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Abstract Similar sentence matching is an essential issue for many applications, such as text summarization, image

extraction, social media retrieval, question-answer model, and so on. A number of studies have investigated this

issue in recent years. Most of such techniques focus on effectiveness issues but only a few focus on efficiency issues.

In this paper, we study the efficiency and effectiveness in the sentence similarity matching. For a given sentence

collection, we determine how to effectively and efficiently identify the top-k semantically similar sentences to a query.

The experimental evaluation demonstrates the effectiveness of our strategy. Moreover, from the efficiency aspect, we

introduce several optimization techniques to improve the performance of the similarity computation. The trade-off

between the effectiveness and efficiency is further explored by conducting extensive experiments on real datasets.
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1. Introduction

Searching semantic similar sentences is an essential issue

because it is the basis of many applications, such as snip-

pet extraction, image retrieval, question-answer model, doc-

ument retrieval, and so forth [26], [37]. From a given sentence

collection, this kind of queries asks for those sentences which

are most semantically similar to a given one.

The problem can be solved as follows: we firstly mea-

sure the semantic similarity score between the query and

each sentence in the data collection using the state-of-the-

art techniques [15], [21], [25], [31], [33], then sort them with

regard to the score and finally return the top-k ones. Al-

most all the previous studies focus on improving the effec-

tiveness (i.e., precision) of the problem and the datasets con-

ducted are small. However, when the size of the data col-

lection increases, the scale of the problem will dramatically

increase and the state-of-the-art techniques will be imprac-

tical [7], [8], [12], [13], [16], [27], [29], [40]. As far as we know,

this paper is the first study that aims to address the effi-

ciency issue in the literature. Moreover, most of the previous

strategies applied the threshold-based strategy [15], [21], [33],

that a threshold is predefined to filter out those dissimilar

sequences. However, this threshold is difficult for users to

determine. For real applications (e.g., Google), users may

prefer the top-k results.

There are mainly four kinds of techniques to measure

the similarity between sentences: (1) knowledge-based strat-

egy [25], [33]; (2) corpus-based strategy [15], [17], [18], [34]; (3)

syntax based strategy [15], [21]; and (4) hybrid strategy

[15], [21], [34].

Naively testing every candidate sentence is time consum-

ing, especially when the size of the sentence collection is huge.

To tackle this issue, we introduce efficient strategies to eval-

uate as few candidates as possible. Moreover, we aim to

progressively output the top-k results, i.e., the top-1 result

should be output almost instantly, then the top-2 and more

results will be obtained as the execution time becomes longer.

This satisfies the requirement of the real applications [10]. As

such, these issues are the challenges of the paper, which have

not been studied before.

We propsed a propose to tackle the efficiency issue for

searching top-k semantic similar sentences [41], which is dif-

ferent from previous works that focus on the effectiveness as-

pect. Based on the most comprehensive work [15], we intro-

duce the optimization techniques and improve the efficiency.

For each similarity measurement, we introduce a correspond-

ing strategy to minimize the number of candidates to be eval-

uated. A rank aggregation method is introduced to progres-

sively obtain the top-k results when assembling the features.

In this paper, we study the most important issues of similar

sentence mathcing, i.e., effectiveness and efficiency. We also

study the trade-off between effectiveness and efficiency.

2. Efficient Similar Sentence matching

2. 1 Preliminaries

To measure the similarity sim(Q,P ) between two sen-

tences Q and P , we apply state-of-the art strategies by as-



sembling multiple similarity metric features [15], [21]. Given

that we cannot evaluate all the similarity measurement

strategies in this paper, we select several representative fea-

tures based on the framework presented in [15]. Notably,

considering that a sentence comprises a set of words, the

similarity score between two sentences denotes the overall

scores of all word pairs, the components of which belong to

each sentence. See [15] for detail on computing sentence sim-

ilarity based on word similarity.

2. 2 Similarity Measurement Strategies

2. 2. 1 String Similarity

String similarity measures the difference in syntax between

strings. An intuitive idea is that two strings are similar to

each other if they have adequate common subsequences (e.g.,

LCS [11]). String similarity measurement strategies, includ-

ing edit-distance, hamming distance and so on. We fo-

cus on three representative string similarity measurement

strategies introduced in [15], namely, NLCS, NMCLCS1 and

NMCLCSn
（注1）.

2. 2. 2 Corpus-based Similarity

The corpus-based similarity measurement strategy recog-

nizes the degree of similarity between words using large cor-

pora, e.g., BNC, Wikipedia, Web and so on. Corpus-based

similarity measurement strategies are of several types: PMI-

IR, LSA, HAL, and so on. In this paper, we apply the Sec-

ond Order Co-occurrence PMI (SOC-PMI) [14], [15] which

employs PMI-IR to consider important neighbor words in a

context window of the two target words from a large corpus.

They use PMI-IR to calculate the similarities between word

pairs (including neighbor words). High PMI scores are then

aggregated to obtain the final SOC-PMI score.

2. 2. 3 Common Word Order Similarity

Common word order similarity measures how similar the or-

der of the common-words is between two sentences, as either

the same order, almost the same order, or very different or-

der. Although [15] indicates that syntactic information is less

important during the semantic processing of sentences, we in-

corporate this similarity measurement strategy to test how

much order similarity affects the whole sentence similarity.

See [15], [21] for detail.

2. 3 General Framework for Measuring Sentence

Similarity

To measure the overall similarity between two sentences,

（注1）：NLCS: Normalized Longest Common Substring; NMCLCS1:

Normalized Maximal Consecutive LCS starting at character 1; NM-

CLCSn: Normalized Maximal Consecutive LCS starting at any char-

acter n. See [15] for detail.

a general framework is presented by incorporating all sim-

ilarity measurement strategies. To the best of our knowl-

edge, [15] presented the most comprehensive approach that

incorporates representative similarity metrics. They con-

struct a similarity matrix and recursively extract representa-

tive words (maximal-valued element) which are then aggre-

gated to obtain the similarity between two sentence.

2. 4 Optimization Strategies

We apply the framework of [41] as the evaluation base

which is an optimization strategies on the framework which

is proposed in [15]. The original are composed with the fol-

lowing: String (NLCS,NMCLCS1 and NMCLCSn), Seman-

tic (corpus-based strategy) and Common word order （注2）.

Actually, they apply string and semantic strategies in the

framework. Accordingly, [41] proposed efficient similar sen-

tence matching strategy on string and semantic.

3. Experimental Evaluation

To evaluate effectiveness and efficiency, we conducted

extensive experiments by using 16-core Intel(R) Xeon(R)

E5530 server running Debian 2.6.26-2. All the algorithms

were written in C language and compiled by GNU gcc. The

baseline algorithm is implemented according to the state-of-

the-art work [15].

In the whole experimental evaluation, we use three dif-

ferent datasets, i.e., the benchmark dataset which was used

in [15], [21], BNC（注3）dataset and MSC（注4）dataset.

3. 1 Evaluation on Effectiveness

In the former experiments, we have demonstrated that our

proposal outperforms the state-of-the-art technique with re-

gard to the efficiency issue. In this section, we evaluate the

effectiveness of our proposal. We conduct experiments on

two labeled datasets, i.e., the benchmark dataset and MCS

dataset.

3. 1. 1 Evaluation on Precisely Labeled Dataset

The benchmark dataset which was used in [15], [21] and it

has been labeled by concrete value, i.e., we can easily un-

derstand the closeness between measured result and labeled

data. Here, we denote Distance as the metric which mea-

sures the closeness between two sets of results, e.g., baseline

and our proposal, where xi and yi are two sets of results re-

spectively. Smaller value indicates that the two results are

（注2）：We conducted experiments on benchmark dataset and found

that common word order similarity has low importance in sentence

similarity measurement.

（注3）：http://www.natcorp.ox.ac.uk/

（注4）：Microsoft Research Paraphrase Corpus. It contains 5801 pairs

of sentences.



closer to each other. Distance = 1
n

n−1∑

i=0

(xi − yi)
2

The experimental result conducted on the benchmark

dataset is illustrated in Fig. 1. From this figure we can see

that the results of both algorithms are close to each other,

which indicates that our proposal can obtain the same high

precision as the state-of-the-art technique.

Baseline
Our Proposal

Fig. 1 Evaluation on effectiveness under benchmark dataset

3. 1. 2 Evaluation on Rawly Labeled Dataset

MSC is another labeled dataset which has been extracted

from news sources on the web, along with human annotations

indicating whether each pair captures a paraphrase-semantic

equivalence relationship. They apply the value 1 as similar

while the value 0 as dissimilar. However, such label data is

rather raw and we cannot apply them to judge our measured

results directly.

a ) Raw data preprocessing

Since such dataset has no concrete value while only “1”

or “0”, we should distinct each value beforehand. Consider

an example, there are two cases. Case (a): the similarity

score between two sentences is 0.30 while the labeled data

is 1. Case (b): the similarity score between two sentences

is 0.60 while the labeled data is 0. From this example we

can see that we cannot judge 0.30 or 0.60, which one rep-

resents “closeness”. So, how to measure our experimental

results by using such raw data. To answer this question, we

apply a threshold τ as the bound, i.e., if any measured value

is greater than or equal to τ and the labeled data is “1” ,

we regard it as “hit”. Similarly, if one measured value is less

than τ and the labeled data is “0”, we also regard it as “hit”,

otherwise “miss”. Table. 1 illustrates the strategy.

Labeled value >= τ < τ

1 hit miss

0 miss hit

Table 1 The selection of τ

Randomly selecting 20 sentence pairs from MSC and set

different τ value, we can obtain the result which is presented

in Table. 2. Here we set hit ratio be the number of hits di-

vided by total results. With these different threshold τ , we

select the optimal one that obtains the maximal hit ratio,

i.e., τ=0.3 in this example.

Threshold Hit Miss Hit Ratio

0.7 0 20 0%

0.6 1 19 5%

0.5 9 11 45%

0.4 12 8 60%

0.3 17 3 85%

0.2 15 5 75%

0.1 14 6 70%

Table 2 Different hit ratio under different selection of τ
Accordingly, we conducted extensive experiments to search

the best τ value. Since we know that the similarity score

comes from two different parts, i.e., string similarity and se-

mantic similarity, and the weight α we apply before is 0.5.

To evaluate the precise hit ratio under different τ , we evalu-

ate the whole hit ratio by using MSC dataset under different

τ and α value. Table. 3 shows the experimental results.

From the table, we can see, when τ=0.3 under α=0.6, we

obtain the best hit ratio as 80.52%. However, the evaluation

of each τ is under a fixed α, i.e., we cannot determine the

combination of τ and α which can obtain the best hit ratio.

Therefore, we should extensively train the value of α under

different τ .

b ) Training α under different τ

We apply a k-fold cross-validation（注5） strategy to check

α under different τ . Firstly, we divide MSC dataset into k

parts and apply the part from 1 to k−1 as the training data.

Then we get α and τ under the best hit ratio and apply these

two parameters to compute the hit ratio on the kth part. In

each step i, we can get the best hit ratio Hi and the hit ratio

(test) Hti. For example, in the 1st step, the best hit ratio

occurs when α = 0.6 and τ = 0.3. Then we get the 81.24%

hit ratio in testing part which means there is no distinguish

difference between training and testing. After k steps finish,

we get a list of values of α, τ and hit ratios. The finial α and

τ will be the average value. From Table. 4, we can see that τ

= 0.56 and α = 0.31 are the best parameters. We show the

evaluation on the effectiveness for the MSC dataset in Fig.

2 under these two parameters.

Fig. 2 Evaluation on effectiveness under MSC



0 20.55% 21.20% 36.25% 41.29% 36.06% 34.18% 18.86% 16.89% 16.43%

0.1 17.74% 24.67% 41.29% 41.39% 33.24% 28.44% 18.74% 15.14% 12.27%

0.2 56.73% 55.25% 53.51% 51.44% 46.13% 34.80% 30.32% 26.62% 22.76%

0.3 69.28% 72.33% 68.70% 63.39% 55.34% 49.53% 34.67% 22.51% 18.69%

0.4 77.71% 78.57% 68.85% 57.32% 51.46% 47.66% 36.36% 28.44% 22.31%

0.5 77.81% 79.16% 77.59% 74.37% 63.37% 51.27% 40.41% 32.77% 32.77%

0.6 71.02% 76.87% 80.52% 71.70% 63.21% 53.28% 39.05% 33.86% 22.29%

0.7 66.30% 71.07% 72.32% 63.06% 61.42% 39.91% 36.05% 30.01% 18.82%

0.8 34.84% 67.63% 69.92% 57.30% 50.99% 36.29% 34.22% 30.10% 21.32%

0.9 29.62% 36.32% 61.92% 53.28% 46.18% 41.13% 36.29% 30.81% 17.95%

1.0 20.84% 22.44% 21.34% 18.86% 16.95% 15.14% 12.72% 11.58% 10.36%

Table 3 Hit ratio under different τ and α

Hit RatioHi parameter α threshold τ Hit-Ratio(test)Hti

1st 81.25% 0.6 0.3 81.24%

2nd 84.48% 0.7 0.3 81.58%

3rd 78.72% 0.7 0.4 82.79%

4th 80.46% 0.5 0.3 80.03%

5th 80.67% 0.4 0.3 84.51%

6th 84.18% 0.4 0.4 71.26%

7th 79.10% 0.5 0.3 79.35%

8th 82.16% 0.6 0.3 77.28%

9th 82.07% 0.6 0.2 75.39%

10th 80.42% 0.6 0.3 79.00%

Avg. 0.56 0.31

Table 4 10-fold cross-validation on τ under different α
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String

Semantic

NLCS

NMCLCS1

NMCLCSn

String

Semantic

NLCS

NMCLCS1

NMCLCSnOur Proposal

(a) Single vs. Combination
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NMCLCS1

NMCLCSn

String

Semantic

NLCS

NMCLCS1

NMCLCSnOur Proposal

(b) Single vs. Single

Fig. 3 Two different evaluation strategies on trade-off between

efficiency and effectiveness
3. 2 Evaluation on Trade-off between Efficiency

and Effectiveness

Because the introduced framework is built based on the

aggregation of different features, i.e., string similarity and

semantic similarity, the execution time is related to the num-

ber of features used. Therefore, if we apply only one feature,

the execution time is shorter yet such strategy may affect

the whole effectiveness. So we conduct a set of experiments

(illustrated in Fig. 3(a)) to study the trade-off between effi-

ciency and effectiveness. In this set of experiments, we first

evaluate the performance of single feature in the baseline

strategy vs. our whole framework, as illustrated in Fig. 3(a).

Then we explore the performance of single feature in the

baseline strategy vs. single feature in our framework as il-

lustrated in Fig. 3(b).

（注5）：We apply 10-fold cross-validation in this paper.

3. 2. 1 Single Strategy in the Baseline vs. Our Proposal

To evaluate the effectiveness, we apply single strategy

in baseline and combination strategy（注6） in our proposal.

Firstly, we compare the effectiveness between each strategy

in baseline and combination strategy in our proposal. We

also evaluate the execution time and index time of each pair

under such strategy. The experimental result is illustrated

in Fig. 4. We report three different single string strategy in

Fig. 4(a), 4(c) and 4(e). String strategy and semantic strat-

egy results are listed in Fig. 4(g) and Fig. 4(i), respectively.

From the figure we can see that, single strategy beats our

proposal in execution time while not in the effectiveness.

The former evaluation on effectiveness tells us that the com-

bination strategy can obtain more precise results. Fig. 4(b),

Fig. 4(d), Fig. 4(f), Fig. 4(h) and Fig. 4(j) present the experi-

mental results of execution time of single strategy in baseline

and execution time of our proposal. Since the strategies in

baseline do not need to index, we report the index time of

combination strategy in our proposal. Note that in all the

evaluation, we show the performance of extracting the top-

5 results with 10 randomly selected queries. Here we take

NLCS vs. combination strategy pair as an example. Fig.

4(b) illustrates the execution time and the index time for

NLCS (i.e., the left bar) and our proposal (i.e., the right

（注6）：Combination strategy means the whole framework strategies.



(a) NLCS vs. Our Proposal (b) NLCS vs. Our Proposal

(c) NMCLCS1 vs.OurProposal (d) NMCLCS1 vs.OurProposal

(e) NMCLCSn vs.OurProposal (f) NMCLCSn vs. OurProposal

(g) String vs. Our Proposal (h) String vs. Our Proposal

(i) Semantic vs. Our Proposal (j) Semantic vs. Our Proposal

Fig. 4 Evaluation on trade-off between efficiency and effective-

ness
bar). We can easily see that the execution time of NLCS

is very fast while the combination strategy consumes more

time. The similar results can be seen in Fig. 4(d), Fig. 4(f)

and Fig. 4(h). In Fig. 4(j), the execution time of single

semantic strategy is longer than that of combination strat-

egy. Such result tells us that the optimization on semantic

similarity is crucial among all the optimization strategies.

3. 2. 2 Single Strategy vs. Single Strategy

Evaluation on single strategy vs. combination strategy

demonstrates the trade-off between effectiveness and effi-

ciency. In this section, we study the performance of sin-

gle feature in the baseline strategy vs. single feature in our

framework (i.e., Fig. 3(b)). Firstly, we compare the effective-

ness between the two situations, as illustrated in Fig. 5. From

the figure we can see that the execution time of each single

strategy in baseline is longer than that of in our proposal

(i.e., including the execution time and index time). These

results demonstrate that the optimizations of our proposal

are efficient and make effect on each feature.

(a) NLCS vs. Our NLCS′ (b) NMCLCS1 vs. NMCLCS′
1

(c) NMCLCSn vs. NMCLCS′
n (d) String vs. String′

(e) Semantic vs. Semantic′

Fig. 5 Efficiency and index cost between single strategy in base-

line and combination strategy in our proposal

4. Conclusion and Future Work

In this paper, we study the effectiveness and efficiency on

similar sentence matching. Efficient searching top-k simi-

lar sentences is very important especially when the data is

large. Several efficient strategies are introduced to test as

few candidates as possible during the searching process. The

comprehensive experimental evaluation demonstrates the ef-

ficiency of the proposed techniques while keeping the same

high effectiveness as the state-of-the-art techniques. For fur-

ther understand how optimization strategy works, we con-

ducted extensive experiments on different types of datasets.

To evaluate the effectiveness, we conducted on two different

types of labeled datasets and trained two parameters for the

efficiency evaluation. To understand the trade-off between

effectiveness and efficiency, we evaluated different combina-

tion of features between the baseline and our proposal. In

the future, we will incorporate more similarity strategies to



evaluate the efficiency and effectiveness of the framework.
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