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Abstract Recently uncertain data is attracting more and more attention in many fields and has become a major

topic in the database research community. In this paper, we develop and evaluate our preliminary work, an index

method for probabilistic range queries on Gaussian distributions. This method assumes that uncertain data items

stored in the database are represented by multi-dimensional Gaussian distributions (Normal distributions), while

the query object can be a point or a Gaussian distribution. We propose an index structure and several filtering

techniques to support probabilistic range queries. In this work, we conduct experiments using both synthetic data

and real data and examine the efficiency and effectiveness of this index method.
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1. Introduction

In recent years, uncertain data is gaining more and more

attention in the database community and has involved a

large variety of real-world applications, ranging from mo-

bile robotics and sensor networks to location-based service.

Uncertainty can be inherent properties of the data caused by

measurement limitations and noises (e.g., Gaussian errors in

GPS readings), or may be introduced to preserve the privacy

of the source data.

For instance, in the area of location-based mobile advertis-

ing, operators typically provide services such as the delivery

of mobile coupons or discounts to nearby mobile users using

their location information (e.g., The Coupons App). The

exact current location of users may not be available due to

privacy preservation or delayed updates from users. In this

case, a query like “find customers currently in the downtown

area” cannot be fully evaluated and answered.

As another example, consider a self-navigated mobile

robot moving in an environment as shown in Fig. 1. The

robot builds a map of the environment by observing nearby

landmarks using devices such as sonars and laser range find-

ers. Due to the inherent limitation of measurement accuracy

and unavoidable signal noises, the information acquired from

measuring devices (e.g., the location of a landmark) is always

not precisely correct. At the same time, the moving robot

also conducts probabilistic localization [18] to estimate its

location autonomously by integrating its movement history

and the landmark information. This can result in imprecise-

ness in the location information of the robot, too.

During the movement, the robot may request information

about nearby landmarks and issue a query such as “find land-

marks within 5 meters from my current location”. In the tra-

ditional spatial database setting, this kind of query can be

easily answered by performing a range query with the range

specified as 5 meters. Nevertheless, it is difficult to process

this query exactly in this situation, because locations of both

the query object (i.e., the robot) and the target objects (i.e.,



nearby landmarks) are inexact. And if the obtained impre-

cise data is directly used to answer queries, it may result in

erroneous answers and navigation failures.

図 1 A motivating example

To remedy this kind of problem, the data records are typ-

ically represented by probability density functions instead of

deterministic values. Typically, uncertain data is modeled

by multi-dimensional Gaussian distributions [7]. The Gaus-

sian distribution, also called the normal distribution, is a

probability distribution widely used in various fields such

as pattern recognition, statistical analysis, etc.. We discuss

the problem based on the assumption that the uncertainties

of target objects’ location information in the database are

described by multi-dimensional Gaussian distributions with

different parameters for indicating their differences in uncer-

tainty. We consider two cases for a query object: a certain

point and an uncertain location represented by a Gaussian

distribution.

Furthermore, queries here search for target objects within

some specified range (i.e. the radius) from the query objects

with high probabilities. Such a query is called a probabilis-

tic range query (PRQ), an extension of the standard range

query in the traditional spatial database. In the case of the

forgoing scenarios, an example query can be “find customers

currently located 50 meters around the shopping center with a

probability more than 40%” or “find landmarks lying within

5 meters from my current location with a probability at least

80%”. This kind of queries can provide more meaningful

answers to users.

2. Related Work

2. 1 Uncertain Data Management

A number of approaches for managing uncertain data have

been proposed. Early research primarily focuses on queries

in a moving object database model [5], [13], [19], [21]. Cheng

et al. classify several types of probabilistic queries including

probabilistic range queries based upon uncertain data and

present algorithms for solving them in [4]. In another study,

Cheng et al. develop several solutions for probabilistic range

queries [6]. However, they target the one-dimensional space

only. Moreover, a range query processing method for the

case where both target objects and a query object are im-

precise is proposed in [3]. But they assume that each object

exists within a rectangular area.

2. 2 Spatial Data Indexing

The traditional spatial database has been well studied and

many indexing methods have been proposed [1], [8], [12] to

support spatial query processing. The well-known one is R-

tree [8] and its extension R*-tree [1], which index objects by

deriving their minimum bounding rectangle (MBR). TPR-

tree [20] and TPR*-tree [17] are proposed to index moving

objects. But none of them can be applied directly to index

Gaussian objects directly for our problem.

2. 3 Uncertain Data Indexing

In terms of probabilistic range queries in a multi-

dimensional space, Tao et al. propose U-tree [16]. It is dif-

ferent from our tree here in that our tree indexes Gaussian

distribution in the infinite space. As an index structure for

Gaussian distributions, Gauss-tree is proposed for probabilis-

tic identification query in [2]. What is problematic with the

Gauss-tree lies in that it constructs its index structure based

on the assumption that all Gaussian distributions are prob-

abilistically independent in each dimension. In other words,

each distribution axis of a Gaussian function should be par-

allel to a dimension axis. This imposes heavy restriction on

the generality of the approach and the overall accuracy of

the query result is limited.

In our preliminary work [10], we propose several query pro-

cessing techniques for probabilistic range queries, assuming

that the location of the query object is only uncertain and

described by a Gaussian distribution, and target objects in

the database are multi-dimensional points and are managed

by a conventional spatial index such as an R-tree. Moreover,

in our precedent work [11] of this research, we also present an

index method for Gaussian distributions. The approach pro-

posed in [11] is consistent theoretically, but not easy to im-

plement practically and is greatly affected by computational

errors. In this paper, we present stronger query processing

techniques and a novel index structure to solve the problem.

3. Problem Definition

Uncertain target objects here are assumed to follow multi-

dimensional Gaussian distributions with different parame-

ters. A probabilistic range query (PRQ) is to retrieve objects

among them located within some specific range from the

query object (a certain point or an uncertain object repre-

sented by a Gaussian distribution) with probabilities greater

than a probability threshold. We define the problem in a

d (d >= 2)-dimensional space. The one-dimensional case will

not be discussed here since it is exceptional and can be solved

easily.

3. 1 Gaussian Distributions

Definition 1 (Gaussian objects). The probability that an ob-

ject oi ∈ D is located at xi is defined by a d-dimensional Gaus-

sian probability density function
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where D is a set of target objects, oi is the mean of oi and Σi

is a d×d covariance matrix. |Σi| is the determinant ofΣi and

Σ−1
i is the inverse matrix of Σi. x

t represents a transposition

of a vector x. 2

3. 2 Definition of Queries

In this paper, we consider two types of query objects:

（ 1） The query object is a fixed point, namely,

q = (x1
q, x

2
q, . . , x

d
q)

t.

（ 2） The query object follows a d-dimensional Gaussian dis-

tribution, namely,
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(xq − q)tΣ−1

q (xq − q)
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where q is the mean, and Σq is a d × d covariance
matrix.

3. 2. 1 Probabilistic Range Query with Point Query Ob-

ject (PRQ-P)

Definition 2 (PRQ-P). Given a query object q represented by

a vector q, a distance threshold δ, and a probability threshold

θ (0 < θ < 1), a probabilistic range query with point query

object (PRQ-P for short) is defined as follows:

PRQ-P(q, δ, θ) = {oi | oi ∈ D,Pr(∥xi − q∥ <= δ) >= θ}

where ∥xi − q∥ represents the Euclidean distance between xi
and q.

Pr(∥xi − q∥ <= δ) is defined as follows:

Pr(∥xi − q∥ <= δ) =

∫
χδ(xi, q) · pi(xi)dxi (2)

where χδ(xi, q) =

{
1 if ∥xi − q∥ <= δ

0 otherwise
(3)

is used to enforce the distance-based threshold. 2

図 2 An illustration of PRQ-P query

Fig. 2 shows an illustration of a PRQ-P query. The Gaus-

sian object oi exists in the space with a decreasing proba-

bility as spreading away from the center oi, i.e., the mean.

The changing colors describe this diminishing trend of the

probability. A PRQ-P query attempts to find Gaussian ob-

jects located near the query point with a high probability.

Computing the probability using Eq. (2) corresponds to in-

tegrating the probability density function of oi within the

slash area around q.

However, the integration in Eq. (2) is not in a closed-form

and cannot be computed directly. To evaluate the proba-

bility, numerical integration (the Monte Carlo method) is

employed actually. To be specific, the efficient importance

sampling [14] approach can be used: generate xi with a prob-

ability pi(xi), and increment the count when Eq. (3) is sat-

isfied. Finally, we can get the integrated probability through

dividing the count by the number of samples (e.g., 100000)

generated. However, the Monte Carlo integration has an ex-

tremely high cost even though using the importance sampling

approach. For this reason, we propose an effective approach

to reduce the number of candidate objects.

3. 2. 2 Probabilistic Range Query with Gaussian Query

Object (PRQ-G)

Definition 3 (PRQ-G). Given a query object q represented

by a Gaussian distribution, a distance threshold δ, and a prob-

ability threshold θ (0 < θ < 1), a probabilistic range query

with Gaussian query object (PRQ-G) is defined as follows:

PRQ-G(q, δ, θ) = {oi | oi ∈ D,Pr(∥xi − xq∥ <= δ) >= θ},

where Pr(∥xi − xq∥ <= δ is defined as follows:

Pr(∥xi − xq∥ <= δ) =

∫∫
χδ(xi,xq) · pi(xi) · pq(xq)dxidxq

(4)

where χδ(xi,xq) =

{
1 if ∥xi − xq∥ <= δ

0 otherwise

is a thresholding function. 2

To compute the numerical integration in Eq. (4), although

we can simply generate random numbers for the two Gaus-

sian distributions pi(xi) and pq(xq) respectively, a more effi-

cient method for handling this kind of numerical integration

is shown in [11]. It constructs a 2d-dimensional Gaussian

distribution by combining two d-dimensional Gaussian dis-

tributions together.

4. Filtering Based on Approximated Re-

gions

Evaluating the two types of queries defined in Eq. (2) and

Eq. (4) requires “expensive” numerical integration. To re-

duce query processing cost, it is essential to reduce the num-

ber of candidate Gaussian objects which need numerical in-

tegration. In this section, we propose several filtering tech-

niques based on a probability region (called ρ-Region) and

its approximation (called bounding box ) of a Gaussian distri-

bution to prune as many non-candidate objects as possible.

4. 1 ρ-Region

Definition 4 (ρ-region). Consider the integration of the

probability density function pi(xi) over an ellipsoidal region

(xi−oi)
tΣ−1

i (xi−oi) <= r2. Let rρ be the value of r for which

the result of the integration exactly becomes ρ:∫
(xi−oi)tΣ

−1
i (xi−oi)<=r2ρ

pi(xi)dxi = ρ.

We call the ellipsoidal region

(xi − oi)
tΣ−1

i (xi − oi) <= r2ρ

defined by rρ the ρ-region. 2



Nevertheless, it is costly to compute ρ-regions for arbi-

trary Gaussian distributions (with different oi,Σi) directly.

To cope with this problem, an approach that transforms the

integration over an ellipsoidal region to an integration over

a d-dimensional sphere region is proposed in [10]. To begin

with, let us introduce the normalized Gaussian distribution

defined by assigning oi = 0 and Σi = I in Eq. (1).

pnorm(x) = N (0, I) =
1

(2π)d/2
exp

[
−1

2
∥x∥2

]
Based on this probability density function, we can derive
the following property.

Property 1. Consider integration of pnorm(x) over the re-

gion ∥x∥2 <= r2, which is a sphere with the origin as its center

and the radius r. For the given ρ (0 < ρ < 1), let r̃ρ be the

radius with which the integration result becomes ρ:∫
∥x∥2<=r̃2ρ

pnorm(x)dx = ρ. (5)

For a given ρ, rρ = r̃ρ (6)

holds.

The proof is shown in [10]. The property indicates that if

the rρ (= r̃ρ) value is calculated for a given ρ value using

Eq. (5), we can use it for our context using the equality in

Eq. (6).

d ρ rρ

2 0.98 2.75

.

..
.
..

.

..

図 3 (ρ, rρ)-Table

That is, if a table like Fig. 3 is constructed beforehand

(numerical integration is necessary), we can easily obtain

the corresponding rρ for the ρ value in this table and hence

derive the ρ-region. However, due to the ellipsoidal shape of

the ρ-region, it is not suitable to be used for filtering process-

ing. We will derive the bounding box which tightly bounds

the ρ-region.

4. 2 Deriving Bounding Box

Definition 5 (Bounding Box). Given the parameter ρ (0 <

ρ < 1), the rectangular region which tightly bounds the ρ-region

of Gaussian object oi is called the ρ-bounding box of oi, and

represented by bbi(ρ). For simplicity, we sometimes omit ρ

and call it bounding box directly and abbreviate it to bbi. 2

Fig. 4 shows the image of the bounding box bbi in j-th di-

mension and k-th dimension. Let the width of the box from

the object center oi along the j-th dimension and k-th di-

mension be wj and wk respectively. The following property

holds [10].

Property 2. The value of wj (j = 1, 2, . . . , d) is given as

wj = σjrρ (7)

where σj corresponds to the standard deviation for the j-th
dimension

σj =
√

(Σi)jj

where (Σi)jj represents the (j, j) entry of Σi.

図 4 Image of Bounding Box bbi

4. 3 Filtering for PRQ-P Queries

4. 3. 1 Strategy 1: RR Method

Here we detail the idea of bounding box-based filtering

techniques for the PRQ-P query. The first filtering process-

ing approach is an extension of the rectlinear-region-based

approach (RR) proposed in our paper [10], except that in [10]

the target objects are certain points and the query object is

a Gaussian distribution.

Case 1: θ < 0.5.

図 5 RR Method (ρ = 1− 2θ, θ < 0.5)

Consider four kinds of target objects o1, o2, o3, o4 as shown

in Fig. 5. First, let’s consider o4. Since the probability that

o4 is located inside its ellipsoidal ρ-region is ρ, the probabil-

ity that o4 is located outside bb4(ρ) region is definitely less

than 1−ρ. Furthermore, given the line symmetry of a Gaus-

sian distribution, the probability that o4 is located inside the

sphere region of q is at most (1−ρ)/2. For example, suppose

that ρ = 20%, then (1 − ρ)/2 = 40% is the upper-bound

probability. Hence, if (1− ρ)/2 = θ; i.e.,

ρ = 1− 2θ

is true, when bb4(ρ) and the sphere are disjoint (that is, con-

nected or separated), the probability that the target object

o4 is within the δ range of query object q will be less than θ.

On the contrary, if bb4(ρ) and the sphere query region have

intersection, this probability is possible to reach θ.

For o1 and o3, since their mean locations are inside the

spherical query region, it is obvious that their bounding

boxes will intersect with the query region. Therefore, we

can add them to the candidate list without deriving their

bounding boxes. On the other hand, we have to derive the

bounding box bb2(ρ) of o2 to check whether it intersects with

the spherical region. If they have intersection, then o2 will

be selected as a candidate object.

Moreover, for all candidate objects, we also derive their

bounding boxes of θ-regions by letting ρ = θ. If the query



region contains the θ-valued bounding box as o3, this object

is undoubtedly a query result. We will return this kind of

target objects as result objects directly without ”expensive”

numerical integration.

Case 2: θ >= 0.5. Let ρ = θ.

図 6 RR Method (ρ = θ, θ >= 0.5)

We show our idea in Fig. 6. For the integrated probability

that a target object exists within the spherical query region

to reach 0.5, the mean location of a target object should lo-

cate inside the query region. Otherwise, the probability is

definitely less than 0.5. In this way, o2 and o4 can be pruned.

Similarly, o3 can be returned as a result object without nu-

merical integration.

4. 3. 2 Strategy 2: OR Method

In [10], the oblique-region-based approach (OR) method is

proposed besides the RR method. This method can also be

extended for our query processing. The idea is shown in

Fig. 7.

図 7 OR Method

Consider the rectangle paralleled to the axes of the ρ-

region ellipsoid. The distance between the rectangle and the

ρ-region is at least δ. Obviously when oi is located inside the

ρ-region (with a probability ρ), the distance between oi and

q2 will be more than δ. If ρ = 90%, the probability that oi

will be located outside the rectangle is at most 10%. Further-

more, given the line symmetry, the probability that oi exists

within δ range of q2 is no more than 5%. This means that

we can obtain the filtering condition by letting (1−ρ)/2 = θ,

i.e., ρ = 1− 2θ. On the other hand, oi becomes a candidate

object for query q1.

Since it is difficult to determine the relation between a

point and an oblique rectangular region, the oblique region

is transformed into an axis-parallel rectangle actually. The

transformation is implemented by deriving the correspond-

ing point yi for a given d-dimensional point xi which sat-

isfies xi = Eyi. Here E is a diagonal matrix consisting of

the eigenvectors of Σ−1
i . The proof of this property is shown

in [10]. In this work, the OR method is applied to further

refine candidate objects returned by the RR method.

4. 4 Filtering for PRQ-G Queries

For PRQ-G queries, we obtain both of their bounding

boxes of ρ-regions. As shown in Fig. 8, consider the situ-

ation that the distance between the bounding boxes of two

ρ-region is exactly δ. Since q and oi are located inside their

ρ-regions respectively both with probability ρ, the probabil-

ity that each of them exists within individual ρ-region at the

same time is ρ2, assuming that they are independent in the

space. In this case, obviously the distance between q and oi

is very likely to be larger than δ. Specifically, the distance

between q and oi becomes less than δ with a probability at

most 1− ρ2.

For a given probability threshold θ of the query, letting

1 − ρ2 = θ, that is, ρ =
√
1− θ, we can compute ρ. For ex-

ample, if θ = 5%, then ρ =
√
1− 0.05 = 0.9747. Construct

the bounding boxes of ρ-regions dynamically for q, oi with

the ρ value. And we can exclude oi from the candidate list

if the minimum distance between bbi(ρ) and bbq(ρ) is more

than δ.

図 8 Filtering for PRQ-G Queries

図 9 Filtering for PRQ-G Queries: validation

Moreover, if the maximum distance of bbi(ρ) and bbq(ρ) is

less than δ, assigning ρ2 = θ (i.e., ρ =
√
θ) will guarantee

that the target object oi is located inside the δ range from

the query object q with a probability greater than θ. Hence,

oi can be validated as a result object directly.

To efficiently process queries over databases consisting

thousands of or millions of target objects, we propose a dy-

namic index structure which stores bounding boxes of all

objects instead of deriving their bounding boxes on-the-fly.

We will describe this index structure in the next section.

5. Index Structure

5. 1 Overall Index Structure

The overall index structure is a balanced hierarchical tree.

Entries in leaf nodes contain target Gaussian objects in the

form of oi = (idi,oi,Σi, bbi), where idi is the object id, oi,Σi

are the mean value (average location) and the covariance



matrix of the Gaussian distribution, and bbi is the bounding

box of ρ-region for oi. In a non-leaf node, an entry contains

a pointer to a subtree and a bounding box that encloses the

leaf bounding boxes or other internal bounding boxes in that

subtree.

As discussed in Section 4. 2, for an object oi centered at

⟨x1
i , . . , x

d
i ⟩ in the d-dimensional space, the bounding box bbi

of oi is a rectangle parameterized with rρ. Its extent (i.e.,

left bound and right bound) in j-th dimension can be repre-

sented as

bbji = [xj
i − wj

i , x
j
i + wj

i ] = [xj
i − σj

i rρ, x
j
i + σj

i rρ].

We denote bbji as the bounding interval of the bounding box
bbi in the j-th dimension. Specifically, bbi is represented as

bbi = (⟨x1
i , σ

1
i ⟩, . . , ⟨xd

i , σ
d
i ⟩).

In order to achieve best filtering performance, a leaf

bounding box should tightly enclose its child bounding boxes.

The challenge is that target objects always have different co-

variance matrices, and their bounding boxes can scale up or

down in different rates (i.e., different standard deviations)

according to Eq. (7). So the left bound or right bound of the

bounding box of a leaf node is determined by different child

target objects in different rρ values.

図 10 Bounding boxes of o1, o2, o3 and o4

図 11 Bounding intervals of o1, o2, o3 and o4

Fig. 10 illustrates this problem. This figure shows the

changing bound objects of the bounding box for four objects

o1, o2, o3 and o4 as rρ increases. Fig. 11 shows their cor-

responding bounding intervals in j-th dimension. For each

object, the pairs of symmetrical lines in Fig. 11 describe the

extension of the left and right bounds as rρ increases. Lines

have different slopes because the standard deviations of o1,

o2, o3 and o4 in j-th dimension differ from each other.

If rρ is within the range (0, r1], the left bound of bound-

ing box bb in j-th dimension is determined by the object o1,

while the object o3 turns out to be the left bound object of

bb if rρ is in (r1,+∞]. Also, when rρ increases over r2, the

right bound object of bb changes from o4 to o2. In Fig. 11,

the upper bold polyline illustrates the left side of the bound-

ing interval of the bounding box bb, while the lower bold

polyline shows the right side of that. For this purpose, a

bounding box is represented by several combined segments,

each of which has a different left bound or right bound on

certain interval value of rρ, corresponding to the polyline in

Fig. 11.

In our implementation setting, we allow users to specify

a query probability range [θmin, θmax]. Then rρ is actually

within a range [rmin, rmax]. In this way, the overall index

structure can be more compact and more efficient for query

processing. In j-th dimension, the left bound of a (both leaf

and non-leaf) node bounding box is in the form of

bbjl = (⟨xj
1, σ

j
1, [rmin, r

j
1]⟩, . . , ⟨x

j
i , σ

j
i , (r

j
k, rmax]⟩)

Now we can obtain the corresponding j-th dimensional
bounding interval of the bounding box for objects o1, o2,

o3 and o4 illustrated in Fig. 10 and Fig. 11, and derive the

entry in j-th dimension bbj as

bbjl = (⟨xj
1, σ

j
1, [rmin, r1]⟩, ⟨xj

3, σ
j
3, (r1, rmax]⟩)

bbjr = (⟨xj
4, σ

j
4, [rmin, r2]⟩, ⟨xj

2, σ
j
2, (r2, rmax]⟩)

5. 2 Filtering at Non-Leaf Level

5. 2. 1 Processing PRQ-P Queries

Consider filtering on the non-leaf node for a PRQ-P query

as shown in Fig. 12 (θ < 0.5). Assume that the sphere cen-

tered at q with the radius δ is exactly contiguous with bb(ρ).

As discussed in Section 4. 3, if ρ = 1− 2θ, among objects o1,

o2 and o3 inside bb(ρ), none of them can satisfy the query

condition. In other words, bb(ρ) can be removed from the

searching list if its distance from q is more than δ.

図 12 Filtering for PRQ-P Queries on Non-Leaf Nodes

図 13 Filtering for PRQ-G Queries on Non-Leaf Nodes



5. 2. 2 Processing PRQ-G Queries

Filtering on a non-leaf node for a PRQ-G query is very

similar with that of a PRQ-P query. Fig. 13 illustrates the

idea. Let ρ =
√
1− θ, if the distance between the node

bounding box and the query bounding box is larger than δ,

this node can be deleted from the searching list of the query.

6. Experiments

We implemented the index structure by extending the spa-

tial index library SaiL [9]. This C++ library can be down-

loaded from [15] for free. We conducted experiments using

a PC with Intel Core 2 Duo CPU E8500 (3.16GHz), RAM

4GB and OS Fedora 12.

We generate 5 two-dimensional synthetic datasets in a

1000× 1000 space with size 10000, 30000, 50000, 80000, and

100000, referred as 10K, 30K, 50K, 80K and 100K respec-

tively. For the real data, we used road line segment data

of Long Beach, California and Montgomery, Maryland. We

extracted the midpoint of each line segment as the mean and

generate the corresponding covariance matrix randomly. The

two extracted real datasets (called ”LB” and ”MG”) contain

39, 226 and 50, 747 items respectively and are normalized to

the 1000× 1000 space.

The query dataset is also generated randomly within the

same data space. The query range is a random value

within [5, 25] and the query probability threshold lies within

[0.01, 0.99] for both PRQ-P and PRQ-G queries. We run 100

queries for each experimental setting and use the average re-

sult to evaluate the performance.

6. 1 Performance Analysis
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The average response time of 100 random PRQ-P and

PRQ-G queries is shown in Fig. 14. The overall runtime

(i.e., wall clock time) consists of three components: inte-

gral computation, filtering processing, and the rest for other

operations (e.g., reading data from files).Clearly in all cases

integral computation occupies most of the runtime. This im-

plies that it is important to find effective query processing

techniques and to avoid computing the exact probability by

numerical integration as much as possible. Time used for

candidate filtering is only about one to three milliseconds

on average. And it does not show any sharp increase as the

dataset size enlarges. This demonstrates the efficiency and

scalability of our approach. The similar trend can also be

observed in the case of PRQ-G queries.

Excluding the time part of integral computation, we show

the time comparison of filtering processing and other opera-

tions in Fig. 15. For a PRQ-P query, the time used for fil-

tering processing is no more than half of that used for other

operations in all cases. This difference is greater and more

evident in a PRQ-G query.

In the following experiments, we will use both the two real

datasets and the synthetic dataset 50K. While 50K is ran-

domly generated and its data actually follows the uniform

distribution, The data in MG and LB is bias-distributed,

and many points are concentrated within an area. For the

convenience of performance comparison, we utilize the first

50K of LB (50, 747) and call it LB50K.

6. 2 Range Trend

The average result of 10 queries is used for performance

evaluation. The experimental result of PRQ-G queries by

varying δ is very similar to that of PRQ-P queries. So we

just take the result of PRQ-P queries for explanation. The

average query processing time (including integral computa-

tion and filtering processing) of three datasets for PRQ-P

queries is shown in Fig. 16(a).
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図 16 Range Trend: PRQ-P vs. δ

Generally, as δ increases, more query processing time is

needed. That’s because more and more target objects will

become candidates, leading to more integral computation

cost. When δ reaches so large (20 in Fig. 16(a)) that many

potential candidates can be identified as result objects di-

rectly without integration. Then the query processing time

turns from a gradually rising trend into a steady state and

may decrease slightly. This reveals the great power of our

result-validation techniques. But if δ continues to increase,

the integral computation cost dominates over all factors and

the query processing time raises rapidly. An interesting thing

is that the line chart in Fig 16(b) of candidate number almost

precisely matches that of query processing time in Fig 16(a).



This again demonstrates that probability integration domi-

nates overall query processing cost.

Although the real dataset MG has less data items (about

39K) than LB50K and 50K, it retrieves more data objects

and thus results in more query processing time, because its

data distribution is highly biased, and many data objects are

located around the central area.

6. 3 Probability Trend

We use 20 as a default query range in this subsection to

study the probability trend. We run the same query 10

times and use the average result for performance evaluation.

Fig. 17 (Fig. 18) shows the query processing time (candidate

number) for PRQ-P and PRQ-G queries respectively.
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For PRQ-P queries, the query processing time (candidate

number) decreases as the probability threshold θ increases

first, then the time (number) increases when θ >= 0.5. It

precisely matches the computing policy of parameter ρ as

discussed in Section 4. 3. This is because that ρ decides the

size of all bounding boxes. When ρ is large, bounding boxes

are very large, so they have weaker filtering power on ob-

jects. If ρ is small, bounding boxes are very small, and they

have strong power of filtering. PRQ-G queries work in the

similar way with PRQ-P queries, except that their policy of

computing ρ is different.

7. Conclusion and Future Work

In this paper, by modeling uncertain data with multi-

dimensional Gaussian distributions, we propose query pro-

cessing techniques for two types of probabilistic range

queries: PRQ-P and PRQ-G. We further propose a novel in-

dex structure to support queries for Gaussian distributions.

We implement the index structure and examine its efficiency

and effectiveness with experiments. In the future, we will ex-

tend its generality and enhance it to be applicable to other

types of uncertainty models and queries.
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[2] C. Böhm, A. Pryakhin, and M. Schubert. The Gauss-tree:

Efficient object identification in databases of probabilistic

feature vectors. In Proc. ICDE, 2006.

[3] J. Chen and R. Cheng. Efficient evaluation of imprecise

location-dependent queries. In Proc. ICDE, 2007.

[4] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluat-

ing probabilistic queries over imprecise data. In Proc. ACM

SIGMOD, 2003.

[5] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying

imprecise data inmoving object environments. IEEE TKDE,

16(9):1112–1127, 2004.

[6] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter.

Efficient indexingmethods for probabilistic threshold queries

over uncertain data. In Proc. VLDB, 2004.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-

tion. Wiley, 2nd edition, 2000.

[8] A. Guttman. R-trees: A dynamic index structure for spatial

searching. In Proc. ACM SIGMOD, pages 47–57, 1984.

[9] M. Hadjieleftheriou, E. Hoel, and V. J. Tsotras. Sail: A spa-

tial index library for efficient application integration. GeoIn-

formatica, 9:367–389, 2005.

[10] Y. Ishikawa, Y. Iijima, and J. X. Yu. Processing spatial range

queries for objects with imprecise Gaussian-based location

information. In Proc. ICDE, pages 676–687, 2009.

[11] K. Kodama, T. Dong, and Y. Ishikawa. An index structure

for spatial range querying onGaussian distributions. InProc.

Fifth International Workshop on Management of Uncertain

Data (MUD 2011), pages 1–7, 2011.

[12] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos,

and Y. Theodoridis. R-Trees: Theory and Applications.

Springer, 2005.

[13] D. Pfoser and C. S. Jensen. Capturing the uncertainty of

moving-object representations. In Proc. 6th Intl. Symp. on

Advances in Spatial Databases (SSD’99), 1999.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipies: The Art of Scientific Com-

puting. Cambridge University Press, 3rd edition, 2007.

[15] Spatial Index Library. http://libspatialindex.github.com/.

[16] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prab-

hakar. Indexing multi-dimensional uncertain data with arbi-

trary probability density functions. In Proc. VLDB, 2005.

[17] Y. Tao, D. Papadias, and J. Sun. The TPR∗-tree: An opti-

mized spatio-temporal access method for predictive queries.

In Proc. VLDB, pages 790–801, 2003.

[18] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.

The MIT Press, 2005.

[19] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain.

Managing uncertainty in moving objects databases. ACM

TODS, 29(3):463–507, 2004.
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