par-

tial aggregation. On the other hand, Dremel performs partial

aggregation using a serving tree so that the intermediate re-

sults as the data is streamed from the leaf nodes up to the

root data, not through disks but through the network.

We found, in the previous work, that queries like TPC-

H Q10 [14] becomes a bottleneck where heavy computation

on the relatively large intermediate results remains in re-

duce phase [15]. The efficiency in reduce is a vital devel-

opmental requirement for SQLET and SQLET exploits the

O(logN) execution for reduce processing as shown in Fig. 3.

Google MapReduce [7] and its open source implementation

Hadoop [10] does not support a divide-and-conquer execu-

tion of reduce. Consequently, the efficiency in reduce is a

possible advantage of SQLET to MapReduce.

4 Advanced Use of SQLET

SQLET provides users building blocks to build higher-level

concepts. This section shows how users can use SQLET as

building blocks by giving practical examples.

4. 1 Cross-Shard Joins

It is known that parallel databases are efficient particu-

larly when the table partitioning is a priori arranged for

the target workloads so that on-the-fly data shuffling [8]



let $p1 := spawn map-and-shuffle { (1)

select r1.b as b from R1 join R2 on R1.a = R2.B;

} distributed by hash(c1), catalog name=’test’, output table=’leftt’;

let $p2 := spawn map-and-shuffle { (2)

select b from R3;

} distributed by hash(c1), catalog name=’test’, output table=’rightt’;

sync $p1, $p2; – wait for the processes finish executing

– override the partitions and reduces information for reduce.

load partitions into catalog ’test’ from file ”/tmp/reducer1.csv”;

load reducers into catalog ’test’ from file ”/tmp/reducer2.csv”;

reduce at ’PE4’ { (3)

select * from leftt l join rightt r on l.b = r.b;

} catalog name=’test’;

Fig. 5 A SQLET job to process queries as shown in Fig. 4

can be avoided (or reduced). However, on-the-fly shuffling

is mandatory when multi-way joins are carried. Assum-

ing queries of the form Q = {target|qualification} where

target is a list of projected attributes and qualification is

a list of equi-joined attributes, let a multi-join query be

Q = {R1.A,R2B|R1.A = R2.A ∧ R2.B = R3.B}. Then not

all of the three relations can be partitioned since the first join

predicate requires R2 be partitioned by attribute A and the

second join predicate requires R2 be partitioned by attribute

B. A certain conflict exists between these requirements [16].

This section shows the way to process such multi-way joins.

Fig. 4 is an example of multi-way joins; table R1 and R2 are

joined on attribute A and consequently a join operation is

performed with table R3 using attribute B. R1 and R2 are

adequately partitioned using attribute A but R3 is not par-

titioned yet there. Then, the join operation between table

R1 and R2 can be performed in parallel. However, two shuf-

fle operations are required to process the consequent join

(in parallel). To process this algebra, map-and-shuffle com-

mands are used at (1) and (2) respectively and reduce com-

mand is carried at (3) as shown in Fig. 5. Note here that

(1) and (2) should be run in parallel.

Parallelization Dialect

To cope with the above issue, we introduce spawn and

sync, parallelization controls derived from Cilk [17] as seen

in Fig. 5. The spawn invokes a SQLET command in a child

thread and sync waits for the specified processes to finish.

The spawn takes not only single SQLET statement but also

multiple statements. Nested execution of the parallelization

dialects is also supported.

5 Conclusions

In this paper, we introduced a new database program-

ming language and execution environment, named SQLET,

for analytical SQL processing on shared-nothing RDBMSs.

We discussed the issues and design objectives, as well as the

unique requirements and challenges that we found in building

parallel analytical SQL processing on top of shared-nothing

RDBMSs.

A major on-going issue of SQLET is how to bring pipeline

parallelism into the language design. It would be interesting

to introduce pipeline parallelism into the interactive SQLET

execution as in Fig. 3. We are exploring to use a stream-

ing database system [18] for the intermediate stages for the

purpose.
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