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Abstract  With the development of computer systems, many more devices are being connected to the network and 

generating ‘data stream.’ Analyzing data streams in real-time offers valuable information about human activities and 

contributes to many information services. QueueLinker enables programmers to build data stream processing applications by 

implementing application modules that use a producer–consumer model, and specifying a logical directed graph representing 

the data-flow connections between these modules. Each module is automatically instantiated and executed in parallel 

according to the logical directed graph. The data generated by a module is automatically serialized and transferred to other 

modules across the network, relieving the programmer of complex multi-threading and communication implementations. In 

addition, data parallel model of QueueLinker helps the developers to realize parallel processing without concurrency control. 
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1. Introduction 
Recent advancements in commodity computer 

hardware have made parallel-distributed computing 

available for everyone. As CPU manufacturers have 

decided to increase the number of cores on a CPU instead 

of increasing individual core frequency, the resulting 

plummet in personal computer prices has allowed for the 

ownership of shared-nothing clusters at a low cost. In 

order to take full advantage of recent computer hardware 

performance, developers must now become familiar with 

parallel-distributed computing; however, most developers 

want to avoid implementing concurrency control and 

network communication procedures, as these have proven 

difficult to program. 

These factors have led to the development of 

parallel-distributed computation frameworks such as 

Google MapReduce [1] and Dryad [2]. Apache Hadoop1, 

an open source implementation of MapReduce, is now 

widely used for processing big data. It realizes distributed 

computing for large data without requiring user 

implementation of network communications. In the 

MapReduce programming context, developers are tasked 

with identifying and defining the data parallelism of their 

applications, after which the framework can scale out data 

processing by simply distributing job to available 

computation nodes. The effectiveness of this kind of 

parallelism is a major reason why Hadoop enjoys broad 

                                                                 
1 Welcome to Apache Hadoop!, http://hadoop.apache.org/ 

success in processing big data. Now, it is used to process 

variety of big data. 

With the internet now a common component of our 

infrastructure and the connection of many mobile devices 

to the network, our lifestyles have changed dramatically 

since MapReduce was introduced in 2004. A constant 

stream of information is now posted to social network 

services with 400 million Twitter tweets generated 

worldwide per day 2  and the number of digital sensors 

generating ‘data streams’ that contain valuable 

information has increased considerably. The analysis of 

data streams in real-time is important in many applications 

including—among others—social analysis, stock market 

predicting, and healthcare monitoring. 

Advances in information technology have 

corresponded to an increase in the number of mobile 

devices and sensors, which in turn has resulted in the 

generation of large numbers of data streams, and 

processing numerous large streams requires 

parallel-distributed computing. Processing data streams in 

real-time presents programming difficulties owing to the 

fact that applications must handle multiple data sources, 

wait for data arrival, and receive data via the network. 

Because it is difficult for many programmers to consider 

these factors, it is vital that a framework for real-time, 

parallel-distributed data-stream processing be developed. 
                                                                 

2 Twitter hits 400 million tweets per day, mostly mob
ile, http://news.cnet.com/8301-1023_3-57448388-93/twitt
er-hits-400-million-tweets-per-day-mostly-mobile/ 



 

 

With this in mind, we have been developing 

QueueLinker, a framework for parallel distributed 

data-stream processing. QueueLinker enables 

programmers to build data stream processing applications 

by implementing application modules that use a producer–

consumer model, and specifying a logical directed graph 

representing the data-flow connections between these 

modules. Each module is automatically instantiated and 

executed in parallel according to the logical directed 

graph. The data generated by a module is automatically 

serialized and transferred to other modules across the 

network, relieving the programmer of complex 

multi-threading and communication implementations. In 

addition, data parallel model of QueueLinker helps the 

developers to realize parallel processing without 

concurrency control. 

This paper is organized as follows. Section 2 

describes the programming interface of QueueLinker. 

Section 3 describes the data parallel model of 

QueueLinker. Section 4 describes how to define a logical 

directed graph representing data-flow between modules. 

Section 5 describes the software architecture of 

QueueLinker. Section 6 explains several applications 

implemented by using QueueLinker. Section 7 concludes 

this paper. 

 

2. Programming Interface of QueueLinker 
In QueueLinker, a module is a software processing 

unit implemented according to the producer–consumer 

model commonly described in design patterns for 

multi-threaded programming. Under the producer–

consumer model, a module processes input item(s) and 

generates a result. Modules communicate with each other 

using queues. A module sending an item to another module 

puts the item into the input queue of the destination 

module. Because modules are not meant to share their 

internal states, an arbitrary number of threads can be 

assigned to each, and they can be executed in parallel on 

multiple computers to achieve greater speed. 

QueueLinker presents a Java API for constructing 

producer–consumer modules of four major types: push 

modules, pull modules, source modules and sink modules. 

Push module interface is designed for non-blocking 

operations such as filtering and arithmetic operations. Pull 

module interface is designed for blocking operations such 

as file I/O and receiving data from external data sources. 

Source module interface is designed for providing data to 

other modules from external data sources. Sink module 

interface is designed for storing data in secondary storage 

or visualizing application window to a user. 

2.1. Push Module Interface 
Figure 1 shows pseudo code for a push module. In 

this example, the module has two input queues and an 

output queue. An item transferred from another module is 

passed through the variable ‘item’. The queue that the 

item was put into is identified by the variable ‘queueId’. 

The module processes an input item and then returns a 

string as a result. Processing can differ depending on the 

input queue the item was put into. If the module returns 

null, QueueLinker sends no data to the next module. This 

mechanism helps us implement modules for filtering of 

data. 

Because QueueLinker uses a push thread unit 

(described in 5.1) to execute multiple push modules, a 

push module cannot use an infinite loop or perform 

blocking operations like file I/O. If a push module does 

not return, other push modules will not be executed. 

2.2. Pull Module Interface 
Figure 2 shows pseudo code for a pull module. In this 

example, the module pulls an item from an input queue 

and then outputs a string toward an output queue. 

QueueLinker assigns a dedicated thread to each instance 

of the pull module. Thus, a pull module implementation 

 

 

Figure 1  Pseudo Code of a Push Module 

 

 
Figure 2  Pseudo Code of a Pull Module 

 

public class ExamplePushModule extends PushModule<String, String>
{

@Override
public String execute(String item, int queueId)
{

if (queueId == 0)
return "Waseda";

else if (queueId == 1)
return "University";

return null;
}

}

public class ExamplePullModule extends PullModule<String, String> {

@Override
public void execute(InputStaff<String>  inputStaff,

OutputStaff<String> outputStaff,
QueueLinkerService service)

{
InputQueue<String> input  = inputStaff.getDefaultInputQueue();
OutputQueue<String> output = outputStaff.getDefaultOutputQueue();

while (!service.stopRequested()) {
try {

String item = input.take();

/* Something to do and generate newStr */

output.put(newStr);
} catch (InterruptedException e) {}

}
}



 

 

can make use of an infinite loop, which is useful for 

implementing blocking operations. To do this, the 

blocking operation is simply written inside an infinite 

loop in a pull module. 

2.3. Source Module Interface 
Figure 3 shows pseudo code for a source module. A 

source module has no input queue and has only one output 

queue. A data source is typically used to provide data to 

other modules from external data sources. For example, a 

data source may leverage the Twitter API to feed tweets to 

the system. QueueLinker can manage multiple data 

sources and automatically duplicate the data if multiple 

modules need the data from a single data source. 

2.4. Sink Module Interface 
QueueLinker also provides an interface for data sink. 

A sink module has one input queue and no output queue, 

and is typically used to store data in secondary storage or 

present that data in visualize window to a user. Figure 4 

shows pseudo code for a sink module. 

 

3. Data Parallel Execution 
This section describes how QueueLinker executes 

modules in a parallel-distributed way. Figure 5 shows an 

example consisting of three execution patterns for two 

modules, “Tweets Parse” and “Word Count”. A rectangle 

with a dashed line represents a computer and each 

rectangle represents a thread executing a module instance. 

The “Tweets Parse” module parses a tweet and outputs the 

extracted words from the tweet. The “Word Count” module 

counts the number of appearance of each word. 

In pattern (1) of the figure, only one instance is 

created for each module and a thread is assigned to the 

module. Thus, “Tweets Parse” and “Word Count” run on 

different threads. 

In the general producer–consumer model, an instance 

is executed by multiple threads. Thus, modules must be 

implemented for thread-safety by using concurrency 

control to avoid inconsistency. Concurrency control can be 

an especially difficult task, and even when it performed 

properly, the possibility of lock contention will increase 

with the number of threads executing the instance. To 

solve this problem, QueueLinker uses data parallel 

execution with a hash partitioning technique to ensure that 

each instance of a module is executed by only one 

dedicated thread, allowing the programmer to implement 

modules without concurrency control. 

For example, in pattern (2) of the figure, a word is 

transferred to one of the two “Word Count” instances 

depending on the hash value. QueueLinker automatically 

transfers words that have the same hash value to the same 

instance. This mechanism eliminates the need for 

concurrency control of the module because each instance 

is executed by only one thread. Note that developers must 

specify modules to be executed by this mechanism when 

they define an application; QueueLinker cannot infer 

automatically which modules can be parallelized in this 

way. 

Modules executed in this way do not share their 

internal states with other modules and only communicate 

with other modules via queues. Thus, they can be run on 

any computer. Pattern (3) in the figure shows an example 

of parallel-distributed execution on three computers. 

QueueLinker automatically transfers items between 
 

 

Figure 3  Pseudo Code of a Source Module 

 

 

Figure 4  Pseudo Code of a Sink Module 

 

 
Figure 5  Data Parallel Execution Model of 

QueueLinker 

public class ExampleSourceModule extends SourceModule<String>
{

@Override
public void execute(OutputStaff<String> staff, QueueLinkerService service)
{

OutputQueue<String> output = staff.getDefaultOutputQueue();

while (!service.stopRequested()) {
try {

output.put("Output Something");
} catch (InterruptedException e) {}

}
}

}

public class ExampleSinkModule extends SinkModule<String> {
@Override
public void execute(String input, int queueId) {

/* Something to do */
}

}
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modules, developers do not need to implement network 

communication procedures. 

 

4. Application Definition Using a Logical 

Directed Graph 
A QueueLinker user can build an application by 

specifying connections between modules. The directed 

graph representing these connections is called a ‘logical 

directed graph’. Figure 6 shows a logical directed graph ሺܸ,  ሻ for the proposed Web crawler described in [5]. Eachܧ

node ݒ	 ∈ ܸ is indicated by a rectangle and represents a 

module; each edge ݁ ∈ 	ܧ is indicated by a line and 

represents a connection between two modules. A node in 

the graph is called a ‘logical vertex’ and an edge is called 

a ‘logical edge’. 

Users can specify the parallel execution mode of 

modules as well as connection settings. Figure 7 provides 

pseudo code describing a logical directed graph for the 

application shown in Figure 8. In the code, the execution 

mode of the ‘Word Count’ module is set to data parallel 

mode by hash partitioning the three instances. The 

function of the module is to count the number of 

appearances of each word in tweets. In this case, 

QueueLinker instantiates three instances on different 

threads and transfers each string output from the ‘Morph 

Analyzer’ module to the correct instance based on the hash 

value of the string. Note that the code does not specify 

data parallel mode for the ‘Morph Analyzer’ module. In 

this case, QueueLinker transfers each tweet to one of the 

two instances in round-robin fashion. 

As described above, when QueueLinker accepts 

module implementations and a logical directed graph, it 

realizes parallel distributed execution by automatically 

instantiating the modules on available computers and 

transferring data items between the modules. The 

programmer does not need to know whether transfers 

between modules require network communication. 

4.1. Switcher and Virtual Module 
QueueLinker provides a mechanism called a 

‘switcher’ for choosing a destination module based on the 

result data a module produces. It also offers a mechanism 

called a ‘virtual module’ that allows modules to be reused 

in different data flows. 

The logical directed graph in Figure 9 includes a 

switcher, indicated by a circle containing the number of 

destination modules. Figure 10 provides pseudo code for a 

switcher. The switcher returns an integer specifying the 

destination module. QueueLinker will send an item to a 

module based on this number. For example, in Figure 9, an 

output of module A is sent to B if the switcher returns 0, 

or to C if the switcher returns 1. Thus, the switcher 

provides control over data routing independent of module 

implementation. 

The logical directed graph also includes a virtual 

module, indicated by a rectangle with a dashed line. In the 

logical directed graph, outputs of module B are sent to 

virtual module A. The virtual module is executed using the 

same instance and the thread of module A shown at the far 

left of the figure, but outputs of the virtual module are 

sent to module D. Thus, the virtual module makes it 

possible to reuse a module in a different data flow. For 

example, the Web crawler described in [5] uses multiple 

switchers and virtual modules. The logical directed graph 

 

 

Figure 6  An Example of a Logical Directed Graph 

(Our Proposed Web Crawler Described in [5]) 

 

 

 

Figure 7  Pseudo Code Describing an Application 

and Submitting the Job 

 

 
Figure 8  A Logical Directed Graph Described by 

the Code in Figure 7 
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LogicalGraph graph = new LogicalGraph();
LogicalVertex twitter       = graph.addLogicalVertex(TwitterDataSource.class);
LogicalVertex morphAnalyzer = graph.addLogicalVertex(MorphAnalyzer.class, 2);
LogicalVertex wordCount = graph.addLogicalVertex(WordCount.class, 3, PMode.Hash);
LogicalVertex ui = graph.addLogicalVertex(UI.class);

graph.addLogicalEdge(twitter,       morphAnalyzer);
graph.addLogicalEdge(morphAnalyzer, wordCount);
graph.addLogicalEdge(wordCount,     ui);

QueueLinkerClient client = QueueLinkerClientFactory.getClient();
QueueLinkerJob job = new QueueLinkerJob(graph);
JobHandle handle = client.startJob(job);



 

 

of the crawler is shown in Figure 6. Despite being simple 

mechanisms, the switcher and virtual module are 

indispensable for describing a complex logical directed 

graph efficiently. 

 

5. Software Architecture 
This section provides an overview of the software 

architecture of QueueLinker. QueueLinker uses several 

software mechanisms to execute modules and control 

execution. 

5.1. Push Thread Unit 
A push thread unit is designed to execute multiple 

push modules and sink modules as illustrated in Figure 11. 

A push thread unit has a “thread local scheduler” and a 

“thread local router” for handling multiple modules. An 

item to be processed by a module in a thread unit is put 

into the “thread input queue”. The thread unit fetches the 

item from the queue, and the thread local router, according 

to the logical directed graph, determines which module 

will process the item. It then sends the item to the input 

queue of that module. The thread local scheduler then 

chooses an executable module and executes it. When an 

item is produced from the executed module, the thread 

local router determines the destination of that item. If the 

destination module runs in data parallel mode, the local 

router calculates the hash value of the output item and 

transfers it to the appropriate thread unit. If the 

destination module is running in a thread unit on a remote 

computer, QueueLinker transfers the item to that computer, 

using a thread unit dedicated for network communication. 

A thread unit can ‘busy wait’ for items to arrive in the 

thread input queue, and the CPU core that a thread unit 

runs on can be controlled using system calls like 

sched_setaffinity on Linux. ‘Busy wait’ is important for 

achieving low latency execution of continuous queries 

(described in [4]). In addition, a push thread unit has a 

mechanism for collecting statistics on operator execution, 

such as the number of input/output items to/from, and the 

total CPU time consumed by, each operator. Note that the 

scheduler and the router in a push thread unit are only 

used by that thread unit, and thus do not require any 

concurrency control. 

A number of optimizations should be considered for 

the thread local scheduler, since the strategy of the 

scheduler will affect the processing latency, throughput 

and memory consumption of applications. QueueLinker 

normally uses a FIFO scheduler, but other algorithms, 

such as Chain [3], can be substituted. 

5.2. Pull Thread Unit 
A pull thread unit executes only one pull or source 

module. It must execute that pull module on a single 

thread, since a pull thread unit may contain an infinite 

loop (as described in 2.2) and may therefore refuse to 

yield to other modules. Like the push thread unit, a pull 

thread unit has a thread local router to determine the 

transfer route of each result, but unlike the push thread 

unit, it does not have a local scheduler, since it does not 

execute multiple modules. Other mechanisms of the pull 

thread unit are nearly identical to those of the push 

module unit, and are therefore omitted. 

5.3. Master and Worker Server 
QueueLinker uses a master server to manage all 

computation nodes, or ‘worker severs’. It accepts job 

requests from clients and sends commands to the worker 

servers, which in turn manage thread units. QueueLinker 

 

Figure 9  A Virtual Module and a Switcher 

 

 
Figure 10  Pseudo Code of a Switcher 

 

 

Figure 11  A Push Thread Unit 
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uses ZooKeeper3 to communicate among master server, 

worker servers, and clients. 

Figure 12 shows a worker server and its constituent 

thread units. A worker server has a worker local scheduler 

that collects operator statistics from thread units, such as 

the number of input/output items to/from, and the total 

CPU time consumed by, each operator. The proposed 

method in [4] can be implemented by using this 

mechanism. 

 

6. QueueLinker Applications 
QueueLinker can be used to execute widely 

applications such as Web crawlers, Web analytics 

applications and continuous queries. This section 

describes the overview of these applications. 

6.1. A Parallel Distributed Web Crawler 
QueueLinker can be used to implement a high-speed, 

parallel-distributed Web crawler [5]. As Web crawlers 

must collect Web data while performing tasks such as the 

detection of crawled URLs and the prevention of 

consecutive access to a certain Web server, parallel and 

distributed crawling is necessary in achieving high-speed 

crawling of the extremely high number of URLs that exist 

on the Web. 

The proposed Web crawler consists of QueueLinker 

modules. The logical directed graph of the crawler is 

shown in Figure 6. It realizes polite crawling by ensuring 

that access to a certain Web server does not occur more 

than once in a given interval. Every module is designed 

along the data parallel model of QueueLinker, and thus 

every module can run on any number of computers and any 

number of threads. In other words, the crawler can assign 

any computational resources to each module independently. 

In addition, the crawler uses data structures that are 

temporally and spatially efficient, which allows us to 

crawl a large number of URLs with a small amount of 

                                                                 
3 Apache ZooKeeper – Home, 
http://zookeeper.apache.org/ 

computational resources. Another positive effect of the 

QueueLinker model is that it enables us to analyze Web 

data in real-time using the flow of data between modules. 

We can also easily customize the crawler by changing the 

module implementation. 

QueueLinker enables monitoring of the crawling 

progress. Figure 13 shows a visualization of a crawling for 

the Internet with 4 computers. Statistics on the number of 

items processed by each module and the amount of 

resources consumed by each module can be obtained with 

the help of the QueueLinker statistics mechanism. 

6.2. Web Analytics Application 
As other applications, we have been developing Web 

data analytics applications. One of those applications is 

TV chatter extraction from Twitter. People now post their 

opinions about TV programs for Twitter when they are 

watching TV. Such tweets can be used for audience 

analysis. We have been implementing such application by 

using QueueLinker and Hadoop to extract them in 

real-time as shown in Figure 14. 

6.3. Continuous Queries 
The mechanism of QueueLinker supports the 

implementation of useful applications, including 

“continuous query [6],” which has been studied in the 

field of database science since the early 2000s. A 

relational continuous query can usually be described using 

an SQL-like language [7] and compiled to a plan tree 

consisting of relational algebra operators. When a tuple 

arrives to the system, the tuple is pushed into a leaf of the 

plan tree and the plan tree generates the result of the 

query. 

QueueLinker can also be used to execute continuous 

 
Figure 12  Thread Units on a Worker Server 

 

 

Figure 13  Crawling for the Internet with 4 

Computers (Each Computer is 

Represented as a Yellow Rectangle) 
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query by implementing a relational algebra operator as a 

module, and the corresponding plan tree can be described 

using a logical directed graph. Thus, QueueLinker is 

useful in executing continuous query in a 

parallel-distributed environment. 

 

7. Conclusion 
This paper described the proposed QueueLinker 

framework. QueueLinker adopts a producer–consumer 

programming model, and accepts a Java module 

implementation along with a logical directed graph. Based 

on these, it automatically executes each module in the 

graph in parallel-distributed manner. Data generated by a 

module is automatically serialized and transferred to other 

modules across the computational network, even if they 

are running on other computers. Programmers do not need 

to write multi-threaded programs or network 

communication procedures. 
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