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Abstract This paper studies the problem of top-k distance-based outlier detection on uncertain data. In this

work, an uncertain object is modelled by a Gaussian probability density function. Since the Naive approach is

very expensive due to costly distance function between uncertain objects, a populated-cell list (PC-list) based top-k

distance-based outlier detection approach is proposed in this work. Where PC-list is a sorted list of non-empty

cells of a grid (grid is used to index dataset objects). Using PC-list, the top-k outlier detection algorithm needs

to consider only a fraction of dataset objects and hence quickly identifies candidate objects for top-k outliers. An

extensive empirical study shows that our proposed approach is effective, efficient and scalable.
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1. Introduction

Outlier detection is one of the most important data min-

ing techniques with vital importance in many application

domains including credit card fraud detection, network in-

trusion detection, environment monitoring, etc. Hawkins [1]

defines an outlier as an observation that deviates so much

from other observations as to arouse suspicion that it was

generated by a different mechanism.

Most of the earliest outlier detection techniques were given

by statistics [2]. However, most statistical techniques are uni-

variate, and in the majority of techniques, the parameter of

distribution is difficult to determine. In order to overcome

these problems several distance-based approaches for outlier

detection have been proposed in data mining [3], [4], [5].

Most of the outlier detection techniques proposed in data

mining are suitable only for deterministic data. However,

due to the incremental usage of sensors, RFIDs and similar

devices for data collection these days, data contains certain

degree of inherent uncertainty [6], [7], [8]. The causes of un-

certainty may include but are not limited to limitation of

equipments, absence of data, inconsistent supply voltage and

delay or loss of data in transfer [6]. In order to get reliable

results from such data, uncertainty needs to be considered

in calculation. Therefore in this work we study the problem

of top-k distance-based outlier detection on uncertain data.

This paper assumes that uncertainty in the values obtained

from a sensor follows Gaussian distribution.

In the following, uncertainty of data is modelled by the

most commonly used PDF, i.e., Gaussian distribution. Since

the actual distance function is very costly to compute, we

introduce a populated-cell list (PC-list) based top-k outlier

detection technique. PC-list is a sorted list of non-empty

cells of a d-dimensional grid, where grid is used to index our

data. Using PC-list, our top-k outlier detection algorithm

needs to consider only a fraction of the dataset objects and

hence quickly identifies candidate objects for top-k outliers.

The rest of the paper is organized as follows. Sec.2. sur-

veys the related work. Sec.3. formally defines top-k distance-

based outlier detection on uncertain datasets. Its naive ap-

proach is given in Sec.4.. The PC-list and top-k algorithm

are presented in Sec.5.. Sec.6. contains an extensive exper-

imental evaluation that demonstrates the efficiency and of

proposed techniques. Sec.7. concludes our paper.

2. Related Work

Distance-based outliers detection approach was introduced

by Knorr, et al. in [3]. They defined a point p to be an outlier

if at most M points are within D-distance of p. They also

presented a Cell-based approach to efficiently compute the

distance-based outliers. [9] formulated distance-based out-

liers as the top-t data points whose distance to their κth near-

est neighbour is largest. Angiulli et al. in [10] gave a slightly

different definition of outliers than [9] by considering the av-

erage distance to their k nearest neighbour. Besides, there

are some works on the detection of distance-based outliers

over stream data including [5] and [11]. Both of these works

are based on the Knorr, et al. definition of distance-based



outliers. Furthermore, [11] gave an approximate algorithm

to reduce the memory space required by its exact counter-

part. Later on [5] extended [11] work by adding the concepts

of multi-query and micro-cluster based distance-based out-

lier detection. A geometric approach of outlier detection has

also been proposed in [12]. The proposed solution is only

suitable for identifying abnormal nodes from the cluster of

nodes placed nearby and not valid for the problem when

the measurements of a single node is classified as outliers,

based on the nodes past measurements. However all these

approaches were given for deterministic data and could not

handle uncertain data.

Recently a lot of research has focused on managing, query-

ing and mining of uncertain datasets [13], [14]. The problem

of outlier detection on uncertain datasets was first studied

by Aggarwal, et al. in [13]. They represented an uncertain

object by a PDF. They defined an uncertain object o to be

a density-based (δ, η) outlier, if the probability of o exist-

ing in some subspace of a region with density at least η is

less than δ. However, their work focuses on detecting out-

liers in subspaces. In practise, an outlier in subspace is not

necessarily an outlier in full space as argued in [4]. [14] also

proposed a distance-based outlier detection algorithm on un-

certain datasets, which was later extended in [15] for prob-

abilistic data streams. However in their works, an object’s

existential uncertainty is considered rather than representing

an object by a PDF as in our work.

In [16], we proposed a cell-based approach of distance-

based outlier detection on uncertain data. According to [16],

an uncertain object o is a distance-based outlier if the ex-

pected number of objects lying within its D-distance is not

greater than θ = N(1−p), where N is the number of objects

in the dataset and p is the fraction of objects that lie farther

than D-distance of o. In practise parameter p is difficult to

determine and is dependent on N . An arbitrary value of p

may results in a very few or a lot of outliers for different N .

Moreover from [16], we cannot obtain the outlier’s ranking.

Therefore in this work, we propose PC-list based approach

of top-k distance-based outlier detection, which can always

obtain k strongest outliers along with their ranking, provided

k <= N .

3. Distance-based Outliers in Uncertain

Data

The very first definition of distance-based outlier detection

was given by Knorr, et al. in [3]. They defined distance-based

outliers as follows.

Definition 1. An object o in a dataset DB is a distance-

based outlier, if at least fraction p of the objects in DB lies

greater than distance D from o.

This definition was given for deterministic data. However,

the focus of this work is the detection of top-k outliers on

a dataset whose attribute values are uncertain. We assume

that the uncertainty is given by Gaussian distribution. In

the following, we consider d-dimensional uncertain objects

oi, with attribute
−→Ai = (xi,1, ..., xi,d)

T following Gaussian

PDF with mean −→µi = (µi,1, ..., µi,d)
T and co-variance matrix

Σi = diag(σ2
i,1, ..., σ

2
i,d), respectively. The complete database

consists of a set of such objects, GDB = {o1, ..., oN}, where
N = |GDB| is the number of uncertain objects in GDB.

The vector
−→Ai is a random variable that follows Gaussian

distribution
−→Ai ∼ N (−→µi,Σi).

We assume that the observed coordinates (attribute val-

ues) are vectors −→µi of the objects which follow Gaussian dis-

tribution. Based on this assumption, in the rest of the paper

we will use −→µi to denote the real observed coordinates (at-

tribute values) of object oi.

3. 1 Top-k Distance-based Outliers in Uncertain

Data

We naturally extend Definition 1 for top-k distance-based

outliers on uncertain datasets as follows.

Definition 2. The top-k distance-based outliers are the k

uncertain objects in the dataset GDB for which the expected

number of objects lying within D-distance is smallest.

We call objects that lie within the D-distance of an object

o as D-neighbours of o, and denote the set of D-neighbours

of o as DN(o). In order to find distance-based outliers in

GDB, the distance between uncertain objects needs to be

calculated, which is given by another distribution known as

the Gaussian difference distribution [18]. Let
−→
Ai and

−→
Aj

be two independent d-dimensional normal random vectors

with means −→µi = (µi,1, ..., µi,d)
T and −→µj = (µj,1, ..., µj,d)

T

and diagonal covariance matrices Σi = diag(σ2
i,1, ..., σ

2
i,d)

and Σj = diag(σ2
j,1,..., σ

2
j,d), respectively. Then

−→
Ai −

−→
Aj =

N (−→µi −−→µj ,Σi+Σj) [18]. Let Pr(oi, oj , D) denotes the prob-

ability that oj ∈ DN(oi). Then,

Pr(oi, oj , D) =

∫
R

N (−→µi −−→µj ,Σi +Σj)d
−→A , (1)

where R is a sphere with centre (−→µi−−→µj) and radius D. Here

we only give the 2-dimensional expression for Pr(oi, oj , D).

However, the expressions for higher dimensional cases can

be obtained using Eq. 1. Let oi and oj be two 2-dimensional

uncertain objects with attributes
−→
Ai ∼ N (−→µi,Σi) and

−→
Aj ∼

N (−→µj ,Σj), where −→µi = (µi,1, µi,2)
T , −→µj = (µj,1, µj,2)

T ,

Σi = diag(σ2
i,1, σ

2
i,2) and Σj = diag(σ2

j,1, σ
2
j,2). Assuming

that σi,1 = σj,1 = σi,2 = σj,2 = σ, Pr(oi, oj , D) is given as

follows.



Pr(oi, oj , D) =
1

4πσ2∫ D

0

∫ 2π

0

exp

(
−1

4σ2

(
r2 − 2αr cos θ + α2)) r dθ dr. (2)

where α2 = α2
1+α

2
2 and α1 = µi,1−µj,1 and α2 = µi,2−µj,2.

For the proof of Eq. 2, please refer to our previous work [16].

Note that Pr(oi, oj , D) only depends on α2 but not on co-

ordinates of oi and oj . Hence we can denote Pr(oi, oj , D)

by Pr(α,D) when there is no confusion. Computing this

probability is usually very costly, and we have to avoid this

computation as much as possible.

4. Naive Approach

The Naive approach of the top-k outlier detection given in

Alg. 1 uses Nested-loop. The approach includes the evalua-

tion of the distance function between each object oi ∈ GDB
and every other object in the GDB until oi can be decided

as a top-k outlier or inlier. In the worst case this approach

requires the evaluation of O(N2) distance functions. Usually

it is very expensive.

Algorithm 1 The top-k Naive Approach

Input: GDB, D, k

Output: Top-k Distance-based Outliers

1: N ← |GDB|, θ ←∞;

2: Cobj ← ϕ (Sorted list of candidate top-k outliers);

3: for each oi in GDB do

4: EN(oi)← 0; (expected number of D-neighbours of oi)

5: for each oj in GDB do

6: EN(oi)+ = Pr(oi, oj , D);

7: if EN(oi) > θ then GOTO next oi;

8: end for

9: Insert oi and EN(oi) into Cobj (Cobj is sorted in ascending

order w.r.t. EN(oi));

10: if |Cobj | > k then

11: Set θ = EN(o′), where o′ is the kth object in Cobj ;
12: Remove all o′′ ∈ Cobj , such that EN(o′′) > θ;

13: end if

14: end for

15: return Cobj ;

5. The Populated-Cells List (PC-list)

The Naive approach requires a lot of computation time to

detect top-k outliers even from a small dataset due to the

costly distance calculation. To overcome this problem we

propose a PC-list-based approach of top-k outlier detection.

PC-list is an array of non-empty cells of a d-dimensional

grid containing uncertain data objects o ∈ GDB. The PC-

list helps in the detection of top-k distance-based outliers by

identifying the cells containing candidate outliers.
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Figure 1: Cell Layers and Bounds Region

Lemma 1. Let oi, oj ∈ GDB be two d-dimensional uncer-

tain objects following Gaussian distribution and α denotes

the ordinary Euclidean distance between the means of oi and

oj . Then for t ∈ R, denoting the number of standard devia-

tions required to enclose a large probability (say > 99%) of

a d-dimensional Gaussian distribution, the following state-

ments hold.

(a) If α <= D − tσ, Pr(oi, oj , D) ≈ 1.

(b) If α >= D + tσ, Pr(oi, oj , D) ≈ 0.

Proof. The number of standard deviations s needed to

enclose a given probability for a d-dimensional random vari-

able X following Gaussian distribution can be obtained us-

ing the expression Pr{dM (X,µ) <= s} = Gd(s
2) [?], where

dM (X,µ) =
√

(X − µ)T
∑−1(X − µ) is the Mahalanobis

distance and Gd(s
2) is the CDF of the chi-squared distri-

bution with d-degrees of freedom.

Hence if t denotes the value of s, such that Pr{dM (X,µ) <= t}
covers a large area of Gaussian distribution (say > 99%),

then for α <= D − tσ, Pr(oi, oj , D) ≈ 1 and for α >= D +

tσ, Pr(oi, oj , D) ≈ 0�
5. 1 Structure

In order to find the top-k distance-based outliers from an

uncertain dataset using PC-list, we first quantize each ob-

ject o ∈ GDB, to a d-dimensional space that is partitioned

into cells of length l (The cell length is discussed in Sec.

5. 3). Let Cψ1,...,ψd be any cell in grid G, where positive inte-
gers ψ1, ..., ψd denote the cell indices. The layers (L1, ..., Ln)

of Cψ1,...,ψd ∈ G are the neighbouring cells of Cψ1,...,ψd , as

shown in Fig. 1 and are defined as follows.

L1(Cψ1,...,ψd) ={Cx1,...,xd |x1 = ψ1 ± 1, ..., xd = ψd ± 1,

Cx1,...,xd |= Cψ1,...,ψd} .

L2(Cψ1,...,ψd) = {Cx1,...,xd |x1 = ψ1 ± 2, ..., xd = ψd ± 2,

Cx1,...,xd /∈ L1(Cψ1,...,ψd), Cx1,...,xd |= Cψ1,...,ψd} .

L3(Cψ1,...,ψd), ..., Ln(Cψ1,...,ψd) are defined in a simi-

lar way. We will use C to denote Cψ1,...,ψd when

there is no confusion. Let RD−tσ(C) denotes the re-

gion formed by
⌊
D−tσ
l
√
d

− 1
⌋

neighbouring layers of C ∈



G. Then PC-list (PC) is a table containing a tuple

(ψ1, ..., ψd, C(C), CD−tσ(C)), denoted by ti(0 < i <= |PC|),
for each non-empty cell C ∈ G as shown in Fig.2. Here,

ψ1, ..., ψd are the indices of C, C(C) is the object count of C,

and CD−tσ(C) is the object count within cells in RD−tσ(C)

(including C itself). The region RD−tσ(C) is chosen in

such a way that for each oi ∈ C and oj ∈ RD−tσ(C),

Pr(oi, oj , D) ≈ 1. The tuples in the PC-list are sorted in the

ascending order of CD−tσ(C) column. The idea behind sort-

ing is that outliers tend to exist in sparse region rather than

dense regions. Sorting tuples in the PC-list, lets us identify

and process cells in sparse regions before dense regions and

makes pruning effective. Since each ti ∈ PC corresponds to

a cell C ∈ G, we will use Cti to denote the cell referred by

tuple ti.
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Figure 2: PC-list building

5. 2 Cell Bounds

In order to identify cells Cti ∈ PC, containing only in-

liers or candidate top-k outliers, their bounds on the ex-

pected number of D-neighbours are useful. A cell Cti can

be pruned as an inlier cell if the minimum expected num-

ber of D-neighbours for any object in cell Cti is greater

than threshold θ (θ is discussed later in this section). Sim-

ilarly a cell can be identified as containing top-k outliers if

the maximum expected number of D-neighbours for any ob-

ject in Cti is less than θ. Since the Gaussian distribution

is unbounded, Pr(oi, oj , D) is always greater than zero for

oi, oj ∈ G. Therefore all the cells in PC-list need to be con-

sidered for the computation of bounds of Cti ∈ PC. Since

our distance function depends only on α, that is, the dis-

tance between the means of two objects rather than their co-

ordinates, we need to compute distance between cells in PC-

list in order to compute their bounds. Beside distance be-

tween cells, pre-computed Pr(α,D) values and object count

of each Cti ∈ PC are also required for the computation of

Cti ∈ PC bounds.

Distance between Cells: Let Ctp and Ctq are two cells

in PC with indices ψp1, ..., ψpd and ψq1, ..., ψqd respectively.

Let ∆min(Ctp, Ctq) and ∆max(Ctp, Ctq) denote the minimum

and maximum ordinary Euclidean distances between cells

Ctp and Ctq respectively. Distance between cells depend on

the position of cells Ctp and Ctq in the grid G and can be

defined as follows.

∆min(Ctp, Ctq) = l ∗ (
d∑
s=1

δ2min,s)
1/2

where δmin,s =


ψps − (ψqs + 1) ψps > ψqs

(ψps + 1)− ψqs ψps < ψqs

ψps − ψqs ψps = ψqs

∆max(Ctp, Ctq) = l ∗ (
d∑
s=1

δ2max,s)
1/2

where δmax,s =

(ψps + 1)− ψqs ψps >= ψqs

ψps − (ψqs + 1) ψps < ψqs

Now we can obtain bounds for cells in PC-list using pre-

computed Pr(α,D) values and the information available in

PC-list. Let LB(Pr(Ctp, Ctq)) and UB(Pr(Ctp, Ctq)) de-

note the Pr(α,D) values at minimum α >= ∆max(Ctp, Ctq)

and maximum α <= ∆min(Ctp, Ctq) respectively. Then for

Cti ∈ PC, LB(Cti) = (
∑
C′

ti∈PC
LB(Pr(Cti, C

′
ti)) ∗ C(C′

ti))

and UB(Cti) = (
∑
C′

ti∈PC
UB(Pr(Cti, C

′
ti)) ∗ C(C′

ti)).

Let RD+tσ(C) denotes a region formed by
⌈
D+tσ
l

⌉
neigh-

bouring layers of cell C ∈ G as shown in Fig. 1. Region

RD+tσ(C) is chosen in such a way that for each oi ∈ C and

oj /∈ RD+tσ(C), Pr(oi, oj , D) approaches zero. Since the ma-

jor contribution in the bounds for C ∈ G is done by the cells

in region RD+tσ(C), we redefine the bounds for Cti ∈ PC,

to reduce the number of pre-computations and bounds com-

putation time, as follows.

LB(Cti) =
∑

C′
ti∈{PC∩RD+tσ(Cti)}

LB(Pr(Cti, C
′
ti)) ∗ C(C′

ti).

UB(Cti) =
∑

C′
ti∈{PC∩RD+tσ(Cti)}

UB(Pr(Cti, C
′
ti)) ∗ C(C′

ti)

+ Pr(α′, D) ∗ (N −
∑

C′
ti∈{PC∩RD+tσ(Cti)}

C(C′
ti).

where α′ = D + tσ, for cell objects that lie greater than

D + tσ distance from the target cell Cti.

Number of Pre-computations: Since we compute

bounds using the cells in region RD+tσ(C), Pr(α,D) val-

ues need to be computed only for the neighbouring layers

within D + tσ distance of any cell. For ⌈D+tσ
l

⌉ neighbour-

ing layers, we require 2⌈D+tσ
l

⌉ pre-computations. Two more

pre-computations are required for the cell C itself and the

objects that lie greater than D + tσ distance of any cell.

Hence the total number of pre-computations required are

only 2⌈D+tσ
l

⌉+ 2.



5. 3 Candidate Outlier Cells

The bounds are computed for each Cti ∈ PC, in order

to prune inlier cells or identify outlier cells. A threshold is

required to decide whether a Cti ∈ PC is inlier or outlier

depending upon their bounds. The definition of threshold

requires an attribute of candidate outlier cells table, hence

we define candidate outlier cells table first.

Let Ccell denotes a table containing tuples of the form

(ψ1, ..., ψd, C(Ctj), LB(Ctj), UB(Ctj)), denoted by tj(0 <

j <= |Ccell|), for each candidate outlier cell in PC-list. Let

Cktj ∈ Ccell be a cell containing the kth object. The tuples

in Ccell are sorted in ascending order of the UB(Ctj) at-

tribute. A Cti ∈ PC is a candidate outlier cell whenever∑
Ctj∈Ccell

C(Ctj) < k or LB(Cti) <= θ, where θ = UB(Cktj)

denotes the threshold.

Cell Pruning and θ Updation: For Cti ∈ PC, if

LB(Cti) > θ, Cti cannot contain any of the top-k outliers

and can be pruned. On the other hand, if LB(Cti) <= θ,

Cti may contain top-k outlier. We add Cti to Ccell, such

that Ccell remain sorted of UB(Ctj) attribute. Moreover if

UB(Cti) < θ, add Cti to Ccell, set θ = UB(Cktj) and remove

C′
tj from Ccell, such that LB(C′

tj) > θ, as they cannot con-

tain the top-k outliers.

Stopping Condition: The PC-list is scanned from top to

bottom for candidate outlier cells. During the scanning, if

a C′
ti ∈ PC is found such that Pr(α,D) ∗ CD−tσ(C

′
ti) > θ,

where α = D− tσ, neither C′
ti nor any cell after it in PC-list

can contain outliers. Hence the scanning can be stopped at

this position.

Cell Length l: Due to the complexity of our distance func-

tion, it is not possible to derive a single cell length l suit-

able for all the combinations of D and variances. Very small

cell length increases the number of cells in the Grid expo-

nentially and the time required to construct the PC-list. A

good starting point of the cell length that we found through

experiments is the standard deviation, i.e., l = σ.

5. 4 Outlier Detection Algorithms

In this section, we present a top-k distance-based outlier

detection algorithm on uncertain dataset. The algorithm 2

first maps dataset objects to appropriate grid cells and cre-

ate PC-list in lines 4 and 5 respectively. Since the PC-list is

sorted in ascending order of its CD−tσ(Cti) column, it guar-

antees that the cells in sparse region of G are at the top of

the PC-list. Hence candidate outlier cells are expected to

be at the top of the list. We scan the PC-list and add can-

didate outlier cells in Ccell until the stopping condition on

line 8 becomes true. The number of objects in CCell may be

greater than k, hence additional objects need to be removed.

Algorithm 2 The Top-k Distance-based Outliers

Input: GDB, D, l, k

Output: Top-k Distance-based Outliers

1: N ← |GDB|, θ ←∞;

2: Ccell ← ϕ; (Candidate outlier cells list)

3: Cobj ← ϕ; (Candidate outlier objects list)

4: Create cell grid G depending upon dataset values and cell

length l;

5: Map each o ∈ GDB to an appropriate cell C ∈ G;
6: Create PC-list PC, using non-empty cells of G;
7: Sort PC w.r.t. CD−tσ(C) column;

/*Searching candidate outlier cells*/

8: for each Cti in |PC| do
9: if CD−tσ(Cti) ∗ Pr(D − tα,D) > θ then Exit for loop.

10: Compute LB(Cti) and UB(Cti);

11: if LB(Cti) <= θ then

12: Add Cti to Ccell; (keep Ccell sorted of UB(Ctj))

13: if Ccell contains >= k objects then

14: Set θ = UB(Cktj), such that Cktj contain the kth object;

15: Remove all Ctj from Ccell, such that LB(Ctj) > θ;

16: end if

17: end if

18: end for

/*Calculating EN(o) of candidate top-k outliers*/

The computation of EN(o) is similar to that of Naive approach

in Algorithm 1. The only difference is that in this algorithm

we compute EN(o) for the candidate objects in Ccell only.

In order to do so, exact expected D-neighbours EN(o) of ob-

jects in candidate cells are calculated. The object o is then

added to the Cobj (set of candidate outlier objects) along

with its EN(o). The objects in Cobj are sorted with respect

to EN(o). As the kth object’s EN(o) is found, threshold θ

is updated (refer line 11 of Alg.1). During the calculation of

EN(o), if for some o′, EN(o′) becomes greater than θ, then

o′ can not be among top-k outliers and can be removed from

further consideration.

6. Experiments

We conducted extensive experiments on synthetic datasets

to evaluate the effectiveness and accuracy of our proposed

algorithm. The algorithm is implemented in C++, GNU

compiler. All experiments are performed on a system with

an Intel Core 2 Duo, E8400 3.00GHz CPU and 2GB main

memory running Ubuntu 12.04 OS. All programs run in main

memory and no I/O cost is considered.

We use two synthetic datasets for our experiments: uni-

modal Gaussian (UG) and trimodal Gaussian (TG). UG

and TG are 2-dimensional and are generated using Box-

Muller method [17]. A shorthand notation “DatasetName+

DatasetSize′′ (e.g. UG5k to denote 5,000 tuples of unimodal
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(c) Stopping Condition

Figure 3

Gaussian dataset) is used in figures.

All the datasets are normalized to have a domain of

[0,1000] on every dimension. For each point z in any dataset,

we create an uncertain object o, whose uncertainty is given

by Gaussian distribution with mean z and standard devia-

tion σ in all the dimensions. Unless specified, the following

parameter values are used: D = 100, σ = 10, l = 10 and

k = 0.1% of the respective dataset size. Pre-computation

time is not included in the measurements.
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Figure 4: Varying l, σ, D and k

We first conduct experiments to evaluate the efficiency of

our proposed top-k algorithm presented in Sec.5. 4. Fig. 3a

compares the execution times of the Naive and the proposed

algorithm on UG dataset. Our proposed algorithm is sev-

eral times faster than its Naive counterpart due to its strong

pruning capability as can be observed from Fig.3b. Stopping

condition discussed in Sec.5. 3 helps identify candidate out-

lier cells very quickly. Fig.3c shows the percentage of cells

considered in the PC-list to identify candidate outlier cells

before the execution of stopping condition. The percentage is

comparatively higher for trimodal Gaussian dataset because

the dataset is relatively sparse and hence results in larger

number of candidate outlier cells.

Graphs in Fig.4 show the effect of varying different param-

eters on the execution times. It is obvious from the graphs

in Figs. 4a and 4b that smaller cell lengths require lower ex-

ecution times. However very small cell length increases the

number of cells exponentially and therefore the execution

time of the algorithm. On the other hand, large cell length

decreases the pruning effect and hence increases the execu-

tion time of our algorithm. Therefore we recommend the use

of cell length equal to the standard deviation as discussed in

Sec. 5. 3.

From Figs. 4c, 4d, 4e and 4f we can observe that our al-

gorithm is quite consistent and its performance is not much

affected by the variation in parameters σ and D.

Next we perform experiments by varying parameter k.

Figs. 4g and 4h show that increase in k results in increase

in execution time of algorithm, which is quite obvious be-

haviour of our algorithm.

7. Conclusion and Future Work

In this work, we propose a top-k distance-based outlier

detection approach on uncertain datasets of Gaussian dis-

tribution based on PC-list. Sorted PC-list helps identify

candidate outlier objects very quickly without considering

all the objects in the dataset. An extensive empirical study

demonstrate the efficiency and scalability of our proposed

approach.
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