
DEIM Forum 2013 A5-3

Implementation and Experiments of Frequent GPS Trajectory Pattern

Mining Algorithms

Xiaoliang GENG†, Hiroki ARIMURA†, and Takeaki UNO††

† Graduate School of Information Science and Technology, Hokkaido University

Kita 14, Nishi9, Kita–ku, Sapporo, Hokkaido, 060–0814 Japan

†† National Institute of Informatics

2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract Trajectory data could be analyzed through the discovery of patterns. In this paper, we propose a novel

pattern named frequent envelope pattern (FEVP) of trajectory data. A frequent envelope pattern is a length-

-width-bounded area generated by a given trajectory data set of X. And this pattern includes all trajectory data

in X. We consider the problem of searching all frequent envelope patterns. We give mining an algorithm and show

the results.

Key words trajectory mining, spatio-temporal data, frequent data mining

1. Introduction

Recent years, smart mobile devices for example smart

phone with GPS sensors become more and more popular.

As a result, massive amount of spatio-temporal information

such as real GPS stream data has attracted many researchers

to extracting interesting information from it [1], [2].

In this paper, we address the problem of mining trajectory

pattern from trajectory database. For solving this problem,

many researchers have proposed many algorithms [1], [4],

[5], [6]. These algorithms are based on flock pattern min-

ing [1], [4] and moving cluster [5], [6]. Some of their algo-

rithms are very effective. Their experiments support that

their algorithms take good performance.

However, searching interesting trajectory pattern could be

quite difficult. First, trajectory data is 2 dimensional data

with time stamps. Traditional method of data mining for

item set does not work. Second, trajectory data always in-

cludes time stamp such as GPS trajectory data stream. It is

a problem that how to use time stamps. What is more, GPS

trajectory data stream could be dense or sparse. The prun-

ing strategy may not efficiently work, the algorithm may not

judge the data correctly.

Moreover, the algorithm of mining trajectory data has to

store large amount of trajectory data to analyze. As a result,

this algorithm should save memory as much as possible. Tra-

jectory data is always on-line real data stream, the algorithm

should be fast enough to deal with that.

In our paper, we define the pattern as follows. Let m and

n be any non-negative integers. Let S = { si | i = 1, . . . ,m }

be a collection of m two-dimensional discrete trajectories,

called a trajectory database, whose trajectory is a sequence

of 2-dim points si = (pij)
n
j=1 having the same length n.

Then, an envelope pattern(EVP) of width θ > 0 and length

ℓ >= 0 is a triple P (X) = (X,EX , st, ed) of a sequence

EX = (MBR(X1), . . . ,MBR(Xℓ)) of ℓ = ed− st+1 rectan-

gles, and time steps st <= ed. P says that there are some set

X of k moving objects that have locations close each other

contained in squares MBR(X1), . . . ,MBR(Xℓ) at consecu-

tive ℓ time stamps. Fig. 1 shows an example of an envelope

pattern.

In the above definition of EVP , there can be potentially

infinitely many similar patterns for the continuous nature of

space domain. To overcome this problem, we then introduce

the class FEVP of frequent envelope patterns, and study a

mining problem for constrained frequent envelope patterns.

As a main result, we present an efficient algorithm BEM

that, given maximal width θ, minimal length ℓ, and minimal

size σ, finds all frequent envelope patterns in a trajectory

database. The algorithm uses depth first search to enumer-

ate all the subsets of database and check them whether could

form FEVPs. Finally, it finds out all the frequent envelope

patterns.

In summary, our algorithm has the following advantages.

（ 1） Depth first recursive enumeration of frequent pat-

terns,

（ 2） No duplication of frequent trajectory patterns,

（ 3） Generating any frequent pattern from database.

To examine basic characteristics of our algorithm, we do

experiments and show them in Sec.4.

図 1 A 2-dim envelope pattern P (X1) = (X1, (MBR1,MBR2,

MBR3), 3, 5) in R2 containing three moving objects 2, 3, 4

at time stamps t3, t4, and t5 in a set of trajectories, where

MBR1, MBR2, and MBR3 are minimal bounding rectan-

gles with width <= θ. X1 is the set of trajectory data of

moving objects of 2, 3, 4.

This paper is organized as follows. Sec. 2. gives basic defi-

nitions, and Sec. 2. 4 studies frequent envelope patterns. Sec.

3. presents our algorithm and Sec. 4. shows experimental

results. Finally, Sec. 5. concludes.

2. Preliminaries

In this section, we give the basic definitions and concepts

on trajectory pattern mining.

2. 1 Two-dimensional discrete trajectory data

Let N = {0, 1, 2, . . .} and R denote the sets of all natural

and all real numbers, respectively. For any i, j ∈ N (i <= j)

and any a, b ∈ R (a <= b), we define the intervals [i..j] =

{i, . . . , j} and [a, b] = { x ∈ R | a <= x <= b }. For a set A, A∗

denotes the set of all possibly empty sequences over A. For

a sequence s = ⟨a1, . . . , an⟩ of n elements from A, we define

|s| = n, s[i] = ai, and s[i..j] = aiai+1 · · · aj . The empty

sequence is denoted by ⟨⟩.
A point in R2 is a pair p = (x, y) ∈ R2. Let si (1 <= i <= m)

be a sequence si = (pi1, . . . , p
i
n) = (pij)

n
j=1 of n points in 2-

dimensional space R2 with sampled at time-stamps, called a

discrete trajectory or trajectory , which n >= 0 denotes the

length of a trajectory. S = {s1, . . . , sm} is a trajectory

database whose elements (points) si[j] = pij = (xi
j , y

i
j) ∈ R2

stands for the location of object 1 <= i <= m at time stamp

1 <= j <= n and |S| = m. We consider i as the id of one trajec-

tory data. Note that all trajectories in S have exactly same

length n in our definition. For each time stamp 1 <= j <= n,

we define Sj = {(xi
j , y

i
j) | 1 <= i <= m}. Sj is the set of all the

points in time stamp j belonging to all trajectory data in S.

Let Sx
j = {xj | (xj , yj) ∈ Sj} and Sy

j = {yj | (xj , yj) ∈ Sj} be

the sets of all x- and y-coordinates of the points in Sj . We

assume that S, m, and n are fixed, otherwise stated.

2. 2 Trajectory envelope patterns

For a rectangle R = [x0, x1]× [y0, y1] in R2, the width

of R is given by width(R) = max{|x1 − x0|, |y1 − y0|}.
The minimum bounding rectangle (MBR) containing Sj is

given by MBR(Sj) = [x0, x1]× [y0, y1], where x0 = minSx
j ,

x1 = maxSx
j and y0 = minSy

j , y1 = maxSy
j . If Sj = ∅,

then MBR(Sj) = ∅, too. We know that MBR(Sj) gives the

unique and minimal area within all axis-parallel rectangles

that contain Sj .

Let S = {S1, . . . , Sm} be trajectory database and X⊂
=S

be a subset of S, a 2-dim trajectory envelope pattern (or

an envelope pattern, EVP) of length ℓ in S is a quadruple

P (X) = (X,EX , st, ed), where

（ 1） Time stamps st and ed which 0 <= st <= ed <= n are

called the start and end time such that ℓ = ed− st+ 1.

（ 2） EX = Est,ed(X) = (MBR(Xst), . . . ,MBR(Xst+ℓ−1))

is a ℓ-tuple of 2-dim rectangles.

The width of P (X) is w = maxst<=j<=ed width(MBR(Xj)).

We denote by start(P (X)) = st, end(P (X)) = ed,

len(P (X)) = ℓ, and width(P (X)) = w. If ℓ = 0, then

P∅(X) = (X, ⟨⟩, st, st) is the empty pattern, and we define

len(P (X)) = 0 and width(P (X)) = 0.

［Example 1］ In Fig. 1, we show an example of an enve-

lope pattern P (X1) = (X1, (MBR1,MBR2,MBR3), 3, 5) of

length 3, such that X1 is the set of trajectory data of moving

objects of 2, 3, and 4. We see that P (X1) contains trajectory

data of moving objects 2, 3, and 4 among trajectory data of

five moving objects at time stamps t3, t4, and t5.

2. 3 Frequent trajectory envelope pattern

［Definition 1］ We call a trajectory envelope pattern

P (X) = (X,EX , st, ed) a candidate trajectory envelope pat-

tern (CandEVP , for short) given by non-negative constraints

θ and ℓ, if P (X) satisfies the following conditions:

（ 1） len(P (X)) >= ℓ,

（ 2） width(P (X)) <= θ.

We call ℓ minimal length(min-length, for short) of CandEVP

and call θ maximal width(max-width, for short) of Can-

dEVP.

［Definition 2］ We call a candidate trajectory envelope pat-

tern P (X) = (X,EX , st, ed) with constraints θ and ℓ a fre-

quent trajectory envelope pattern (FEVP , for short) given by

a non-negative constraint σ, if P (X) satisfies | X |>= σ. We

call σ minimal size(min-size, for short) of CandEVP.

［Definition 3］ For any 1 <= st <= ed, we denote by

FEVP(S, st, σ, θ, ℓ), the class of all frequent envelope pat-

terns FEVP with starting position st, X⊂
=S, and non-

negative constraints σ, θ, and ℓ.

Algorithm 1 The main algorithm for finding all frequent

envelope patterns

1: procedure main(S, θ, ℓ, σ)
2: Θ← (θ, ℓ, σ);

3: for i← 1, . . . , n− ℓ+ 1 do

4: start ← i

5: for c← 1, . . . ,m do

6: BEM(c, ∅, start ,S,Θ);

7: end for

8: end for

9: end procedure

Algorithm 2 Basic frequent envelope trajectory patterns

1: procedure BEM(c,X, start ,S,Θ)

2: Y ← X;

3: for i← S[sc, . . . , sm] do

4: Y ← Y
∪
{i}

5: if CheckCandEVP(Y, start ,S,Θ) then

6: get θ from Θ

7: if | Y |>= θ then

8: Output Y as FEVP;

9: end if

10: BEM(i, Y, start ,S,Θ)

11: end if

12: end for

13: end procedure

2. 4 Frequent pattern mining problem

The number of all possible FEVPs in a given database S
may be prohibitive. Thus, we incorporate a set of constraints

as well as closeness into our envelope pattern mining prob-

lem. Now, we state our problem as follows.

Frequent Envelope Pattern Mining Problem:

Input: A collection S = {s1, . . . , sm} of 2-dim trajectories

with real numbers of max-width θ > 0, min-length ℓ > 0,

and min-size σ >= 1.

Output: Find all frequent envelope patterns P(X) in

FEVP(S, st, θ, ℓ, σ) (X⊂
=S) appearing in S such that

width(P (X)) <= θ, len(P (X)) >= ℓ, and | X |>= σ without

duplicates.

3. Proposed Algorithm

We present an algorithm BEM (Basic envelope pattern

miner) for mining frequent envelope trajectory patterns un-

der given constraints from an input trajectory database.

3. 1 Outline of our algorithm

In Alg.1, Alg.2 and Alg.3, we present the main algorithm

main, its recursive sub-procedure BEM and checking Can-

dEVP algorithm CheckCandEVP respectively.

The main algorithm BEM in Alg.1 first receives an in-

put trajectory database S and constraint parameters θ > 0,

Algorithm 3 Check CandEVP algorithm

1: procedure CheckCandEVP(X, start ,S,Θ)

2: Y ← X;

3: get σ from Θ

4: get ℓ from Θ

5: if len(Y) < ℓ then

6: return FALSE

7: end if

8: for i← Y [1, . . . , len(Y)] do

9: if width(MBR(Yi)) > σ then

10: return FALSE

11: end if

12: end for

13: return TRUE

14: end procedure

ℓ > 0, and σ >= 1. Next it invokes the recursive sub-procedure

BEM in Alg.2 with each singleton trajectory data c and

other arguments in line 6. BEM algorithm enumerates all

subsets of S and calls the algorithm CheckCandEVP to

check whether these subsets could form CandEVPs.

3. 2 Basic envelope trajectory pattern miner algo-

rithm BEM

3. 2. 1 Enumerate subsets of S
Algorithm BEM depth first enumerates subsets of S. For

every subset, this algorithm calls CheckCandEVP in line 5

to check whether it could form a CandEVP. If this subset is

a CandEVP, BEM checks the size of it. If the size is no less

than θ, this subset is outputted as a FEVP; else, recursively

call BEM itself for further searching. If this subset is not a

CandEVP, this algorithm prunes this subset and requires a

new subset.

3. 2. 2 Call CheckCandEVP

Algorithm CheckCandEVP checks a subset X of trajec-

tory data with the constrains of start ,S, θ, ℓ. It computes

the MBR from start time stamp to the end of trajectory

data or the computation stops at the time stamp where the

width(MBR) > θ. Next, this algorithm computes the length

by end − start + 1. If the length >= ℓ, it returns TRUE; else

it returns FALSE.

3. 3 Analysis

Combining the above arguments, we give the correctness

and the complexity of our main algorithm. Let m be the

size of input database S and n be the length of trajectory

data. The main algorithm search from start time stamp

of trajectory data to n − ℓ + 1. Therefore, the complexity

of main is O(n). The enumeration of subsets of trajectory

data taken by BEM and main enumerates 2m subsets of

S at most. For checking them one by one, the complexity

of CheckCandEVP is O(n logm). Clearly, the total com-

plexity is O(m2mn logm).

0

10

20

30

40

50

60

20 40 80 200 400 800 1600 3200

6 6 6 6
6

6

6

6

Trajectory data length

Ru
nn

in
g

tim
e

(s
ec

)

図 2 The result on the running time (left) by varying the length

of trajectory data in database. Min-size is 3, min-length is

12, max-width is 1. DB size is 100, pattern quantity is 6,

pattern size is 3, pattern width is 1, pattern length is 12,

pattern start is 3.

4. Experiments

Finally, we report preliminary computational experiments

to examine basic properties of the proposed algorithm BEM

on trajectory data-set.

4. 1 Data and method

We used random trajectory data-set generated by Data

Generator . Data Generator is a program we made for val-

idating and testing our algorithm. It generates trajectory

data as “x coordinate, y coordinate, time stamp” given by

parameters of quantity, length, time interval of trajectory

data and the quantity, size, width, start, length of patterns

in trajectory data and the min-bound and max-bound of

random x and y coordinate of trajectory data. We set time

interval is 1 second, min-bound is 1, and max-bound is 10

for all experiments. The following is an example of four lines

of one trajectory data file:

8.85633,6.80149,1

4.91046,3.70516,2

5.2009,9.26173,3

4.50338,3.21286,4

. . .

All the lines in one file belong to one moving object.

We implemented our algorithm BEM in C++ and com-

piled by g++ of GNU, version 4.5.3. We used a PC (Intel

Core i7 CPU, 2.80GHz, 8GB of RAM) running Windows 7.

4. 2 Results

In Fig. 2, we show the result on the running time (left)

by varying the length of trajectory data in database. We

observed that the running time increases as the trajectory

0

100

200

300

400

500

600

700

800

900

200 400 800 1600

6 6 6

6

DB size

Ru
nn

in
g

tim
e

(s
ec

)

図 3 The result on the running time (left) by varying the DB size

of trajectory data in database. Min-size is 3, min-length is

12, max-width is 1. Trajectory data length is 20, pattern

quantity is 6, pattern size is 3, pattern width is 1, pattern

length is 12, pattern start is 3.

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5
5.1
5.2
5.3

6 12 24 48 96
Pattern quantity

6
12

24

48

96

Ru
nn

in
g

tim
e

(s
ec

)

図 4 The result on the running time (left) by varying the pattern

quantity of trajectory data in database. Min-size is 3, min-

length is 12, max-width is 1. Trajectory data length is 20,

DB size is 500, pattern size is 3, pattern width is 1, pattern

length is 12, pattern start is 2.

data length increases, and for every experiment, the algo-

rithm could find all 6 patterns included in database.

In Fig. 3 and Fig. 4, we show the result on the running

time (left) by varying the size of database and quantity of

patterns included in database. We observe that the run-

ning time increases as these two parameters increases, and

for every experiment, the algorithm could find all patterns

included in database.

In Fig. 6, Fig. ?? and Fig. 7, we show the results on the

running time (left) and the quantity of patterns found by our

algorithm (near the points) by varying the min-size, the max-

width, and the min-length, respectively. In these figures, we

8.2

8.25

8.3

8.35

8.4

8.45

8.5

8.55

8.6

8.65

2 4 6 8

6

978 1494 222

Min-size

Ru
nn

in
g

tim
e

(s
ec

)

図 5 The result on the running time (left) by varying the input of

min-size. Min-length is 12, max-width is 1. Trajectory data

length is 20, DB size is 500, pattern size is 8, pattern quan-

tity is 6, pattern width is 1, pattern length is 12, pattern

start is 2.

0

2

4

6

8

10

12

14

1 1.5 2 2.5 3 3.5 4 4.5 5
Max-width

6 6 6 7 7 12 14
59

839

Ru
nn

in
g

tim
e

(s
ec

)

図 6 The result on the running time (left) by varying the input of

max-width. Min-length is 12, min-size is 3. Trajectory data

length is 20, DB size is 500, pattern size is 3, pattern quan-

tity is 6, pattern width is 1, pattern length is 12, pattern

start is 2.

first saw that the algorithm discovered the sub-patterns in-

cluded in bigger longer ones.

Summary of Experiments: As it can be seen from the fig-

ures, our algorithm can find all patterns included in database

successfully in Fig. 2, Fig. 3 and Fig. 4. But it also finds sub-

patterns in Fig. 6 and Fig. 7 when we input smaller min-size

and shorter min-length. As the input parameters of min-

size and max-width become larger in Fig. 6 and Fig. ??, the

performance of our algorithm turns bad obviously.

5. Conclusion

We presented an efficient algorithmBEM that, given max-

0

5

10

15

20

25

30

35

3 6 12 24 48

312
258

6

150

222

Min-length

Ru
nn

in
g

tim
e

(s
ec

)

図 7 The result on the running time (left) by varying the input of

min-length. Max-width is 1, min-size is 3. Trajectory data

length is 60, DB size is 500, pattern size is 3, pattern quan-

tity is 6, pattern width is 1, pattern length is 48, pattern

start is 2.

width θ, min-length ℓ, and min-frequency σ, finds all frequent

envelope patterns with width <= θ, length >= ℓ, and frequency

>= σ in a trajectory database.

文 献
[1] V. Marcos, B. Petko, and V. Tsotras, “On-line discovery

of flock patterns in spatio-temporal data,” in Proc. ACM

GIS’09. ACM, 2009, pp. 286–295.

[2] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Tra-

jectory pattern mining,” in Proc. KDD’07. ACM, 2007,

pp. 330–339.

[3] J. Hoyoung, L. Y. Man, Z. Xiaofang, J. Christian, and

S. HengTao, “Discovery of convoys in trajectory databases,”

in Proc. PVLDB’08. VLDB Endowment, 2008.

[4] M. Benkert, J. Gudmundsson, F. Hubner, and T. Wolle,

“Reporting flock patterns,” Computational Geometry,

vol. 41, pp. 111–125, 2008.

[5] L. Zhenhui, D. Bolin, H. Jiawei, and K. Roland, “Swarm:

Mining relaxed temporal moving object clusters,” in

Proc. PVLDB’10. VLDB Endowment, 2010.

[6] K. Panos, M. Nikos, and B. Spiridon, “On discovering mov-

ing clusters in spatio-temporal data,” in Proc. SSTD’05,

ser. LNCS, vol. 3633. Springer-Verlag, 2005.

