

DEIM Forum 2012 D6-3

A Database System Performance Study with Micro Benchmarks on a
Many-core System

Fang XI† Takeshi MISHIMA‡ and Haruo YOKOTA†

†Department of Computer Science, Graduate School of Information Science and Engineering,

Tokyo Institute of Technology 2-12-1 Ookayama, Meguro, Tokyo, 152-8552 Japan

‡NTT Information Sharing Platform Laboratories, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

E-mail: †xifang@de.cs.titech.ac.jp, ‡mishima.takeshi@lab.ntt.co.jp, †yokota@cs.titech.ac.jp

Abstract The upcoming generation of computer hardware brought several new challenges for software engineers. As in

the CPU part, now the multi-core processing is main stream, while the future is massively parallel computing performed on

many-core processors. This hardware trend motivates a reconsideration of data-management software architecture, because the

highly paralleled computing ability may be very challenging for database management system. In order to understand whether

the database system can take full advantage of on-chip parallelism, we provide a performance study on a 48-core platform with

a set of simple micro benchmarks, as each test stresses the database system in different ways. With an analysis on the

performance gain we observed a non scalable problem and examined the bottlenecks in the database system.

Keyword DBMS，Many-core processors，Performance evaluation

1. Introduction

 The next generation of computer hardware poses several

new challenges for underling software. In the recent years,

the main trend of new hardware is the increasingly

widespread use of multi-core processors and Solid State

Drive (SSD). Unfortunately, much software has had a long

way to catch up before it could take advantage of so much

new hardware. How to efficiently use the new hardware

resources for general software especially database

management systems (DBMSs) becomes into hot topic.

 Driven by the Moore’s Low, computer architecture has

entered a new era of multi-core structures. A traditional

approach of getting higher performance of processors is to

increase the clock speed of them, since a faster CPU can

finish one task quickly then switch to the next. However,

recently microprocessor manufacturers find it has become

increasingly difficult to make CPUs go faster due to size,

complexity, clock skews and heat issues. So they continue

the performance curve by another route of developing dual

core and multi-core processors. That is, putting multi

CPUs on a single chip and relying on the parallelism

ability to get higher performance gain which brings the

computing world into so-called “multi-core era”. The

multi-core processor is the mainstream now and there will

be many-core processors with more cores on one die in the

near future.

 The increasingly powerful concurrent processing ability

of modern CPUs is stressing the scalability of the DBMSs.

With the clock speed increasing, one query can be finished

within a shorter time. More queries can be finished within

a specific length of time which leads to high throughput.

In the multi -core area, we can’t benefit from the

increasing of clock speed anymore, but we have to

efficiently utilize the parallelism ability brought by

increasing of core number instead. Thus higher emphasis

is placed on parallelism ability of DBMSs than ever before.

Most DBMSs are designed back to the 1980’s, when

processors have only single core. These DBMS approaches

may result in faster query execution on single core CPUs,

but not on multi -core CPUs, because the current

parallelism methods are insufficient and of bounded utility

[1],[2]. Several prior studies show running hundreds of

queries in parallel will result in different contention

problems which are called non scalable problems, namely,

we can’t get higher throughput by increasing the number

of concurrent queries [3],[4],[5]. To have a deep

understanding of the existing DBMSs’ scalability on

many-core platforms is crucial for DBMS performance

improvement. But most of the existing studies are based

on the multi -core CPUs with less than 20 cores, or

simulation-based studies [6],[7],[8],[9].

 On the other hand large capacity flash memory SSD has

gained momentum to boost the I/O performance of the

whole system. New flash-memory storage devices offer

durable storage with much faster random access speed and

some other outstanding features such as lightweight, noise

free, shock resistance and no mechanical delay. The

utilization of many-core processors will bring dramatic

performance improvement to the DBMS, which also bring

high performance requirement to the I/O part of the whole

system. SSD is providing more potential for better system

performance in the case of intense I/O competition

brought by hundreds of concurrently running queries.

 In this paper, several experiments are conducted on a

48-core machine to clarify how the DBMS performs on the

many-core platform. With a micro benchmark including

simple insert operations, a non scalable problem is

detected on the SSD equipped system. The reasons of the

non scalable problem are analyzed and two potential

bottlenecks of the system are picked out. With multi

DBMS instances and multi-SSD setting, the two

bottlenecks are evicted off the critical section. Achieved

better performance and scalability confirms our

assumptions about the bottlenecks of the system.

Furthermore other bottlenecks inside the DBMS are

observed and clarified by a no WAL (Write Ahead Logs)

experiment.

2. System Configuration

The DBMSs performance experiments are conducted on

a many-core server. In order to have accurate evaluation

result, we put the client part on a separated client server.

Clients generate transactions and communicate with the

storage manager on the server part through network.

2.1 Testing Platform Hardware

All experiments are conducted on a 48 core AMD

Opteron system. It has four processor sockets and one

12-core AMD Opteron6174 processor per socket. Each

core runs at a clock of 2.2GHZ with 128KB L1 cache

(64KB data cache + 64KB instruction ca che 2-way

associative), a 512KB L2 cache (16-way associative). 12

cores of one processor share a 12MB L3 cache (2*6MB

32-way associative). Each core has a 40-entried TLB.

The server that we used to evaluate the benchmark has a

32GB off-chip memory, and four SSD each 100GB, two

HDD each 500GB.

Considering putting the client part together with the

server part may affect the performance of the server

platform, we introduce the client and server separated

architecture. Client part is a 16core 2.4GHZ Intel Xeon

E5620 CPU, 24G memory. This is powerful enough for our

client workload.

2.2 Testing Platform Software

Both the server and client run on the Ubuntu10.10

Linux operating system which is a multi-core supporting

OS version and a DBMS of PostgreSQL 9.0.3 [10], which

is an open source database management system providing

a powerful optimizer and many advanced features .

A basic tuning of the SHMMAX setting is needed in

Linux kernel in order to support PostgreSQL. PostgreSQL

has a default shared_buffers value of 32MB, but it is said

that this parameter should be set at 25% of the s ystem’s

RAM which allows the system to keep a good performance

in parallel with the database server. A very big value of

shared_buffers is needed in our experiments, and this

setting needs the support of OS. So the SHMMAX value of

the Linux kernel on the server part is changed into 30GB

in order to support some of the later database settings of

shared_buffers.

We evaluate the storage managers with a small suite of

micro benchmark. In this paper two aspects of the

PostgreSQL are of our interest : the overall throughput

value which is calculated by transactions per second (tps)

and the scalability of the system which explains how

throughput varies with the number of active clients.

Ideally the DBMS would be both fast and scalable, but

actually different bottlenecks will make storage manager

tending to be neither fast nor scalable.

3. Experiments

The record insertion workload of micro benchmarks is

introduced in this paper. This record insertion workload

repeatedly inserts records into a database table. A very

small transaction of only one record insertion operation is

used. Each client uses a private table and there is no

logical contention between clients. Complex workloads

like TPC-H, TPC-C ,which have both insert and select

operations, make the analysis of the bottlenecks of the

whole system very complex. It’s basic to have an

understanding about the performance of different parts of

the whole system. The select and insert operations

separately stress the whole system in totally different way.

The insert intensive workload mainly stresses the free

space manager, buffer pool, and log manager part inside

the storage engine. By using the simple insert related

micro benchmark we can simple the analysis and mainly

find out bottlenecks inside the DBMS without introducing

other affects like memory access latency and so on.

With gradually increasing the number of concurrent

client threads, we calculate the overall throughput of all

the concurrent clients.

3.1 SSD and HDD based Experiments

One PostgreSQL instance is started on the many-core

server machine, and all the databases and tables are

created inside the same PosrgreSQL instance. The tables

initially are empty and data is gradually inserted to the

tables by executing our micro benchmark. Because the

main memory is big enough, the data always fits in the

memory, that is, there is not any I/O access of data files to

a HDD or an SSD. We set the checkpoint_segments to 256

and check_point_timeout to 1 hour. We also changes the

settings of the background writer part which controls the

data exchange between memory and disk, which is

setting bgwriter_delay to 1000ms, bgwriter_lru-maxpages

and bgwriter_lru_multiplier to 0. Therefore, I/O accesses

are caused only by writing write ahead logs (WALs).

In the experiment with a HDD, the x_log directory is

created on a HDD. On the other hand, in the experiment

with an SSD, the x_log directory is assigned to an SSD.

This means that WALs of the former experiment are

written to a HDD and those of the latter experiment are

written to an SSD. Hence, comparing the throughputs of

the two experiments, we can identify the difference

between a HDD and an SSD. Furthermore the I/O part of

the system is evaluated in this experiment.

Fig. 1 Throughput of SSD and HDD

 Fig. 1 shows the throughputs of the experiments. The

concurrent client threads vary along the x-axis with the

corresponding throughput for two experiments with

different storage devices on the y-axis. The throughput

with an SSD is higher than that with a HDD because an

SSD offers higher throughput. In other words, the

performance of HDD based system is greatly restricted by

I/O throughput. Therefore, switching a HDD to an SSD for

logging WALs introduces higher throughput.

However, although the throughput with a HDD

increases linearly, with the growing number of clients the

throughput with an SSD saturates and reaches plateau.

This means the experiment with an SSD suffers from some

bottlenecks.

In this experiment, there is no logical contention

because a different process inserts to a different table.

However, all processes share some internal locks for the

transaction management information, WAL buffers and so

on. On the aspect of hardware, with the throughput

increasing there will be more data needed to be flushed to

SSD. So we consider the non scalable problem of the SSD

based setting is caused by the following two bottlenecks:

(1) the limitation of the I/O bandwidth of an SSD;

(2) the contention during concurrently writing the WAL.

In the following sections, we conducted additional

experiments to clarify the two bottlenecks.

3.2 Analysis of the Non Scalable Problem on SSD

In this section, to confirm the two bottlenecks under an

SSD based setting as stated in Sect.3.1, we conducted two

experiments: an experiment running multi-instance with

one SSD and an experiment running multi-instance with

multiple SSDs.

3.2.1 SSD based Multi-Instance Experiment

 To confirm how the contention of WAL writing locks

affects the performance, comparing the throughput with

one instance and that with multiple instances is useful.

Each PostgreSQL instance has its own WAL management

part. In the case of a fixed number of concurrent clients,

the more the number of instances increases the more the

contention of WAL writing locks in each instance

decreases.

Fig. 2 Throughput of 2-instances on 1-SSD and 1-instance

on 1-SSD

 A 2-instance test is introduced in this experiment, we

start two PostgreSQL instances with different port s on the

server and we evenly assign the client connections onto

two different instances.

 This setting can reduce the contention in each

PostgreSQL instance when writing to WAL. Hence,

comparing the throughputs of the 2-instance test with the

previous 1-instance test, we can find out whether the

contention of writing the WAL has some affect on the

system performance and scalability.

 The Fig. 2 is the 2-instance test result compared with

previous 1-instance SSD based test result. A highest

throughput is achieved in this new 2-instance test. This

test result confirmed our assumption that contention of

writing the WAL is a bottleneck of the system. By

introducing multi -instance of PostgreSQL, the WAL

writing contention can be removed and a better

performance can be achieved.

In the 2-instance test, the overall throughout is lower

when the number of concurrent client threads is less than

38. The multi -instance setting makes the I/O write more

randomly, and leads to a longer I/O write latency. The

throughput is affected by the longer I/O write latency.

Because the random write throughput is lower than the

sequential write throughput on SSD [11].

3.2.2 Two SSD based Experiment

To confirm how the contention of the I/O bandwidth

affects the performance, the experiment with multi SSD

setting is needed. By attaching different x_log files of the

different PostgreSQL instances to different SSDs, the

bandwidth needs for each SSD is reduced and all random

writes are eliminated. By reducing the bandwidth need for

each SSD, the I/O contention is lightened.

Fig. 3 Throughput of 2-instance on 2-SSD and 1-instance

on 1-SSD

Fig. 3 is the test result compared with the 1-instance

1-SSD result. A much higher throughput is achieved with

the 2-instance and 2-SSD setting, because this multi -SSD

and multi -instance setting can reduce both the two

bottlenecks of I/O bandwidth contention and WAL writing

contention.

 The better throughput and scalability performance

support our assumption that the two bottlenecks of I/O

contention and WAL writing contention dominate the non

scalable problem.

3.3 No WAL based Experiments

In this section, we conduct no WAL setting based

experiments and want to detect whether there are other

bottlenecks besides the contentions of I/O bandwidth and

the WAL writing.

In the previous section we observed two sources of

system bottlenecks, and both of them actually are due to

the WAL. One bottleneck is caused by contention of

writing the WAL buffer, the other one of I/O bandwidth

contention is caused by contention of flushing the WAL to

SSDs. With giving up the WAL part of the DBMS, both the

two bottlenecks mentioned above are removed completely.

Therefore with the no WAL setting we can further evaluate

the other parts of the system.

3.3.1 Performance without WAL

 In order to ignore the WAL part, we need the following

settings to PostgreSQL. We set the fsync and

synchronous_commit to off, which makes the commit sta te

return and the updated data write into the disk do not to

wait the finish of the WAL writing. These settings make

the WAL writing and WAL flushing off the critical section.

Fig. 4 Throughput of 2-instance on 2-SSD and 1-instance

no WAL setting

 Repeat the client thread increasing test. The test result

compared with WAL log on 2-SSD based test is shown in

Fig. 4. The system has a dramatic overall performance

improvement with the no WAL setting. But this

performance gain is got by sacrificing the guarantee of

ACID.

 A non scalable problem is observed in this test, when

the number of concurrent client threads comes to 38 . This

conforms there are some other bottlenecks in the system in

addition to the two ones mentioned earlier in Sect.3.1. We

consider the new bottlenecks come from the contention of

spin operations used inside the PostgreSQL. As all the

postgres processes share the same memory space which is

managed by the buffer pool manager part of PostgreSQL.

The DBMS has to use some operations such as spin to

manage the utilization of the shard memory space.

 In the next sub section we use the multi -instance

experiment to clarify the bottlenecks of the spin operation

contention.

3.3.2 No WAL based Multi-Instance Experiments

 To clarify the affect of the spin operation contention,

the multi - instance no WAL experiments are introduced.

Different PostgreSQL instances have different buffer pool

manager parts. By increasing the concurrent PostgreSQL

instances, we can reduce the spin operation contention in

each instance.

Fig. 5 Multi -instance test result with no WAL setting

The 2-instance and the 60-instance tests are conducted

separately. In the 2-instance setting, all the concurrent

clients are evenly assigned to 2 instances. As the number

of concurrent clients’ increases, there will be several

clients connected to the same instance. Therefore the

2-insance setting can only reduce the spin operation

contention in each instance. In order to totally remove the

spin operation contention, we have to make sure different

clients connect to different instances. There are at most 60

concurrent clients, so 60-instance is needed

correspondingly. Test results compared with the 1-instance

no WAL setting result is shown in Fig. 5.

 Multi-instance tests achieve higher throughput and a

more scalable performance. This result confirmed our

assumption about the bottleneck of spin operation

contention.

In order to avoid these bottlenecks of spin operation

contention, the design and implementation of existing

PostgreSQL need to be changed. Shorter critical sections

in the log manager and buffer pool manager part are the

respected designs. The other possible solution to this non

scalable problem is to use several PostgreSQL instances as

we did in this experiment.

4. Summary and Future Work

The new hardware of a many-core processor with SSDs

transfers the attention of the DBMS researchers from the

throughput into the scalability of the syste m. DBMS must

provide scalability in order to achieve full utilization of

the parallelism ability of many-core processors. With

several performance evaluation experiments of the

PostgreSQL on a 48core CPU platform, a non scalable

problem is discovered. Several experiments with

multi-instance and multi -SSD settings confirm the causes

of the non scalable and suggest the possibility of both

better scalability and higher throughput. Even though the

micro benchmark is used, the test results are very

meaningful for other complex workloads like TPC-C

which is also insert operation intensive workload.

When DBMS running on new hardware such as

many-core processor, the following two kinds of

contentions may come to system bottlenecks : shared

resource contention of I/O bandwidth and shared data

contentions inside DBMS such as log manager and buffer

pool manager parts. It is natural that we can get a dramatic

performance and scalability increase with giving up WAL

part of the DBMS. However, simple omission of logging is

not practical because it cannot guarantee ACID. Therefore,

we must consider how to reduce the I/O limitation with

guarantee of ACID. One conceivable method is using

replication to guarantee ACID. The other method

verification in our experiment to overcome the bottlenecks

of performance and scalability is increasing the DBMS

instance number. However, simply increasing instance

number is not practical because we must guarantee the

consistency between instances. These challenges are left

to our future work.

References
[1] M. Stonebraker, S. Madden, D. Abadi, S.

Harizopoulos, N. Hachem and P. Helland, “The End
of an Architectural Era (It’s Time for a Complete
Rewrite)”, Proc. of VLDB, pp. 1150-1160, 2007.

[2] J. Cieslewicz and K. A. Ross, “Database
Optimizations for Modern Hardware”, Proc. of IEEE,
pp. 863-878, 2008.

[3] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi, “Shore-MT: A Scalable Storage
Manager for the Multicore Era”, Proc. of EDBT’09,
pp. 24-35, 2009.

[4] R. Johnson, I. Pandis and A. Ailamaki, “Critical
Sections: Reemerging scalability concerns for
database storage engines”, Proc. DaMoN, pp. 35-40,
2008.

[5] N. Hardavellas, I. Pandis, R. Johoson, N. G.
Mancheril, A. Ailamaki, and B. Falsafi, “Database
Servers on Chip Multiprocessors: Limitations and
Opportunities”, Proc. of CIDR, pp. 79-87, 2007.

[6] Y. Ye, K. A. Ross, N. Vesdapunt, “Scalable
Aggregation on Multicore Processors”, Proc. of
DaMoN, pp. 1-9, 2011.

[7] N. Hardavellas, I. Pandis, R. Johoson, N. G.
Mancheril, A. Ailamaki and B. Falsafi, “Database
Servers on Chip Multiprocessors: Limitations and
Opportunities”, Proc. of CIDR, pp. 79-87, 2007.

[8] R. Lee, X. Ding, F. Chen, Q. Lu and X. Zhang,
“MCC-DB: Minimizing Cache Conflicts in
Multi-core Processors for Databases”, In Proceddings
of the 35 th International Conference of Very Large
Data Bases, Lyon, France, August 2009.

[9] J. H. Tseng, H. Yu, S. Nagar, N. Dubey, H. Franke, P.
Pattnaik, H. Inoue and T. Nakatani, “Performance
Studies of Commercial Workloads on a Multi -core
System”, Proc. of IEEE Workload Characterization
Symposium, pp. 57-65, 2007.

[10] M. Stonebraker and L. A. Rowe, “The Design of
Postgres”, Proc. of ACM SIGMOD, pp. 340-355,
1986.

[11] H. Kim and S. Ahn, “BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash
Storage”, Proc. of FAST’08, pp. 239-252, 2008.

