

DEIM Forum 2013 A5-5

QueueLinker: A Framework for Parallel Distributed Processing of Data Streams

Takanori UEDA†,‡ Koh SATOH‡ Daichi SUZUKI‡ Sayaka AKIOKA† and Hayato YAMANA††,
 ‡‡

†Information Technology Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

‡Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

††Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

‡‡National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan

E-mail: {t-ueda, kohsatoh, dsuzuki, akioka, yamana}@yama.info.waseda.ac.jp

Abstract With the development of computer systems, many more devices are being connected to the network and

generating ‘data stream.’ Analyzing data streams in real-time offers valuable information about human activities and

contributes to many information services. QueueLinker enables programmers to build data stream processing applications by

implementing application modules that use a producer–consumer model, and specifying a logical directed graph representing

the data-flow connections between these modules. Each module is automatically instantiated and executed in parallel

according to the logical directed graph. The data generated by a module is automatically serialized and transferred to other

modules across the network, relieving the programmer of complex multi-threading and communication implementations. In

addition, data parallel model of QueueLinker helps the developers to realize parallel processing without concurrency control.

Keyword Parallel Distributed Processing, Data Stream, Data Parallel, Producer-Consumer

1. Introduction
Recent advancements in commodity computer

hardware have made parallel-distributed computing

available for everyone. As CPU manufacturers have

decided to increase the number of cores on a CPU instead

of increasing individual core frequency, the resulting

plummet in personal computer prices has allowed for the

ownership of shared-nothing clusters at a low cost. In

order to take full advantage of recent computer hardware

performance, developers must now become familiar with

parallel-distributed computing; however, most developers

want to avoid implementing concurrency control and

network communication procedures, as these have proven

difficult to program.

These factors have led to the development of

parallel-distributed computation frameworks such as

Google MapReduce [1] and Dryad [2]. Apache Hadoop1,

an open source implementation of MapReduce, is now

widely used for processing big data. It realizes distributed

computing for large data without requiring user

implementation of network communications. In the

MapReduce programming context, developers are tasked

with identifying and defining the data parallelism of their

applications, after which the framework can scale out data

processing by simply distributing job to available

computation nodes. The effectiveness of this kind of

parallelism is a major reason why Hadoop enjoys broad

1 Welcome to Apache Hadoop!, http://hadoop.apache.org/

success in processing big data. Now, it is used to process

variety of big data.

With the internet now a common component of our

infrastructure and the connection of many mobile devices

to the network, our lifestyles have changed dramatically

since MapReduce was introduced in 2004. A constant

stream of information is now posted to social network

services with 400 million Twitter tweets generated

worldwide per day 2 and the number of digital sensors

generating ‘data streams’ that contain valuable

information has increased considerably. The analysis of

data streams in real-time is important in many applications

including—among others—social analysis, stock market

predicting, and healthcare monitoring.

Advances in information technology have

corresponded to an increase in the number of mobile

devices and sensors, which in turn has resulted in the

generation of large numbers of data streams, and

processing numerous large streams requires

parallel-distributed computing. Processing data streams in

real-time presents programming difficulties owing to the

fact that applications must handle multiple data sources,

wait for data arrival, and receive data via the network.

Because it is difficult for many programmers to consider

these factors, it is vital that a framework for real-time,

parallel-distributed data-stream processing be developed.

2 Twitter hits 400 million tweets per day, mostly mob
ile, http://news.cnet.com/8301-1023_3-57448388-93/twitt
er-hits-400-million-tweets-per-day-mostly-mobile/

With this in mind, we have been developing

QueueLinker, a framework for parallel distributed

data-stream processing. QueueLinker enables

programmers to build data stream processing applications

by implementing application modules that use a producer–

consumer model, and specifying a logical directed graph

representing the data-flow connections between these

modules. Each module is automatically instantiated and

executed in parallel according to the logical directed

graph. The data generated by a module is automatically

serialized and transferred to other modules across the

network, relieving the programmer of complex

multi-threading and communication implementations. In

addition, data parallel model of QueueLinker helps the

developers to realize parallel processing without

concurrency control.

This paper is organized as follows. Section 2

describes the programming interface of QueueLinker.

Section 3 describes the data parallel model of

QueueLinker. Section 4 describes how to define a logical

directed graph representing data-flow between modules.

Section 5 describes the software architecture of

QueueLinker. Section 6 explains several applications

implemented by using QueueLinker. Section 7 concludes

this paper.

2. Programming Interface of QueueLinker
In QueueLinker, a module is a software processing

unit implemented according to the producer–consumer

model commonly described in design patterns for

multi-threaded programming. Under the producer–

consumer model, a module processes input item(s) and

generates a result. Modules communicate with each other

using queues. A module sending an item to another module

puts the item into the input queue of the destination

module. Because modules are not meant to share their

internal states, an arbitrary number of threads can be

assigned to each, and they can be executed in parallel on

multiple computers to achieve greater speed.

QueueLinker presents a Java API for constructing

producer–consumer modules of four major types: push

modules, pull modules, source modules and sink modules.

Push module interface is designed for non-blocking

operations such as filtering and arithmetic operations. Pull

module interface is designed for blocking operations such

as file I/O and receiving data from external data sources.

Source module interface is designed for providing data to

other modules from external data sources. Sink module

interface is designed for storing data in secondary storage

or visualizing application window to a user.

2.1. Push Module Interface
Figure 1 shows pseudo code for a push module. In

this example, the module has two input queues and an

output queue. An item transferred from another module is

passed through the variable ‘item’. The queue that the

item was put into is identified by the variable ‘queueId’.

The module processes an input item and then returns a

string as a result. Processing can differ depending on the

input queue the item was put into. If the module returns

null, QueueLinker sends no data to the next module. This

mechanism helps us implement modules for filtering of

data.

Because QueueLinker uses a push thread unit

(described in 5.1) to execute multiple push modules, a

push module cannot use an infinite loop or perform

blocking operations like file I/O. If a push module does

not return, other push modules will not be executed.

2.2. Pull Module Interface
Figure 2 shows pseudo code for a pull module. In this

example, the module pulls an item from an input queue

and then outputs a string toward an output queue.

QueueLinker assigns a dedicated thread to each instance

of the pull module. Thus, a pull module implementation

Figure 1 Pseudo Code of a Push Module

Figure 2 Pseudo Code of a Pull Module

public class ExamplePushModule extends PushModule<String, String>
{

@Override
public String execute(String item, int queueId)
{

if (queueId == 0)
return "Waseda";

else if (queueId == 1)
return "University";

return null;
}

}

public class ExamplePullModule extends PullModule<String, String> {

@Override
public void execute(InputStaff<String> inputStaff,

OutputStaff<String> outputStaff,
QueueLinkerService service)

{
InputQueue<String> input = inputStaff.getDefaultInputQueue();
OutputQueue<String> output = outputStaff.getDefaultOutputQueue();

while (!service.stopRequested()) {
try {

String item = input.take();

/* Something to do and generate newStr */

output.put(newStr);
} catch (InterruptedException e) {}

}
}

can make use of an infinite loop, which is useful for

implementing blocking operations. To do this, the

blocking operation is simply written inside an infinite

loop in a pull module.

2.3. Source Module Interface
Figure 3 shows pseudo code for a source module. A

source module has no input queue and has only one output

queue. A data source is typically used to provide data to

other modules from external data sources. For example, a

data source may leverage the Twitter API to feed tweets to

the system. QueueLinker can manage multiple data

sources and automatically duplicate the data if multiple

modules need the data from a single data source.

2.4. Sink Module Interface
QueueLinker also provides an interface for data sink.

A sink module has one input queue and no output queue,

and is typically used to store data in secondary storage or

present that data in visualize window to a user. Figure 4

shows pseudo code for a sink module.

3. Data Parallel Execution
This section describes how QueueLinker executes

modules in a parallel-distributed way. Figure 5 shows an

example consisting of three execution patterns for two

modules, “Tweets Parse” and “Word Count”. A rectangle

with a dashed line represents a computer and each

rectangle represents a thread executing a module instance.

The “Tweets Parse” module parses a tweet and outputs the

extracted words from the tweet. The “Word Count” module

counts the number of appearance of each word.

In pattern (1) of the figure, only one instance is

created for each module and a thread is assigned to the

module. Thus, “Tweets Parse” and “Word Count” run on

different threads.

In the general producer–consumer model, an instance

is executed by multiple threads. Thus, modules must be

implemented for thread-safety by using concurrency

control to avoid inconsistency. Concurrency control can be

an especially difficult task, and even when it performed

properly, the possibility of lock contention will increase

with the number of threads executing the instance. To

solve this problem, QueueLinker uses data parallel

execution with a hash partitioning technique to ensure that

each instance of a module is executed by only one

dedicated thread, allowing the programmer to implement

modules without concurrency control.

For example, in pattern (2) of the figure, a word is

transferred to one of the two “Word Count” instances

depending on the hash value. QueueLinker automatically

transfers words that have the same hash value to the same

instance. This mechanism eliminates the need for

concurrency control of the module because each instance

is executed by only one thread. Note that developers must

specify modules to be executed by this mechanism when

they define an application; QueueLinker cannot infer

automatically which modules can be parallelized in this

way.

Modules executed in this way do not share their

internal states with other modules and only communicate

with other modules via queues. Thus, they can be run on

any computer. Pattern (3) in the figure shows an example

of parallel-distributed execution on three computers.

QueueLinker automatically transfers items between

Figure 3 Pseudo Code of a Source Module

Figure 4 Pseudo Code of a Sink Module

Figure 5 Data Parallel Execution Model of

QueueLinker

public class ExampleSourceModule extends SourceModule<String>
{

@Override
public void execute(OutputStaff<String> staff, QueueLinkerService service)
{

OutputQueue<String> output = staff.getDefaultOutputQueue();

while (!service.stopRequested()) {
try {

output.put("Output Something");
} catch (InterruptedException e) {}

}
}

}

public class ExampleSinkModule extends SinkModule<String> {
@Override
public void execute(String input, int queueId) {

/* Something to do */
}

}

Parallel
Execution

Morph
Analyzer

Word
Count

Word
Count

Pipeline
Execution

Morph
Analyzer

Word
Count

A Thread executing a module instance

(1)

(2)

Parallel
Distributed
Execution

Morph
Analyzer

Word
CountWord

Count

Word
Count

Word
Count

(3)

A Computer

modules, developers do not need to implement network

communication procedures.

4. Application Definition Using a Logical

Directed Graph
A QueueLinker user can build an application by

specifying connections between modules. The directed

graph representing these connections is called a ‘logical

directed graph’. Figure 6 shows a logical directed graph ሺܸ, ሻ for the proposed Web crawler described in [5]. Eachܧ

node ݒ	 ∈ ܸ is indicated by a rectangle and represents a

module; each edge ݁ ∈ 	ܧ is indicated by a line and

represents a connection between two modules. A node in

the graph is called a ‘logical vertex’ and an edge is called

a ‘logical edge’.

Users can specify the parallel execution mode of

modules as well as connection settings. Figure 7 provides

pseudo code describing a logical directed graph for the

application shown in Figure 8. In the code, the execution

mode of the ‘Word Count’ module is set to data parallel

mode by hash partitioning the three instances. The

function of the module is to count the number of

appearances of each word in tweets. In this case,

QueueLinker instantiates three instances on different

threads and transfers each string output from the ‘Morph

Analyzer’ module to the correct instance based on the hash

value of the string. Note that the code does not specify

data parallel mode for the ‘Morph Analyzer’ module. In

this case, QueueLinker transfers each tweet to one of the

two instances in round-robin fashion.

As described above, when QueueLinker accepts

module implementations and a logical directed graph, it

realizes parallel distributed execution by automatically

instantiating the modules on available computers and

transferring data items between the modules. The

programmer does not need to know whether transfers

between modules require network communication.

4.1. Switcher and Virtual Module
QueueLinker provides a mechanism called a

‘switcher’ for choosing a destination module based on the

result data a module produces. It also offers a mechanism

called a ‘virtual module’ that allows modules to be reused

in different data flows.

The logical directed graph in Figure 9 includes a

switcher, indicated by a circle containing the number of

destination modules. Figure 10 provides pseudo code for a

switcher. The switcher returns an integer specifying the

destination module. QueueLinker will send an item to a

module based on this number. For example, in Figure 9, an

output of module A is sent to B if the switcher returns 0,

or to C if the switcher returns 1. Thus, the switcher

provides control over data routing independent of module

implementation.

The logical directed graph also includes a virtual

module, indicated by a rectangle with a dashed line. In the

logical directed graph, outputs of module B are sent to

virtual module A. The virtual module is executed using the

same instance and the thread of module A shown at the far

left of the figure, but outputs of the virtual module are

sent to module D. Thus, the virtual module makes it

possible to reuse a module in a different data flow. For

example, the Web crawler described in [5] uses multiple

switchers and virtual modules. The logical directed graph

Figure 6 An Example of a Logical Directed Graph

(Our Proposed Web Crawler Described in [5])

Figure 7 Pseudo Code Describing an Application

and Submitting the Job

Figure 8 A Logical Directed Graph Described by

the Code in Figure 7

(i) Host
Data
Cache

(j)
Domain
Name

Resolver

(i) Host
Data
Cache

(a)
Scheduler

(c)
robots.txt

Downloader

(k)
robots.txt
Processor

Cache
the IP

Record whether
robots.txt

exists or not

(i) Host
Data
Cache

(2) IP
Unknown

(1)
robotsFlag

= 1,2
(i) Host

Data
Cache

(d)
Downloader

(0)
robotsFlag

= 0

(1) The IP is already resolved
robotsFlag = 0, 2

(k)
robots.txt
Processor

(e)
HTML Parser

(k)
robots.txt
Processor

(0) robotsFlag = 1

(f)
URL Format

Filter

(g)
Explicit

URL Filter

(h)
Duplicated

URL Checker

3

32

(b)
Scheduler

Timer

2

Compile
robots.txt

Notification of
Downloading Completion

(2)
robotsFlag

= 2

(1)
robotsFlag = 1

(0)
robotsFlag

= 0

(0)
robotsFlag = 0

(1)
robotsFlag

= 1

2
DownloadableNot Downloadable

(l)
Data Store

(m)
Seeder

Notification of
Downloading Completion

Check
the Cache

LogicalGraph graph = new LogicalGraph();
LogicalVertex twitter = graph.addLogicalVertex(TwitterDataSource.class);
LogicalVertex morphAnalyzer = graph.addLogicalVertex(MorphAnalyzer.class, 2);
LogicalVertex wordCount = graph.addLogicalVertex(WordCount.class, 3, PMode.Hash);
LogicalVertex ui = graph.addLogicalVertex(UI.class);

graph.addLogicalEdge(twitter, morphAnalyzer);
graph.addLogicalEdge(morphAnalyzer, wordCount);
graph.addLogicalEdge(wordCount, ui);

QueueLinkerClient client = QueueLinkerClientFactory.getClient();
QueueLinkerJob job = new QueueLinkerJob(graph);
JobHandle handle = client.startJob(job);

of the crawler is shown in Figure 6. Despite being simple

mechanisms, the switcher and virtual module are

indispensable for describing a complex logical directed

graph efficiently.

5. Software Architecture
This section provides an overview of the software

architecture of QueueLinker. QueueLinker uses several

software mechanisms to execute modules and control

execution.

5.1. Push Thread Unit
A push thread unit is designed to execute multiple

push modules and sink modules as illustrated in Figure 11.

A push thread unit has a “thread local scheduler” and a

“thread local router” for handling multiple modules. An

item to be processed by a module in a thread unit is put

into the “thread input queue”. The thread unit fetches the

item from the queue, and the thread local router, according

to the logical directed graph, determines which module

will process the item. It then sends the item to the input

queue of that module. The thread local scheduler then

chooses an executable module and executes it. When an

item is produced from the executed module, the thread

local router determines the destination of that item. If the

destination module runs in data parallel mode, the local

router calculates the hash value of the output item and

transfers it to the appropriate thread unit. If the

destination module is running in a thread unit on a remote

computer, QueueLinker transfers the item to that computer,

using a thread unit dedicated for network communication.

A thread unit can ‘busy wait’ for items to arrive in the

thread input queue, and the CPU core that a thread unit

runs on can be controlled using system calls like

sched_setaffinity on Linux. ‘Busy wait’ is important for

achieving low latency execution of continuous queries

(described in [4]). In addition, a push thread unit has a

mechanism for collecting statistics on operator execution,

such as the number of input/output items to/from, and the

total CPU time consumed by, each operator. Note that the

scheduler and the router in a push thread unit are only

used by that thread unit, and thus do not require any

concurrency control.

A number of optimizations should be considered for

the thread local scheduler, since the strategy of the

scheduler will affect the processing latency, throughput

and memory consumption of applications. QueueLinker

normally uses a FIFO scheduler, but other algorithms,

such as Chain [3], can be substituted.

5.2. Pull Thread Unit
A pull thread unit executes only one pull or source

module. It must execute that pull module on a single

thread, since a pull thread unit may contain an infinite

loop (as described in 2.2) and may therefore refuse to

yield to other modules. Like the push thread unit, a pull

thread unit has a thread local router to determine the

transfer route of each result, but unlike the push thread

unit, it does not have a local scheduler, since it does not

execute multiple modules. Other mechanisms of the pull

thread unit are nearly identical to those of the push

module unit, and are therefore omitted.

5.3. Master and Worker Server
QueueLinker uses a master server to manage all

computation nodes, or ‘worker severs’. It accepts job

requests from clients and sends commands to the worker

servers, which in turn manage thread units. QueueLinker

Figure 9 A Virtual Module and a Switcher

Figure 10 Pseudo Code of a Switcher

Figure 11 A Push Thread Unit

A 2

B

D

A E

F

Virtual Module

Switcher

0

1 C

public class SwitcherExample extends FlowSwitcherModule<String>
{
@Override
public int execute(String input) {
if (input.length() % 2 == 0)
return 0;

else
return 1;

}
}

Mod 1

Thread Local Router

Mod 2 Mod n

Mod
2

Mod
3

Mod
n

Mod
1

Runnable

Waiting

Thread
Input
Queue

Thread Local Scheduler

(1) (2)

(3)

Push Thread Unit

Q
ue

ue

Mod 3

(4)

Thread
Unit

Thread
Input
Queue

(4) Remote
Computer

Mod
1Command

Queue

Q
ue

ue

Q
ue

ue

Q
ue

ue

Network

uses ZooKeeper3 to communicate among master server,

worker servers, and clients.

Figure 12 shows a worker server and its constituent

thread units. A worker server has a worker local scheduler

that collects operator statistics from thread units, such as

the number of input/output items to/from, and the total

CPU time consumed by, each operator. The proposed

method in [4] can be implemented by using this

mechanism.

6. QueueLinker Applications
QueueLinker can be used to execute widely

applications such as Web crawlers, Web analytics

applications and continuous queries. This section

describes the overview of these applications.

6.1. A Parallel Distributed Web Crawler
QueueLinker can be used to implement a high-speed,

parallel-distributed Web crawler [5]. As Web crawlers

must collect Web data while performing tasks such as the

detection of crawled URLs and the prevention of

consecutive access to a certain Web server, parallel and

distributed crawling is necessary in achieving high-speed

crawling of the extremely high number of URLs that exist

on the Web.

The proposed Web crawler consists of QueueLinker

modules. The logical directed graph of the crawler is

shown in Figure 6. It realizes polite crawling by ensuring

that access to a certain Web server does not occur more

than once in a given interval. Every module is designed

along the data parallel model of QueueLinker, and thus

every module can run on any number of computers and any

number of threads. In other words, the crawler can assign

any computational resources to each module independently.

In addition, the crawler uses data structures that are

temporally and spatially efficient, which allows us to

crawl a large number of URLs with a small amount of

3 Apache ZooKeeper – Home,
http://zookeeper.apache.org/

computational resources. Another positive effect of the

QueueLinker model is that it enables us to analyze Web

data in real-time using the flow of data between modules.

We can also easily customize the crawler by changing the

module implementation.

QueueLinker enables monitoring of the crawling

progress. Figure 13 shows a visualization of a crawling for

the Internet with 4 computers. Statistics on the number of

items processed by each module and the amount of

resources consumed by each module can be obtained with

the help of the QueueLinker statistics mechanism.

6.2. Web Analytics Application
As other applications, we have been developing Web

data analytics applications. One of those applications is

TV chatter extraction from Twitter. People now post their

opinions about TV programs for Twitter when they are

watching TV. Such tweets can be used for audience

analysis. We have been implementing such application by

using QueueLinker and Hadoop to extract them in

real-time as shown in Figure 14.

6.3. Continuous Queries
The mechanism of QueueLinker supports the

implementation of useful applications, including

“continuous query [6],” which has been studied in the

field of database science since the early 2000s. A

relational continuous query can usually be described using

an SQL-like language [7] and compiled to a plan tree

consisting of relational algebra operators. When a tuple

arrives to the system, the tuple is pushed into a leaf of the

plan tree and the plan tree generates the result of the

query.

QueueLinker can also be used to execute continuous

Figure 12 Thread Units on a Worker Server

Figure 13 Crawling for the Internet with 4

Computers (Each Computer is

Represented as a Yellow Rectangle)

Thread
Unit

Thread
Input
Queue

Thread
Unit

Thread
Input
Queue

Thread
Unit

Thread
Input
Queue

Worker Local Scheduler

Thread
Unit

Thread
Input
Queue

Thread
Unit

Thread
Input
Queue

Thread
Unit

Thread
Input
Queue

query by implementing a relational algebra operator as a

module, and the corresponding plan tree can be described

using a logical directed graph. Thus, QueueLinker is

useful in executing continuous query in a

parallel-distributed environment.

7. Conclusion
This paper described the proposed QueueLinker

framework. QueueLinker adopts a producer–consumer

programming model, and accepts a Java module

implementation along with a logical directed graph. Based

on these, it automatically executes each module in the

graph in parallel-distributed manner. Data generated by a

module is automatically serialized and transferred to other

modules across the computational network, even if they

are running on other computers. Programmers do not need

to write multi-threaded programs or network

communication procedures.

Acknowledgement
This research was supported by grant from JST

“Multimedia Web Analysis Framework towards

Development of Social Analysis Software”

References
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” In Proceedings
of the 6th Symposium on Operating Systems Design
and Implementation (OSDI), pp.137-250, San
Francisco, US-CA, Dec. 2004.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks,” In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems (EuroSys), pp.59-72, Lisbon,
Portugal, Mar. 2007.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and D.
Thomas, “Operator scheduling in data stream
systems,” The VLDB Journal, Vol.13, pp.333-353,

2004.

[4] T. Ueda, S. Akioka and H. Yamana, “Low Latency
Data Stream Processing on Multi-core CPU
Environments,” IEICE Transactions on Information
and Systems, Vol. 96, no. 5, May 2013 (Japanese, To
Appear).

[5] T. Ueda, K. Satoh, D. Suzuki, K. Uchida, K.
Morimoto, S. Akioka, H. Yamana, “A Parallel
Distributed Web Crawler Consisting of
Producer-Consumer Modules,” IPSJ Transaction
Database, vol. 57, Mar. 2013 (Japanese, To Appear).

[6] S. Chakravarthy and Q. Jiang. Stream Data
Processing: A Quality of Service Perspective.
Springer, 2009.

[7] A. Arasu, S. Babu, and J. Widom, “The CQL
continuous query language: semantic foundations and
query execution,” The VLDB Journal, vol.15,
pp.121-142, Jun. 2006.

Figure 14 TV Chatter Extraction

