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Abstract Managing, querying and mining in uncertain data is becoming important because majority of real world

data is accompanied with uncertainty these days. Uncertainty in data is often caused by the deficiency in underlying

data collecting equipment or sometimes manually introduced to preserve the data privacy. In this work, we propose

a notion of distance-based outlier detection on uncertain data of Gaussian distribution. In order to reduce the cost

of complex distance function computation, we propose a cell based approach. We also propose use of 3σ filtering to

further reduce the cost of computation. An empirical study on both real and synthetic data verifies the effectiveness

of our proposed approach.

Key words Outlier Detection, Uncertain Data, Cell Based Approach

1. Introduction

Outlier detection is one of the most important data min-

ing technique with a vital importance in many application

domains including credit card fraud detection [16], network

intrusion detection [14], environment monitoring [17], medi-

cal sciences [15] etc. Although there exists no any universal

agreed upon definition of outliers, yet some definitions are

general enough to give a basic idea of outliers. Hawkins [6]

defines an outlier as an observation that deviates so much

from other observations as to arouse suspicion that it was

generated by a different mechanism. In [7], Barnet and Lewis

mentioned that an outlying observation, or outlier, is one

that appears to deviate markedly from other members of the

sample in which it occurs.

Most of the earliest outlier detection techniques were given

by statistics. In statistics over 100 outlier detection tech-

niques have been developed for different circumstances, de-

pending on the data distribution, whether or not the distri-

bution parameters are known, the number of expected out-

liers and the type of expected outliers [7], [18] but most statis-

tical techniques are univariate and in majority of techniques,

the parameter of distribution may be difficult to determine.

In order to overcome problems in statistical techniques sev-

eral Distance-based approaches for Outlier detection are pro-

posed in computer science [4], [13], [8], [9].

Uncertainty. Due to the incremental usage of sensors,

RFIDs and similar devices for data collection these days,

data contains certain degree of inherent uncertainty. The

causes of uncertainty may include limitation of equipments,

absence of data and delay or loss of data in transfer. In or-

der to get reliable results from such a data, uncertainty needs

to be considered in calculation. In this work we propose a

notion of distance-based outliers on uncertain data.

In the following, uncertainty of data is modelled by the

most commonly used PDF i.e., Gaussian distribution. We

derived a distance function using Gaussian difference distri-

bution to compute the distance-based outliers on uncertain

data. Our distance function includes the integral of irre-

ducible function, which makes the distance function com-

putation very costly. Therefore we also propose a cell-

based algorithm of outlier detection to efficiently compute



the distance-based outliers on uncertain data. The cell-based

algorithm prunes objects by identifying outliers or pruning

non-outliers without the need to compute costly distance

function, hence reducing the number of distance function

evaluation required. This work is an extension of our work

published in [1]. The major contribution of this work com-

pared to our work in [1] is the use of 3σ-filtering to improve

the efficiency of our cell-based algorithm of distance-based

outlier detection on uncertain data. Finally grid structure

is used to further reduce the computation time required for

distance-based outlier detection.

The rest of the paper is organized as follows. Section 2.

surveys the previous work related to ours. Section 3. gives

the derivation of distance function. Section 4. discusses the

naive algorithm of distance-based outlier detection on un-

certain data. The cell-based algorithm is given in section

5. Section 6. is dedicated to empirical study and Section 7.

concludes our paper.

2. Related Work

Outlier detection is a well studied area of data mining.

Different authors have classified this area differently. The

problem of outlier detection has been classified into statis-

tical approaches, depth-based approaches, deviation-based

approaches, distance-based approaches, density-based ap-

proaches and high-dimensional approaches by [10].

Distance-based outliers detection approach on determin-

istic data was introduced by Knorr et al. in [4]. In this

work, the authors defined a point p to be an outlier if at

most M points are within d distance of the point. They also

presented a cell-based algorithm to efficiently compute the

distance-based outliers. [11] formulated distance-based out-

liers based on the distance of a point from its kth nearest

neighbour. The points were ranked on the basis of its dis-

tance to its kth nearest neighbour and the top n points were

declared outliers in this ranking. H.V.Nguyen et al. in [19]

proposed subspace outlier detection method for high dimen-

sional data. In order to detect outliers, subspace outlier score

function FSout(p, S) of a point p with respect to its k near-

est neighbors in a subspace S is evaluated. Top n points are

then selected as outliers in any subspace whose outlier scores

are largest. Recently in [8], the authors assessed and evalu-

ated several distance-based outlier detection approaches and

highlighted a family of state of the art distance-based out-

lier detection algorithms. A cell-based approach of outlier

detection for very large dataset which cannot be loaded into

memory at once was given by [20]. In their approach, a large

dataset is loaded into memory by blocks and the data are

placed into appropriate cells based on their values. Cell’s

density is calculated and the data located in high density

cells are filtered from outlier calculation. Cells’ densities are

recorded for the next block of data. The final calculation for

outliers is done on the data in low denstiy cells.

Recently a lot of research has focused on managing, query-

ing and mining of uncertain data [12], [9], [21] due to the use

of sensors in many applications. The problem of outlier

detection on uncertain data was first studied by Aggarwal

et.al. in [12]. They represented an uncertain object by a

PDF. They defined an uncertain object O to be a density-

based (δ, η) outlier, if the probability of O existing in some

subspace of a region with density at least η is less than δ.

In [9], the authors proposed the distance-based outlier detec-

tion on uncertain data. In their approach, each tuple in the

uncertain table is associated with an existential probability.

Moreover in their work, possible world semantic was used to

mine the outliers. B. Jiang et al. in [21] gave an outlier de-

tection model considering both uncertain objects and their

instances. According to their model an uncertain object is

outlier if majority of its instances are outliers and an object’s

instance is outlier if its normality (opposite of outlierness) is

less than some threshold. In their work, Baye’s theorem

is used to calculate the normality of object’s instance. In

our work, objects’ uncertainty is modelled by Gaussian dis-

tribution and we utilize Gaussian difference distribution to

calculate the outlier probability.

3. Distance-based Outlier on Uncertain

Data

Several definitions of distance-based outliers have been

proposed in past. In this paper, we extend the notion of

distance-based outliers given by E.M.Knorr et.al. in [4] for

uncertain data of Gaussian distribution.

In statistics, the Gaussian distribution (or normal distribu-

tion) is the most important and the most commonly used dis-

tribution. In the following, we consider k-dimensional uncer-

tain objects Oi, each given by a Gaussian PDF with attribute
−→
Ai = (xi,1, ..., xi,k)

T , mean−→µi = (µi,1, ..., µi,k)
T and variance

Σi = diag(σ2
i,1, ..., σ

2
i,k) respectively. The complete database

consists of a set of such objects, GDB = {O1, ..., ON} where

N = |GDB| is the number of uncertain objects in GDB. The

vector
−→
Ai is a random variable of the corresponding uncertain

objects that follows Gaussian distribution
−→
Ai ∼ N (−→µi,Σi).

We assume that the observed coordinates are −→µi vectors

of the objects which follow Gaussian distribution. Based on

this assumption, in the rest of the paper we will use −→µi to

denote the real observed coordinates of object Oi. We can

now define the distance based outliers on uncertain data of

Gaussian distribution as follows.

Definition. An uncertain object O in a database GDB is



a distance-based outlier, if the expected number of objects

Oi ∈ GDB (including O itself) lying within d-distance of

O is less than or equal to threshold θ = N(1 − p), where N

is the number of uncertain objects in database GDB, uncer-

tain objects in GDB follow Gaussian distribution and p is the

fraction of objects in GDB that lies farther than d-distance

of O.

According to the definition above, the set of uncertain

distance-based outliers in GDB is defined as follows,

UDBOutliers = {Oi ∈ GDB|
|GDB|∑
j=1

Pr(|−→Ai −
−→Aj | <= d) <= θ} .

(1)

In order to find distance-based outliers in GDB, the distance

between Gaussian distributed objects need to be calculated.

In the following we define and derive the expressions for dif-

ference between Gaussian distributed objects.

3. 1 Gaussian Difference Distribution

The distribution of the difference of two Gaussian dis-

tributed variates Oi and Oj with means and variances

(µi, σ
2
i ) and (µj , σ

2
j ) respectively, is given by another Gaus-

sian distribution with mean µi−j = µi − µj and vari-

ance σ2
i−j = σ2

i + σ2
j [2]. Hence we can write Ai − Aj ∼

N (µi−j , σ
2
i−j).

1-Dimensional Gaussian Difference Distribution

within Distance d

Using Gaussian difference distribution, the probability that

the uncertain object Oi lies within d-distance of uncertain

object Oj is given by,

Pr(|Ai −Aj | <= d) =

d∫
−d

N (µi−j , σ
2
i−j)dx , (2)

where Ai ∼ N (µi, σ
2
i ) and Aj ∼ N (µj , σ

2
j ).

2-Dimensional Gaussian Difference Distribution

within Distance d

The expression for the 2-dimensional Gaussian difference dis-

tribution is defined in Lemma 1 below.

Lemma 1.(2D Gaussian Difference Distribution

within Distance d) let
−→Ai ∼ N (−→µi,Σi) and

−→Aj ∼
N (−→µj ,Σj) be two 2-dimensional Gaussian distributed vari-

ates, where −→µi = (µi,1, µi,2)
T , −→µj = (µj,1, µj,2)

T , Σi =

diag(σ2
i,1, σ

2
i,2) and Σj = diag(σ2

j,1, σ
2
j,2). The probability that

Oi lies within d-distance of Oj is given by,

Pr(|
−→
Ai −

−→
Aj | <= d) =

1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2)

∫ d

0

∫ 2π

0

exp

{
−
(
(r cos θ − α1)

2

2(σ2
i,1 + σ2

j,1)
+

(r sin θ − α2)
2

2(σ2
i,2 + σ2

j,2)

)}
r dθ dr ,

(3)

where α1 = µi,1−µj,1 and α2 = µi,2−µj,2 are the differences

between the means of objects Oi and Oj.

Proof. See appendix.

Multidimensional Gaussian Difference Distribution

within Distance d

Our distance function can easily be extended to multi-

dimension case. Let
−→
Ai and

−→
Aj be two k -dimensional nor-

mal random vectors with means −→µi = (µi,1, ..., µi,k)
T and

−→µj = (µj,1, ..., µj,k)
T and diagonal covariance matrices Σi =

diag(σ2
i,1, ..., σ

2
i,k) and Σj = diag(σ2

j,1,..., σ
2
j,k) respectively.

The probability that the uncertain object Oi lies within d

distance of uncertain object Oj is given by,

Pr(|−→Ai −
−→Aj | <= d) =

∫
R

N (−−→µi−j ,Σi−j)dx , (4)

where −−→µi−j = −→µi − −→µj , Σi−j = Σi + Σj and R is a sphere

with centre −−→µi−j and radius d.

Algorithm 1 Distance-based Outlier on Uncertain Data:

The NL Approach

Input: database GDB, distance d, percentage p , standard devi-

ation σ

Output: Uncertain Distance Based Outliers

N ← number of objects in GDB;

θ ← N(1− p); /*calculating the threshold value*/

for each O in GDB do

EVO ← 0; /*EVO denotes the expected value of object O*/

for each Oi in GDB do

EVO = EVO + Pr(|−→A −−→Ai| <= d);

if EVO > θ then

mark O as non-outlier, GOTO next O;

end if

end for

mark O as outlier;

end for

4. Naive Approach

The Naive approach of distance-based outlier detection on

uncertain data is the use of Nested-loop. The approach in-

cludes the evaluation of distance function between each ob-

ject Oi ∈ GDB and every other object in the GDB until Oi

may be decided as outlier or non-outlier. In the worst case



this approach requires the evaluation of O(N2) distance func-

tions. The algorithm 1 gives the naive approach of distance

based outliers.

5. Cell-based Approach

The naive approach of distance-based outlier detection on

uncertain data requires a lot of computational time to detect

outliers even from small dataset. In the following we propose

a cell-based approach of distance-based outlier detection on

uncertain data, which can reduce significantly the number

of distance functions evaluations. The proposed approach

first map database objects to a cell-grid structure and then

prunes majority of objects by identifying the cells contain-

ing only outliers or non-outliers. We only considered cells

within d + 3σ distance of the target cell as shown in Fig.

1, for the reason discussed in section 5. 4. For un-pruned

objects, Grid File indexing is utilized to further reduce the

number of distance function computations.

5. 1 Grid Structure

We assume that our data objects are 2 dimensional. In

order to find distance-based outliers on uncertain data, we

quantize each object Oi ∈ GDB, in 2 dimensional space that

has been partitioned into cells of length l (cell length is dis-

cussed in section 5. 7). Let Cx,y be any cell of the Grid, then

the neighbouring cells of Cx,y form layers around it as shown

in Fig. 1. Layers of any cell Cx,y in the Grid are defined as

follows.

• Layer 1 cells of Cx,y are given by

L1(Cx,y) = {Cu,v|u = x± 1, v = y ± 1, Cu,v |= Cx,y} .

• Layer 2 cells of Cx,y, and are given by

L2(Cx,y) = {Cu,v|u =x± 2, v = y ± 2,

Cu,v /∈ L1(Cx,y), Cu,v |= Cx,y} .

L3(Cx,y), ..., Ln(Cx,y) are defined in a similar way. Where n

denotes the number of cell layers and is discussed in section

5. 4.
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図 1: Cell Layers

5. 2 Cell Layers Bounds and Lookup Table

The bounds of a cell or cell layers are defined for prun-

ing outliers and non-outliers without evaluating the distance

functions for the objects in the cell. The upper and lower

bounds of any cell or cell layers are shown in Fig.2 and are

defined as follows.

Lower Bounds of 
Cell Cx,y and 

Layer1 of Cx,y

Upper Bound of 
Cell Cx,y and 

Layer1 of Cx,y

Cell Layers

yxC ,

1L

Upper Bound of 
Layer2 of Cx,y

2L

図 2: Cell Bounds

Upper Bound. By an upper bound of a cell (cell layers)

we mean the maximum contribution by any of the objects

in this cell (cell layers) to the target cell. According to our

distance function an object in cell Cx,y can contribute at

its maximum to object O in cell Cx,y when α1 = α2 = 0

in Eq.3. Similarly the upper bound contributions of objects

in Li(Cx,y) layers (i.e., L1(Cx,y), ..., Ln(Cx,y)) to objects in

Cx,y are obtained by setting α1 = α2 = (i− 1)
√
2l in Eq.3.

Lower Bound. By a lower bound of a cell (cell layers) we

mean the minimum contribution by any of the objects in this

cell (cell layers) to the target cell. According to our distance

function an object in cell Cx,y contributes at its minimum to

object O in cell Cx,y when α1 = α2 =
√
2l in Eq.3. Similarly,

the lower bound contributions of objects in Li(Cx,y) layers

(i.e., L1(Cx,y), ..., Ln(Cx,y)) to objects in Cx,y are obtained

by setting α1 = α2 = (i+ 1)
√
2l in Eq.3.

Lookup Table. The above upper bound and lower bound

contributions of objects in Li(Cx,y) to Cx,y are decided only

by the i-value and independent from the locations of Cx,y.

Hence, we compute the bounds and store them in a lookup

table to be used in the cell-based algorithm.

5. 3 Pruning of Outliers and Non-outliers Cells

Having defined cell bounds and cell layers bounds, a cell

can be pruned as an outlier or non-outlier cell. If the min-

imum contribution to cell Cx,y, obtained by the product of

cell objects count and cell lower bound is greater than thresh-

old θ, then none of the objects in Cx,y could be outliers and

we can prune it as non-outliers cell.



MinContribution(Cx,y) = 1+

(Count(Cx,y)− 1) ∗ LowerBound(Cx,y) .

On the other hand if the maximum contribution to cell

Cx,y, obtained by the product of cell objects count and cell

upper bound plus the expected contribution by rest of the

objects in the database GDB is less than or equal to θ, then

all the objects in Cx,y are outliers and we can prune it as

outliers cell.

MaxContribution(Cx,y) = Count(Cx,y)+

(N − Count(Cx,y)) ∗ UpperBound(L1(Cx,y)) .

If none of the above conditions hold, then we need to check

the contribution of higher cell layers i.e., contributions of

L1(Cx,y),...,Ln(Cx,y), until we may either decide the cell Cx,y

as containing only outliers or only non-outliers or left the cell

undecided for the post-pruning evaluation.

5. 4 3σ-Filtering

In statistics, 3σ rule states that nearly all(99.73%) of the

values in a Gaussian distribution lie within three standard

deviation or 3σ of the mean. Therefore according to our def-

inition of distance function, the probability contribution of

an object Oj lying greater than or equal to d + 3σ distance

from object Oi is negligibly small. Hence we can safely re-

strict the evaluation of distance function to d+ 3σ distance

from object or cell under consideration as shown in Fig.3

and Fig.1 respectively. Hence number of cell layers n to

be considered for any cell Cx,y can be safely restricted to

n = ⌈ d+3σ
l

⌉. This filtering can help reduce the number of

distance function evaluation required for an object.
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図 3: Object P at d+ 3σ distance from object O

5. 5 Grid File Index

Cell-based pruning may leave some of the cells undecided,

i.e., they are neither pruned as non-outliers cells nor as out-

liers cells. For all the uncertain objects in such cells, we need

to follow Nested-loop approach. Our distance function of

outlier detection requires a lot of computation time and may

reduce the efficiency of our cell-based algorithm even after

initial pruning. As we know from our distance function, that

it produces higher probability for the nearer objects than the

farther objects. We can utilize our Grid structure as Grid-

file index [3] with no additional indexing cost to retrieve the

nearer objects before the farther objects for the computation

of expected value of all un-pruned objects. This will further

reduce the number of evaluations required for distance func-

tion, hence reducing the overall cost of computation.

5. 6 Cell-based Algorithm of Outlier Detection

In order to reduce the costly computation of distance func-

tion, we propose cell-based algorithm. The main idea of this

algorithm is to prune the cells containing only outliers or non-

outliers. Algorithm 2 starts by first calculating the bounds

of cell layers and storing them in a look-up table. In line 2,

we calculate 3σ layers, that is the number of layers that lie

within d+3σ distance of any cell Cx,y. The database objects

are then mapped to appropriate cells of the Grid. For each

cell, Cx,y in Grid, MinContribution and MaxContribution

i.e., minimum and maximum contributions are maintained

which are used for effectively pruning the cells as outliers or

non-outliers. If a cell Cx,y can not be pruned, the objects of

such cells are checked individually for outliers using Grid-file

index.

Although the number of distance function evaluations re-

quired in worst case for the cell-based algorithm is same as

that of naive approach, i.e., O(N2) but the experimental

results on both synthetic and real datasets show that our

proposed approach is very efficient.

5. 7 Cell Length l

Due to the complexity of our distance function, it is not

possible to derive a single cell length l suitable for all the

combinations of d and variances. Therefore we conducted

several experiments to come up with a cell length which may

produce efficient results.

A general observation from several experiments is that

smaller the cell-length, shorter the execution time. Since

smaller cell-length results in higher values of cell bounds,

which helps in pruning majority of objects during cell-based

pruning stage and either very few or no cell is left for post-

pruning evaluation, reducing the number of distance function

evaluations. However very small cell length may also increase

the execution time for cell-based algorithm as too small cell

length results in a large number of cells and the time required

to compute cell layers bounds increases. We need to check a

few cell lengths before reaching the appropriate cell-length.

A good starting point that we have found through experi-

ments is l = σ1+...+σk
k

.



Algorithm 2 Distance-based Outlier on Uncertain Data:

Cell Based Approach

Input: database GDB, distance d, percentage p , standard devi-

ation σ

Output: Distance Based Outliers on Uncertain Data of Gaussian

Distribution

1: Compute and store cell bounds into lookup table using cell

length l and maximum distance between any two objects in

GDB;

/*n denotes the number of cell layers in d+ 3σ distance*/

2: n = ⌈ d+3σ
l
⌉;

/*Initialize the count Counti of each cell Ci in grid Grid*/

3: for each Ci in Grid do

4: Counti ← 0;

5: end for

/*Mapping database objects to appropriate cells*/

6: for each O in GDB do

7: map O to an appropriate cell Ci;

8: Counti ← Counti+1; /*increase cell count by 1*/

9: end for

10: θ ← N(1− p); /*calculating the threshold value*/

/*Pruning of outlier and non-outlier cells using cell layers’

bounds*/

11: for each Ci in Grid do

12: for j = 0→ n do

13: Calculate minimum and maximum contribution of cell

Ci using upper and lower bounds respectively of 0 to jth

neighbouring cell layers of Ci;

14: if MinContribution(Ci) > θ then

15: prune Ci as non-outlier cell, GOTO Next Ci;

16: else if MaxContribution(Ci)+ expected contribution of

Ci from rest of the cell layers in Grid <= θ then

17: prune Ci as outlier cell, GOTO Next Ci;

18: end if

19: end for

20: end for

/*Nested-loop approach using Grid File Index for objects in

un-pruned cells*/

21: for each Ci in Grid do

22: if Ci not pruned as outlier or non-outlier cell and Counti

!= 0 then

23: for each O in Ci do

24: EVO ← 0; /*EVO is the expected value of object O*/

25: for each Oj in Ci and higher layers of Ci within n

layers do

26: EVO ← EVO + Pr(|
−→
A −

−→
Aj | <= d);

27: if EVO > θ then

28: O can not be outlier, GOTO next O;

29: end if

30: end for

31: mark O as outlier;

32: end for

33: end if

34: end for

6. Empirical Study

We conducted extensive experiments on synthetic and real

datasets to evaluate the effectiveness and accuracy of our

proposed cell-based algorithm. All algorithms were imple-

mented in C#, Microsoft Visual Studio 2008. All experi-

ments were performed on a system with an Intel Core 2 Duo

E8600 3.33GHz CPU and 2GB main memory running Win-

dows 7 Professional OS. All programs run in main memory

and no I/O cost is considered.
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図 4: Experiments on synthetic data (default d = 100,

p = 0.99, n =cell layers within d + 3σ distance from cell

under consideration)



6. 1 Experiments on Synthetic Data

Unless specified, the experiments are performed on 5 uni-

formly distributed 2-dimensional datasets of sizes varying

from 1000 to 5000 objects respectively. Five percent out-

liers are explicitly introduced in each dataset as shown in

Fig. 4a. Uncertainty is simulated by representing each ob-

ject as Gaussian distributed with means between 0 and 1000

and standard deviation σx = 15 and σy = 15 in x and y

dimensions respectively. The default values of different pa-

rameters used in experiments are, distance d=100, p=0.99,

n = “layers within d+ 3σ distance of target cell”and l=10.

It is obvious from Fig.4b that the time taken by the Nested-

loop algorithm is very high and the execution time increases

dramatically as the number of tuples in database increases.

Cell Length l. As discussed in section 5. 7, smaller the cell

length, shorter the execution time, which is obvious from

Fig. 4c. However, very small cell length may increase the

execution time, due to the increase in time required for the

computation of look-up table as shown in Fig. 4c for cell

length = 1.

3σ-Filtering. From Fig.4d, we can observe that 3σ-

filtering is capable of saving some of the computation cost.

Moreover, we found that the precision of cell-based algorithm

with 3σ-filtering is 100% as shown in Fig. 4e. The reason

for this high precision is negligibly small contribution by the

cells which are farther than d+ 3σ from the target cell.

Varying σ. Varying σ values has an effect on both, the

number of outliers and the time required for computation.

However we have only presented the difference in number of

outliers as shown in Fig.4f due to shortage of space. As vari-

ance increases, number of outliers decreases. Due to large

variance, farther objects start contributing to the target ob-

ject, hence reducing the number of outliers.

Varying parameters p and d. Varying parameters p

and d has an effect on the number of outliers mined by the

algorithm as shown by the plots in Fig.4h and Fig.4g re-

spectively. Increasing p results in smaller threshold value,

resulting in only a few and relatively stronger outliers.

Varying d has an effect on the distance function probabil-

ity. Larger d means larger number of objects may fall within

d distance of object under consideration, hence increasing

the probability support and reducing the number of outliers.

6. 2 Experiments on Real Dataset

For experiments on real dataset, we used NBA Playoffs

Player statistics from 1996 to 2006 available at [5]. The

dataset contains the annual performance statistics of NBA

players. The filtered dataset used in the experiments con-

tain 2081 tuples, with threshold related parameter p set to

0.99. Therefore value of threshold θ = N(1 − p) = 20.81.

Each player is represented with 2 important statistics on

his performance i.e., number of points and number of to-

tal rebounds. Uncertainty is simulated by representing each

player as Gaussian distributed with means as the real ob-

served values of his performance statistics and standard de-

viations σpoints = 20 and σrebounds = 10.

Player Name Team year Points Scored Total Rebounds Expected Value

Shaquille O'neal LAL 1999 707 355 1.410357614

Tim Duncan SAS 2002 593 369 2.132579742

Allen Iverson PHI 2000 723 104 2.842902664

Michael Jordan CHI 1997 680 160 3.538590847

 Dirk Nowitzki DAL 2005 620 268 3.817675722

Ben Wallace DET 2003 236 328 4.014292632

Dwyane Wade MIA 2005 645 135 4.04669976

Ben Wallace DET 2002 151 277 5.237158519

Ben Wallace DET 2004 249 281 6.985909188

Tim Duncan SAS 2004 542 286 7.742466357

Dennis Rodman CHI 1997 102 248 7.795215863

Michael Jordan CHI 1996 590 150 8.051622656

Dale Davis IND 1999 190 263 8.737494804

Shaquille O'neal LAL 2003 473 291 9.200527361

Dikembe Mutombo PHI 2000 319 316 9.316349528

Shaquille O'neal LAL 2001 541 239 9.316349528

Karl Malone UTA 1996 519 228 12.06860839

Karl Malone UTA 1997 526 217 12.35327527

Kevin Garnett MIN 2003 438 263 13.01360271

Reggie Miller IND 1999 527 53 13.23169019

Shaquille O'neal LAL 2000 487 247 13.23169019

Kobe Bryant LAL 2003 539 104 13.33036715

Kobe Bryant LAL 2001 506 111 18.6784144

Tim Duncan SAS 2006 444 229 19.39066163

Richard Hamilton DET 2004 501 108 19.72851465

図 5: NBA Players with Expected Value less than θ

Our experiments on NBA dataset mined the outstanding

players during 1996 and 2006. From the expected values

in Fig.5, Shaquille O’neal is the most outstanding player

with maximum points scored and second maximum total re-

bounds. He has the outstanding performance from 1999 to

2003 except the year 2002. On the other hand, Tim Dun-

can’s performance seems to decline during the course of his

career as he was a strong outlier in 1999 and became weak

outlier in 2006.

7. Conclusion and Future Work

In this paper, we extend the notion of distance-based out-

lier detection on uncertain data of Gaussian distribution.

This is the first approach of distance-based outlier detection

where the objects are modelled by Gaussian distribution. We

derive distance function for distance-based outlier detection

on uncertain data of Gaussian distribution and propose a

cell-based algorithm to efficiently detect outliers by pruning

majority of outliers and non-outliers cells. We also utilize

3σ-filtering and grid-file index to further reduce the compu-

tation time required for the cell-based algorithm. Extensive

experiments on synthetic and real data demonstrate the ef-

ficiency and scalability of our proposed algorithm.

In future, we are planning to extend this work in two di-

mensions. First, designing an adaptive algorithm with re-

spect to cell length, in order to increase the efficiency of our

cell-based algorithm. Second, expanding this work for gen-

eral uncertainty model.
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Appendix:

Proof of Lemma. Let O be a k-dimensional uncertain ob-

ject with attributes
−→
A = (x1, ..., xk), mean −→µ = (µ1, ..., µk)

T

and a diagonal covariance matrix Σ = diag(σ2
1 , ..., σ

2
k). The

probability density function of O can be expressed as

f(
−→
A) =

1√
(2π)kdetΣ

exp

{
− (

−→
A −−→µ )TΣ−1(

−→
A −−→µ )

2

}
.

Since Σ is diagonal, the distribution functions are indepen-

dent in coordinates. Hence the k-dimensional normal distri-

bution function is given by the product of k 1-dimensional

normal distribution functions.

f(
−→
A) =

∏
1<=i<=k

　
1√
2πσ2

i

exp

{
− (xi − µi)

2

2σ2
i

}
.

Let Oi and Oj are two 2-dimensional uncertain objects

with attributes
−→
Ai = (xi,1, xi,2) and

−→
Aj = (xj,1, xj,2), means

−→µi = (µi,1, µi,2)
T and −→µj = (µj,1, µj,2)

T and diagonal covari-

ance matrices Σi = diag(σ2
i,1, σ

2
i,2) and Σj = diag(σ2

j,1, σ
2
j,2)

respectively. The difference between normal random vectors

of Oi and Oj is given by
−→
Ai −

−→
Aj ∼ N (−−→µi−j ,Σi−j), where

−−→µi−j = µi − µj and Σi−j = Σi +Σj [2].

Since Σi and Σj are diagonal matrices, the distribution

functions are independent in coordinates. Hence the 2-

dimensional normal difference distribution of uncertain ob-

jects Oi and Oj is given by,

f(
−→
Ai−

−→
Aj) =

1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2))

exp

{
−

(
(x− α1)

2

(σ2
i,1 + σ2

j,1)
+

(y − α2)
2

(σ2
i,2 + σ2

j,2)

)}
,

(5)

where α1 = µi,1 − µj,1 and α2 = µi,2 − µj,2 are the dif-

ferences between the means of objects Oi and Oj and σ2
i,1,

σ2
j,1, σ

2
i,2 and σ2

j,2 are the variances of the uncertain objects

Oi and Oj in dimensions 1 and 2 respectively.

Hence the probability that the uncertain object Oi lies

within d-distance of uncertain object Oj is given by,

Pr(|
−→
Ai −

−→
Aj | <= d) =

1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2)

∫ d

0

∫ 2π

0

exp

{
−
(
(r cos θ − α1)

2

2(σ2
i,1 + σ2

j,1)
+

(r sin θ − α2)
2

2(σ2
i,2 + σ2

j,2)

)}
r dθ dr �

(6)


