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Abstract In recent years, the technology of multi-core processor has been improving dramatically. As the number

of cores on a chip increases, the memory location relative to cores is beginning to vary the memory access time. In

order to take full advantage of the hardware for DBMSs, it is important to clear how the various core-memory loca-

tions affect DBMS performance. In this paper, we provide an experimental performance study of the core-memory

location effects for different relational joins. We observed that different join operations had different sensitivity to

the core-memory locations. Our discussion and insights are useful for DBMS performance optimization on multi-core

computers.
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1. Introduction

Driven by the Moore’s Low, computer architecture has

entered a new era of multi-core structures. Recently micro-

processor manufacturers find that it has become increasingly

difficult to make CPUs go faster due to size, complexity,

clock skews and heat issues. So they continue the perfor-

mance curve by another route of developing dual core and

multi-core processors. That is, putting multiple CPUs on

a single chip and relying on the parallelism ability to get

higher performance gain which brings the computing world

into so-called“multi-core era”. The multi-core processor is

the mainstream now and there will be many-core processors

with more cores on one die in the near future [1].

However, these processors are far from realizing their po-

tential performance when dealing with data-intensive appli-

cations such as database management systems (DBMSs).

This is because the advance in the speed of commodity multi-

core processors far outpaces that in memory latency, leading

to processors wasting much time waiting for required data

item. How to efficiently use the new hardware resources for

DBMSs becomes into hot topics. A lot of researchers fo-

cus on how to overcome the memory wall by changing the

data layout [2], index structures [3], providing cache friendly



algorithms [4] [5] for DBMSs.

The data starve problem becomes severe when the proces-

sor manufactures is having more and more cores integrated

in a single chip. Therefore the Non-Uniform-Mmory-Access

(NUMA) is being used inside a multi-core processor to pro-

vide efficient memory accesses and is becoming critical tech-

nique as the number of cores on chip keeps increasing in the

multi-core processors. The design of NUMA yields to two

levels of memory accesses: independent direct local memory

accesses and remote memory accesses using a shared inter-

connect. Because there will be less contention on the shared

resources, it offers better scalability. However, one of the

most important performance bottlenecks in a NUMA system

is an overhead caused by remote memory accesses. Under

NUMA, a processor can access its own local memory faster

than remote memory, which is local memory to another pro-

cessor. In order to improve the performance for DBMSs on

the multi-core platforms, it is important to make clear how

much the remote memory access affects the performance of

DBMS queries which usually have very frequent and large

quantities of data accesses. In this paper, several experi-

ments are conducted on a NUMA based multi-core platform

to clarify how the different core-memory location settings af-

fect the performance of join operations. In our experiment,

for an equal join query, we observed the remote memory ac-

cess has dramatic effect on the nest loop join operations and

little effect on the sort merge join operations. The insights

achieved in our experiments are useful for further research of

join performance optimization on multi-core platforms and

are also referenceable for optimization of different applica-

tions.

2. Related Work

2. 1 NUMA

Modern CPUs operate considerably faster than the main

memory they use and the processors increasingly “starved

for data”, have had to stall while they wait for memory ac-

cesses to complete. Multi-processor systems make the prob-

lem considerably worse, and the limited memory bandwidth

provided the key to achieving high performance for these

platforms. NUMA attempts to address this problem by pro-

viding separate memory for each processor. In NUMA, main

memory is physically distributed, i.e., partition in so-called

“locality domains(LDs)”, but the main memory is logically

shared, meaning that all memory locations can be accessed

by all processors in the system transparently. However, since

mainly memory is physically distributed, the access band-

widths and latencies may vary, depending on which processor

accesses a certain part of memory.

Under the NUMA architucture, there are two levels of

memory accesses: independent direct local memory accesses

and remote memory accesses using a shared interconnect.

Because there will be less contention on the shared resources,

it brings better scalability. One of the most important per-

formance bottlenecks in the NUMA system is an overhead

caused by remote memory accesses. A processor can access

its own local memory faster than non-local memory, that is,

local memory to another processor.

There have been many research studies targeting NUMA

systems in terms of performance evaluation, analysis, and op-

timization on clusters and multi-processor systems. Earlier

NUMA systems such as HP/Convex Exemplar were investi-

gated in [6]. The performance of cluster with NUMA nodes

is investigated for scientific applications [7]. The NUMA ef-

fects to the OLTP based DBMS is also analyzed in early

research [8].

Recently, with the wide spread utilizations of multi-core

processors and the trend of increasing the number of on-chip

cores, the NUMA is not only used in multi-processor plat-

forms and clusters but also used in multi-core processors. For

the AMD Opteron6174 processor which integrated 12 cores

in a single socket, there are two nodes and each node has its

own local memory. On this kind of multi-core platform, the

access latency to a memory location is different depending on

where processor core the program is running. As the NUMA

is becoming universal, it is important to make clear how the

remote memory access affects the performance of DBMS to

achieve better performance by avoiding the remote memory

accesses.

In this paper, we mainly focus on the NUMA effects on

the join operations which are frequently used operations for

OLAP applications. The platform we used includes four

multi-core processors and there are two nodes in each chip,

which is different from neither the cluster nor multi-processor

architectures which used in early researches.

2. 2 Join processing

Join is an important database application. As the com-

puter architecutre evolves, the best join algorithm may

change. The research of algorithm to maximize the favor of

new hardware architectures is never stopped. On multi-core

platforms, single-threaded query execution is not promising

to meet the high expectations of database users. Only query

engines relying on intra-query and intra-operator parallelism

will be able to meet the expectations instantaneous response

time of operational business intelligence users if large main

memory databases are to be explored.

Therefore, a lot of researches focus on the efficient and scal-

able parallel join operations on multi-core platforms. The

well-known radix join algorithm of MonetDB [9] pioneered

the new focus on cache locality by repeatedly partitioning



the arguments into ever smaller partitions. An Intel/Oracle

team [10] adapted hash join to multi-core CPUs. They also

investigated sort-merge join and hypothesized that due to

architectural trends of wider SIMD, more cores, and smaller

memory bandwidth per core sort-merge join is likely to out-

perform hash join on upcoming chip multiprocessors. He et

al. [11] developed parallel nested-loop, sort-merge, and hash

joins on GPUs. The work [12] founded the last level cache

(LLC) conflict when different kinds of joins concurrently run

together.

Unlike early works which mainly focus on the effects of

cache level, TLB and SIMD, we analyze the effect of NUMA

on the different join operations because the multi-core based

NUMA effect has not been analyzed yet. Furthermore, as

more cores and large memory are equipped into the multi-

core platforms, considering NUMA is decisive for large scale

databases.

3. Experimental Setup

3. 1 Multi-core platform

Our evaluation is based on PostgreSQL [15] and Linux

(2.6.35-22-server). We set the shared buffers of Post-

greSQL to 2GB and the SHMMAX value of the Linux ker-

nel to 30GB in order to support the database settings of

shared buffes.

The hardware for the DB server is a 48-core AMD Opteron

system [13] [14]. It has four processor sockets, with a 12-core

AMD Opteron6174 processor per socket. Each core has a

clock speed of 2.2 GHz and had a 128-KB L1 cache (2-way

associative 64-KB data cache + 64-KB instruction cache)

and a 512-KB L2 cache (16-way associative). Each proces-

sor has 12MB L3 cache shared by 12 cores. Each core has a

40-entry translation look aside buffer. The server to evaluate

the join queries has 32 GB of off-chip memory and 500GB

Hard Disk.

Each processor has 2 nodes, each of which has 6 cores.

Each node has its own local memory of 4GB and all mem-

ory accesses from the cores in the same node is controlled

by the Northbridge of the node. First, the memory request

is analized in the Northbridge. If the address to access the

memroy is outside the local memory, the Northbridge will

transport the requests to the proper node through the Hyper-

Transport (a link for interconnection of node structures)(see

Figure 1 (a)) [14]. Each processor has four HyperTransport

links which are used to connected to other nodes and our

platform has eight nodes. Therefore, all of the nodes are not

connected directly. We define two kinds of remote nodes for

a particular node: the close remote node which is connected

directly with HyperTransport links and the far remote node

which is not connected directly with HyperTransport links.

Figure 1 Logical core and node information in our platform

For close remote nodes, we further devide them into two sub-

categories: neighbor node and close remote node. The two

nodes on the same processor are neighbor nodes. The two

nodes on different processors, but connected directly with

HyperTransport link are defined as close remote node. Be-

cause there are not any HyperTransport links between a node

and it’s far remote nodes, the memory request to the far re-

mote node is first translated to a close remote node, and then

is translated to the target far remote node.

The relationship between the nodes can be observed by the

command numactl and the value of node distance shows ac-

cess time. For a specific core there are four types of memory

locations consistent with different node distances: the local

memory, the neighbor memory which belongs to the neigh-

bor node, the close remote memory which belongs to the

close remote nodes, the far remote memory which belongs to

the far remote nodes. The memory access latency depends

on the node distance. The access time to local memory is

fast, and the most time-consuming access uses far remote

memory. Figure 1 is the relationship of different processor

cores with different logical numbers and nodes with different

node numbers in our platform (Figure 1 (b)), and the dis-

tance between different nodes which is get by the commond

of numactl (Figure 1 (c)).



3. 2 Data set

In our experiments, we use relations of 16 bytes wide tu-

ples (8 bytes join key and 8 bytes payload) and consisting of

uniformly distributed unique random numbers for the join

key field. In the join experiments, the join hit rate is one,

and both of the two tables have 16M tuples.

We execute an equal-join on two tables:

SELECT count(∗)
FROM RjoinS

ON R.joinkey = S.joinkey

This query ensures only one output tuple is generated thus

we can concentrate on join processing cost only.

4. Experiments

In this section, we evaluate the effects of NUMA on three

kinds of join operations: indexed nest loop join, merge join,

hash join for single join operation and concurrent join queries

separately on our eight node multi-core platform.

First, we bind the query to execute on processor cores on

the node 0; Next, we used the Linux command of numactl

to ensure all of the memory used by the PostgreSQL (mainly

shared buffers and work mem ) is located in the local mem-

ory of different nodes (Figure 2). For example, under the

setting of the neighbor memory, the DB process (join query)

runs on the cores of node 0, the memory used by the Post-

greSQL is restricted to the 4GB local memory of node 1.

Then we achieved the goal to assign the neighbor mermory

location to the join query. With this method, we separately

set different memory locations to different join queries by

separately setting the memory used by the PostgreSQL in

different memory sections.

We did not consider the performance of cache level in our

system, as we suppose the cache level is the same under dif-

ferent memory location settings. If we run the join operation

on one core which is located in the node2, the query will use

the cache resources of L1, L2 cache for the specific core and

the LLC on the processor 3. If we run the join operation on

one core which is located in the node5, the query will use

the cache resources of L1, L2 cache for the specific core and

the LLC on the processor 2. The private cache of L1, L2

for each core is with the same size. Meanwhile, the LLC on

each processor is also with the same size. So we suppose the

cache level is the same under the different memory location

settings.

4. 1 Indexed nest loop joins

4. 1. 1 Random data access

In the first experiment we evaluate how the different mem-

ory locations affects the performance of indexed nest loop

joins. We choose the B+tree index for the relationf of R and

do not create any index for relation S. We separately con-

Figure 2 DB process and memory location settings in experi-

ments

Figure 3 Execution time of nest loop join queries with different

memory locations (work mem=1MB)

ducted two sub experiments: single query experiment and

concurrent query experiment. In the single query experi-

ment, we run only one join query on the core of the specific

node. In the concurrent query experiment, we concurrently

run several equal-join queries on the cores of the same node.

Figure 3 is the execution time of join queries with different

memory locations.

From the result of single query execution experiment, we

find out different memory locations has dramatic impact on

the performance of nest loop joins. The local memory access

is the fastest i.e, the query execution time is the shortest.

When we set the neighbor memory location to the query, the

query execution becomes 23% slower compared with running

the query on the local memory. The neighbor memory ac-



Figure 4 Execution time of nest loop join queries on sorted data

with different memory locations (work mem=1MB)

Figure 5 Execution time of sort merge join queries with different

memory locations ((work mem=1MB))

cess and the close remote memory access leads to the same

performance. That’s because, in our platform, the neighbor

node(node 1) and the close remote node(node 4) has the same

node distance to the local node(node 0). Thus the memory

access latency is the same for the cores on the neighbor node

and the close remote node. With the setting of far remote

memory location, the query performs 40% slower compared

with the setting of local memory location. As the node dis-

tance between the local node(node 0) and the far remote

node(node 3) is the biggest in our platform, the memory

access latency for the far remote memory is the highest.

From the concurrent query execution experiment, we ob-

served bigger effect of the memory location on the concurrent

nest loop joins shown in the Figure 3(b). X-axis shows the

different memory location settings, y-axis shows the query

execution time and the different column colors indicate the

difference in the number of concurrent queries. With six con-

current queries, the close remote memory access and the far

remote memory access brought 28% and 49% increase in ex-

ecution time respectively, compared with the local memory

access. With increasing the number of concurrent queries, it

costs more time to finish the join queries. This is because

the queries have to share the Last level cache (LLC) when

several query concurrently run together. As the size of the

LLC is fixed, the more concurrent queries, the serious the

cache competition becomes. The increasing of the LLC miss

will cause more memory access operations. Thus there are

bigger impact of the memory locality on the concurrent joins.

In the previous experiments, we observed dramatic influ-

ence of the different memory locations on the performance

of the nest loop join operation. And in this experiment, the

join operation has a lot of random read operations to the

main memory as the tuples of the table have random num-

bers in the join key field. So we conclude that the random

remote memory access latency has significant effects on the

performance of the nest loop join operations.

4. 1. 2 Sequential data access

In the second experiment, we change the data access pat-

tern from ramdom memroy access to sequential accesses.

The relation R with the B+tree index is the same with the

previous experiment. We initial the relation S with the datas

which have sorted order in the join key field and in the pre-

vious experiment the data has random order in the join key

filed for the relation S. Generally, the random data access

and sequential data access have different performances due

to the effect of perfetch functions. Figure 4 is the execution

time of join queries on sorted data with different memory

locations.

Rather than the previous experiment results with random

data access for nest loop joins, with the sorted data there is

no dramatic impact of different memory locations to the per-

formance of the query. There are very little increase in the

query execution time when the query access remote memo-

ries compared with access the local memory (2% slower for

neighbor, close remote memory locality and 5% slower for

close remote memory locality). This is because the effect of

the NUMA is mitigated by the prefetcher of the LLC which

prefetches data from the memory into the LLC that are likely

to be required in the near future. As the memory accesses

for the nest loop join on the sorted data are mainly sequen-

tial, the required data are mostly cached by the LLC with

the prefetcher function.

We also observed that for 2 and 4 concurrent queries, the

hardware prefetcher can chieve good performance (in Figure

4(b). The benefit of hardware prefetcher diminished for 6

concurrent queries, and the far remote memory locality in-

creased the query run time by 16% compared with the local

memory locality). That’s because when several queries con-

currently run together, different queries may have different



Figure 6 Execution time of sort merge join queries with different

memory locations (work mem=1600MB)

Figure 7 Execution time of sort merge join queries on sorted data

with different memory locations (work mem=1MB)

data requests and therefore there are random data accesses

some times.

4. 2 Sort Merge joins

In this section we evaluate the performance of the sort

merge join operation under different memory location set-

tings. Figure 5 shows the result for single merge join query.

There is little difference with different memory location set-

tings. We then analyze why this join operation is not affected

by the NUMA architucture. The merge join is consisting of

two sub operations: sort operation and merge operation. We

find out the sort operations cannot fit in memory, and some

temp results during the sort operation have to be swapped

into Hard Disks. We confirm this because the “Sort Method:

external merge” in EXPLAIN ANALYZE plans. In this sit-

uation, the I/O in the Hard Disk becomes into the main

bottleneck which hided the effect of the different memory

access latencies under NUMA.

In order to ensure the sort operation can fit in the mem-

ory space, we changed the database setting of work mem to

1600MB as the parameter of work mem specifies the amount

of memory to be used by internal sort operations. Under

this setting, the query plan was changed into “Sort Method:

quicksort”. Figure 6 shows the results of single merge join

query with quick sort operation. We observed that the close

remote memory access increased the query execution time

by 8.8%, and the far remote memory access increased the

query execution time by 16%. Without I/O contention, we

can observe the different memory locations exhibit dramatic

influence on the sort merge join operations. As there are

inevitable random memory read and memory write opera-

tions during the in-memory quick sort operation, and the

performance of random memory access is affected by differ-

ent memory location settings.

Beyond the sort operation, as there are mainly sequen-

tial data accesses for the merge operation, we suppose the

NUMA location will also have little influence to the merge

operation. We confirm this assumption by evaluating the

sort merge join on two sorted tables. Figure 7 is the execu-

tion time for the sort merge join operation on sorted data

with different memory locations.

The result proves our assumption. There are very little in-

crease in the query execution time when the query accesses

remote memories compared with access the local memory

(4% slower for neighbor and close remote memory locality

and 7% slower for close remote memory locality). The result

is similar with the experiment result of nest loop joins on the

sorted data, and the impact of the NUMA is mitigated by

the hardware prefetcher.

From the experiment results in the section, we can con-

clude that the NUMA will not affect the sort merge join

dramatically when the sort operation cannot fit in memory.

We can observe dramatic influences of the NUMA to the sort

merge joins when the in-memory sort can be used.

4. 3 Hash joins

In this experiment we evaluate how the different memory

locations affect the performance of hash join. We conducted

two sub experiments: single query experiment and concur-

rent query experiment. Figure 8 shows the experiment re-

sults.

The remote memory access increases the query execution

time for 6%(close remote memory access) and 16%(far re-

mote memory access) compared with the local query access.

For concurrent queries, when the number of concurrent

queries becomes 4 or more, a dramatic performance decrease

is observed. This is because the hash tables of the concurrent

queries cannot be cached in the LLC, and it incurs more LLC

misses when several queries concurrently run together. When

the hash table cannot be cached in the LLC the NUMA ef-

fect is increased into 10%(six concurrent queries with close

remote memory access) and 24%(six concurrent queries with

far remote memory access).

In the early experiments of hash join, we used the default

setting of the work mem (1MB) and we observed the “Buck-

ets: 4096 Batches: 102” in EXPLAIN ANALYZE plans. It

indicates that the hash joining tables are too large to fit

into memory. In this situation, the database first partitions

each table, using a hash algorithm on the values in the join

columns. It then goes through each partition in turn, joining

the rows from one table with those from the other table that



Figure 8 Execution time of hash join queries with different mem-

ory locations (work mem=1MB)

fell in the same partition. Each partition is a Batch.

We increased the work mem to 1600MB and observed

“Buckets: 2097152 Batches: 1”. Then we redo the single

hash join query experiment and Figure 9 shows the exper-

iment results. We observed the remote memory access in-

creased the query execution time for 35%(close remote mem-

ory access) and 66%(far remote memory access) compared

with the local query access. With the less batches, the hash

table becomes larger and the large hash table can not fit into

the LLC. It causes a lot of cache miss operations during the

hash join operation. Therefore, the query execution time be-

comes dramatically longer than the multi-batch hash joins as

a result of the worse cache performances. With the increase

of the cache misses, there will be more frequent memory ac-

cesses, and these memory accesses is supposed to be highly

random as the number of the Buckets (2097152) is very large.

As a result, the differnt memory locations have more dra-

matic effects on the hash join performance with the setting

of big work mem.

5. Summary and Future Work

Recently, multi-core processors are widely used by many

applications and are becoming the standard computing plat-

form. However, these processors are far from realizing their

potential performance when dealing with data-intensive ap-

plications such as DBMSs. This is because advances in

the speed of commodity multi-core processors far outpace

advances in memory latency, leading to processors wasting

much time waiting for required items of data. Thus a lot of

Figure 9 Execution time of hash join queries with different mem-

ory locations (work mem=1600MB)

work focuses on how to overcome the memory wall through

changing data lay out, providing better cache utilizations

and so on.

In this paper we analyzed how the NUMA affected the

performance of different join operations of PostgreSQL. Un-

der the NUMA architecture, the memory access latency var-

ied, depending on which processor accesses a certain part of

memory. We evaluated how the different core and memory

loation relationship affected the three kinds of join operations

which were nest loop join, sort merge join and hash join on

a multi-core platform with three kinds of different memory

access latencies. We found out that the remote memory ac-

cess will greatly decreased the performance of nest loop join

operations and increased the execution time by 48% at most

when only one relation has B+tree index. We observed little

effect on the sort merge join operations especially when the

sort operation could not fit in memory. The NUMA archi-

tucture increased the running time for the multi-batch hash

join by about 10%.

In the future we will focus on the optimizations of join

operations on the multi-core platform. We will consider the

NUMA effect and reduce the remote memory accesses.
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